2020年高考物理专题精准突破 中心天体质量密度的计算问题(原卷版)

2020年高考物理专题精准突破  中心天体质量密度的计算问题(原卷版)
2020年高考物理专题精准突破  中心天体质量密度的计算问题(原卷版)

2020年高考物理专题精准突破

专题中心天体质量密度的计算问题

【专题诠释】

中心天体质量和密度常用的估算方法

【高考领航】

【2019·新课标全国Ⅰ卷】在星球M上将一轻弹簧竖直固定在水平桌面上,把物体P轻放在弹簧上端,P由静止

向下运动,物体的加速度a与弹簧的压缩量x间的关系如图中实线所示。在另一星球N上用完全相同的弹簧,改用物体Q完成同样的过程,其a–x关系如图中虚线所示,假设两星球均为质量均匀分布的球体。已知星球M的半径是星球N的3倍,则()

A .M 与N 的密度相等

B .Q 的质量是P 的3倍

C .Q 下落过程中的最大动能是P 的4倍

D .Q 下落过程中弹簧的最大压缩量是P 的4倍

【2019·浙江选考】20世纪人类最伟大的创举之一是开拓了太空的全新领域。现有一艘远离星球在太空中直 线飞行的宇宙飞船,为了测量自身质量,启动推进器,测出飞船在短时间Δt 内速度的改变为Δv ,和飞船受 到的推力F (其它星球对它的引力可忽略)。飞船在某次航行中,当它飞近一个孤立的星球时,飞船能以速 度v ,在离星球的较高轨道上绕星球做周期为T 的匀速圆周运动。已知星球的半径为R ,引力常量用G 表示。 则宇宙飞船和星球的质量分别是( )

A .F v t ??,

2v R G B .F v t ??,32πv T

G C .F t v ??,

2v R G D .F t v ??,

32πv T

G

F t m v ?=?F t m v ?=?2224Mm

G m r r T π=22Mm v G m r r =32v T M G

π=

【2018·新课标全国II 卷】2018年2月,我国500 m 口径射电望远镜(天眼)发现毫秒脉冲星“J0318+0253”, 其自转周期T =5.19 ms ,假设星体为质量均匀分布的球体,已知万有引力常量为11

226.6710N m /kg -??。

以周期T 稳定自转的星体的密度最小值约( ) A .93510kg /m ?

B .123510kg /m ?

C .153510kg /m ?

D .183510kg /m ?

【技巧方法】

应用公式时注意区分“两个半径”和“两个周期”

(1)天体半径和卫星的轨道半径,通常把天体看成一个球体,天体的半径指的是球体的半径.卫星的轨道半径指的是卫星围绕天体做圆周运动的圆的半径.卫星的轨道半径大于等于天体的半径.

(2)自转周期和公转周期,自转周期是指天体绕自身某轴线运动一周所用的时间,公转周期是指卫星绕中心天

体做圆周运动一周所用的时间.自转周期与公转周期一般不相等. 【最新考向解码】

【例1】(2019·辽宁辽阳高三上学期期末)2018年7月10日,我国在西昌卫星发射中心使用长征三号甲运载火箭,成功发射北斗卫星导航系统的第32颗卫星。作为北斗二号卫星的“替补”星,这名北斗“队员”将驰骋天疆,全力维护北斗卫星导航系统的连续稳定运行。若这颗卫星在轨运行的周期为T ,轨道半径为r ,地球的半径为R ,则地球表面的重力加速度为( )

A.4π2r 3T 2R 2

B.4π2r 3T 2R

C.4π2r 3T 2r

D.4π2r 3T 2r

2 【例2】(2019·福建三明高三上学期期末)2019年1月3日上午,嫦娥四号顺利着陆月球背面,成为人类首颗成功软着陆月球背面的探测器(如图所示)。地球和月球的半径之比为R R 0=a ,表面重力加速度之比为g g 0=b ,

则地球和月球的密度之比为( )

A.a b

B.b

a C. a

b D. b a

【微专题精练】

1.为了研究某彗星,人类先后发射了两颗人造卫星.卫星A 在彗星表面附近做匀速圆周运动,运行速度为v , 周期为T ;卫星B 绕彗星做匀速圆周运动的半径是彗星半径的n 倍.万有引力常量为G ,则下列计算不正确 的是

( )

A .彗星的半径为vT 2π

B .彗星的质量为v 3T 4πG

C .彗星的密度为3πGT 2

D .卫星B 的运行角速度为2πT n 3

2.假设地球可视为质量均匀分布的球体.已知地球表面重力加速度在两极的大小为g 0,在赤道的大小为g ; 地球自转的周期为T ,引力常量为G .则地球的密度为

( )

A.3π(g 0-g )

GT 2g 0

B.3πg 0

GT 2(g 0-g ) C.3πGT

2 D.3πg 0GT 2g

3.利用引力常量G 和下列某一组数据,不能计算出地球质量的是( ) A .地球的半径及重力加速度(不考虑地球自转) B .人造卫星在地面附近绕地球做圆周运动的速度及周期

C .月球绕地球做圆周运动的周期及月球与地球间的距离

D .地球绕太阳做圆周运动的周期及地球与太阳间的距离

4.(2019·甘肃省武威一中高三(上)期末)木星的卫星之一叫艾奥,它上面的珞珈火山喷出的岩块初速度为v 0时,上升的最大高度可达h 。已知艾奥的半径为R ,引力常量为G ,忽略艾奥的自转及岩块运动过程中受到稀薄气体的阻力。则艾奥表面的重力加速度大小g =________;艾奥的质量M =________;艾奥的第一宇宙速度v =________。

5.我国探月的“嫦娥工程”已启动,在不久的将来,我国宇航员将登上月球.假如宇航员在月球上测得摆长为L 的单摆做小振幅振动的周期为T ,将月球视为密度均匀、半径为r 的球体,则月球的密度为( ) A.πL

3GrT 2

B.3πL GrT 2

C.16πL 3GrT 2

D.3πL 16GrT 2

6.据报道,科学家们在距离地球20万光年外发现了首颗系外“宜居”行星.假设该行星质量约为地球质量的6.4倍,半径约为地球半径的2倍.那么,一个在地球表面能举起64 kg 物体的人,在这个行星表面能举起的物体的质量约为(地球表面重力加速度g 取10 m/s 2)( ) A .40 kg B .50 kg C .60 kg

D .30 kg

7.公元2100年,航天员准备登陆木星,为了更准确了解木星的一些信息,到木星之前做一些科学实验,当到达与木星表面相对静止时,航天员对木星表面发射一束激光,经过时间t ,收到激光传回的信号,测得相邻两次看到日出的时间间隔是T ,测得航天员所在航天器的速度为v ,已知引力常量G ,激光的速度为c ,则( )

A .木星的质量M =v 3T 2πG

B .木星的质量M =π2c 3t 3

2GT 2

C .木星的质量M =4π2c 3t 3

GT 2

D .根据题目所给条件,可以求出木星的密度

8.(2019·山东济南模拟)热爱天文科学的某同学从网上得到一些关于月球和地球的信息,如下表所示.根据表格中数据,可以计算出地球和月球的密度之比为( )

A.3∶2 B.2∶3

C.4∶1 D.6∶1

9.“健身弹跳球”是最近在少年儿童中特别流行的一项健身益智器材,少年儿童在玩弹跳球时(如图所示)要双脚站在弹跳球的水平跳板上,用力向下压弹跳球,形变的弹跳球能和人一起跳离地面.该过程简化为:一、形变弹跳球向上恢复原状;二、人和弹跳球竖直上升. 假设小孩质量为m,人和球一起以速度大小v0离开地面还能竖直上升h高度(上升过程小孩只受重力作用),地球半径为R,引力常量为G,求地球的质量.

10.如图所示,在某星球表面轻绳约束下的质量为m的小球在竖直平面内做圆周运动,小球在最低点与最高点所受轻绳的拉力之差为ΔF,假设星球是均匀球体,其半径为R,已知万有引力常量为G,不计一切阻力.

(1)求星球表面重力加速度;

(2)求该星球的密度;

(3)如图所示,在该星球表面上,某小球以大小为v0的初速度平抛,恰好能击中倾角为θ的斜面,且位移最短,试求该小球平抛的时间.

求中心天体的质量与密度

求天体的加速度、质量、密度 一.知识聚焦 1.加速度: 表面上 mg Mm G =2R 得2g R GM = 非表面 ()ma R Mm G =+2h 得)(2R a h GM += 万有引力与航天 ) 基础知识: 一、研究对象:绕中心天体的行星或卫星 r mv r Mm G 22= G r v M 2= (已知线速度与半径) 2 2ωmr r Mm G = G r M 32ω= (已知角线速度与半径) 2 2)2(T mr r Mm G π= G T r M 232)2(π= (已知周期与半径) 总结: 线速度v r ,这三个物理量中,任意组合二个,一定能求出中心天体的质量M 。 或者说:中心天体的质量M 、及三个物理量中,只要知道其中的两个,可求出其它物理量。 二、研究对象:绕中心天体表面运行的行星或卫星 R mv R Mm G 22= G R v M 2= (已知线速度与半径) 2 2ωmR R Mm G = G R M 32ω= (已知角线速度与半径) G πωρ432=( 已知角速

度) 22)2(T mR R Mm G π= (已知周期与半径) 已知周期 ) 任何因数都无关。 三、研究对象:距离地面h 高处的物体,万有引力等于重力 mg h R Mm G =+2 ) ( G h R g M 2)(+= (已知某高度处的重力加速度与距离) 四、研究对象:地球表面的物体,万有引力等于重力 mg R Mm G =2 G gR M 2= (已知中心天体表面的重力加速度与半径) GR g πρ43=

训练题(真题) 1宇航员站在一星球表面上的某高处,沿水平方向抛出一小球,经过时间t ,小球落在星球表面,测得抛出点与落地点之间的距离为L ,若抛出时的初速度增大到2倍,则抛出点与落地点间的距离为3L ,已知两落地点在同一水平面上,该星球的半径为R ,引力常量为G ,求该星球的质量M 和密度ρ. [解析]此题的关键就是要根据在星球表面物体的运动情况求出星球表面的重力加速度,再根据星球表面物体的重力等于物体受到的万有引力求出星球的质量和星球的密度. 根据平抛运动的特点得抛出物体竖直方向上的位移为22 1gt y = 设初始平抛小球的初速度为v ,则水平位移为x=vt .有2222)()21(L vt gt =+ ○1 当以2v 的速度平抛小球时,水平位移为x'= 2vt .所以有2222)3()2()21 (L vt gt =+ ② 在星球表面上物体的重力近似等于万有引力,有mg=G 2R Mm ③ 联立以上三个方程解得2 2332Gt LR M = 而天体的体积为334R V π= ,由密度公式V M =ρ得天体的密度为R Gt L 2 23πρ=。 2某一物体在地球表面时,由弹簧测力计测得重160N ,把此物体放在航天器中,若航天器以加速度2 g a = (g 为地球表面的重力加速度)垂直地面上升,这时再用同一弹簧测力计测得物体的重力为90N ,忽略地球自转的影响,已知地球半径R ,求此航天器距地面的高度。 解析:物体在地球表面时,重力为=mg 160N ①根据万有引力定律,在地面附近有 2 R GMm mg = ② 图 21

2018年高考物理复习天体运动专题练习(含答案)

2018年高考物理复习天体运动专题练习(含答 案) 天体是天生之体或者天然之体的意思,表示未加任何掩盖。查字典物理网整理了天体运动专题练习,请考生练习。 一、单项选择题(本题共10小题,每小题6分,共60分.) 1.(2014武威模拟)2013年6月20日上午10点神舟十号航天员首次面向中小学生开展太空授课和天地互动交流等科 普教育活动,这是一大亮点.神舟十号在绕地球做匀速圆周运动的过程中,下列叙述不正确的是() A.指令长聂海胜做了一个太空打坐,是因为他不受力 B.悬浮在轨道舱内的水呈现圆球形 C.航天员在轨道舱内能利用弹簧拉力器进行体能锻炼 D.盛满水的敞口瓶,底部开一小孔,水不会喷出 【解析】在飞船绕地球做匀速圆周运动的过程中,万有引

力充当向心力,飞船及航天员都处于完全失重状态,聂海胜做太空打坐时同样受万有引力作用,处于完全失重状态,所以A错误;由于液体表面张力的作用,处于完全失重状态下的液体将以圆球形状态存在,所以B正确;完全失重状态下并不影响弹簧的弹力规律,所以拉力器可以用来锻炼体能,所以C正确;因为敞口瓶中的水也处于完全失重状态,即水对瓶底部没有压强,所以水不会喷出,故D正确. 【答案】 A 2.为研究太阳系内行星的运动,需要知道太阳的质量,已知地球半径为R,地球质量为m,太阳与地球中心间距为r,地球表面的重力加速度为g,地球绕太阳公转的周期T.则太阳的质量为() A.B. C. D. 【解析】地球表面质量为m的物体万有引力等于重力,即G=mg,对地球绕太阳做匀速圆周运动有G=m.解得M=,D正确.

【答案】 D 3.(2015温州质检)经国际小行星命名委员会命名的神舟星和杨利伟星的轨道均处在火星和木星轨道之间.已知神舟星平均每天绕太阳运行1.74109 m,杨利伟星平均每天绕太阳运行1.45109 m.假设两行星都绕太阳做匀速圆周运动,则两星相比较() A.神舟星的轨道半径大 B.神舟星的加速度大 C.杨利伟星的公转周期小 D.杨利伟星的公转角速度大 【解析】由万有引力定律有:G=m=ma=m()2r=m2r,得运行速度v=,加速度a=G,公转周期T=2,公转角速度=,由题设知神舟星的运行速度比杨利伟星的运行速度大,神舟星的轨道半径比杨利伟星的轨道半径小,则神舟星的加速度比杨利伟星的加速度大,神舟星的公转周期比杨利伟星的公转周期小,神舟星的公转角速度比杨利伟星的公转角速度大,故选

天体质量和密度计算(高三物理)

课前作业 例一、(2015西城一模第23题节选) 利用万有引力定律可以测量天体的质量。 (1)测地球的质量 英国物理学家卡文迪许,在实验室里巧妙地利用扭秤装置,比较精确地测量出了引力常量的数值,他把自己的实验说成是“称量地球的质量”。 已知地球表面重力加速度为g,地球半径为R,引力常量为G。若忽略地球自转的影响,求地球的质量及密度。 例二、天宫一号于2011年9月29日成功发射,它将和随后发射的神州飞船在空间完成交会对接,实现中国载人航天工程的一个新的跨越。天宫一号进入运行轨道后,其运行周期为T,距地面的高度为h,已知地球半径为R,万有引力常量为G。若将天宫一号的运行轨道看做圆轨道。 求:(1)地球质量M;(2)地球的平均密度。 例三、近年来,人类发射的多枚火星探测器已经相继在火星上着陆,正在进行着激动人心的科学探究,为我们将来登上火星、开发和利用火星资源奠定了坚实的基础。如果火星探测器环绕火星做“近地”匀速圆周运动,并测得该运动的周期为T,写出火星的平均密度 的表达式(万有引力常量为G) 方法提升:天体质量和密度的计算(写出具体表达式) 一、利用天体表面的重力加速度g和天体半径R计算天体质量(不考虑自转影响) 二、通过观察卫星(行星)绕行星(恒星)做匀速圆周运动的周期T和轨道半径r计算行星(恒星)的质

量 当堂检测一、已知万有引力常量G ,地球半径R ,月球和地球之间的距离r ,同步卫星距地面的高度h ,月 球绕地球的运转周期T 1,地球的自转周期T 2,地球表面的重力加速度为g ,第一宇宙速度为v 。某同学根 据以上条件,提出一种估算地球质量M 的方法: 同步卫星绕地心做圆周运动,由得。 (1)请判断上面的结果是否正确,并说明理由。如果不正确,请给出正确的解法和结果。 (2)请根据已知条件再提出至少两种估算地球质量的方法并解得结果。 当堂检测二、宇航员在月球上做自由落体实验,将某物体由距月球表面高h 处释放,经时间t 后落到月球 表面,月球半径为R 。据上述信息推断月球的质量的表达式 当堂检测三、我国探月的“嫦娥工程”已启动,在不久的将来,我国宇航员将登上月球。假如宇航员在月 球上测得摆长为L 的单摆做小振幅振动的周期为T ,将月球视为密度均匀、半径为r 的球体,则月球的密 度为( ) A . 23L GrT π B .23L GrT π C .2163L GrT π D .2 316L GrT π 当堂检测四、(06年北京)18. 一飞船在某行星表面附近沿圆轨道绕该行星飞行。认为行星是密度均匀的

高考物理真题分类汇编:万有引力和天体运动

高中物理学习材料 金戈铁骑整理制作 2014年高考物理真题分类汇编:万有引力和天体运动 19.[2014·新课标全国卷Ⅰ] 太阳系各行星几乎在同一平面内沿同一方向绕太阳做圆周运动.当地球恰好运行到某地外行星和太阳之间,且三者几乎排成一条直线的现象,天文学称为“行星冲日”.据报道,2014年各行星冲日时间分别是:1月6日木星冲日;4月9日火星冲日;5月11日土星冲日;8月29日海王星冲日;10月8日天王星冲日.已知地球及各地外行星绕太阳运动的轨道半径如下表所示,则下列判断正确的是( ) 地球 火星 木星 土星 天王星 海王星 轨道半径(AU) 1.0 1.5 5.2 9.5 19 30 A.各地外行星每年都会出现冲日现象 B .在2015年内一定会出现木星冲日 C .天王星相邻两次冲日的时间间隔为土星的一半 D .地外行星中,海王星相邻两次冲日的时间间隔最短 19.BD [解析] 本题考查万有引力知识,开普勒行星第三定律,天体追及问题.因为冲日现象实质上是角速度大的天体转过的弧度恰好比角速度小的天体多出2π,所以不可能每年都出现(A 选项).由开普勒行星第三定律有T 2木T 2地=r 3木 r 3地=140.608,周期的近似比值为12,故木星的周期为12年,由曲线运动追及公式 2πT 1t -2πT 2t =2n π,将n =1代入可得t =12 11年,为木星两次冲日的时间间隔,所以2015年能看到木星冲日现象, B 正确.同理可算出天王星相邻两次冲日的时间间隔为1.01年.土星两次冲日的时间间隔为1.03年.海王星两次冲日的时间间隔为1.006年,由此可知 C 错误, D 正确. 18.[2014·新课标Ⅱ卷] 假设地球可视为质量均匀分布的球体.已知地球表面重力加速度在两极的大小为g 0,在赤道的大小为g ;地球自转的周期为T ,引力常量为G .地球的密度为( ) A.3πGT 2 g 0-g g 0 B.3πGT 2g 0 g 0-g C. 3πGT 2 D.3πGT 2g 0 g 18.B [解析] 在两极物体所受的重力等于万有引力,即 GMm R 2 =mg 0,在赤道处的物体做圆周运动的周期等于地球的自转周期T ,则GMm R 2-mg =m 4π2T 2R ,则密度 ρ=3M 4πR 3=34πR 3 g 0R 2 G =3πg 0GT 2(g 0-g ) .B 正确. 3. [2014·天津卷] 研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时.假设这种

突破18 天体质量和密度的估算与天体表面重力加速度问题(原卷版)

突破18天体表面重力加速度问题与天体质量和密度的估算 一、天体表面上的重力加速度问题 重力是由于物体受到地球的万有引力而产生的,严格说重力只是万有引力的一个分力,另一个分力提供物体随地球自转做圆周运动的向心力,但由于向心力很小,一般情况下认为重力约等于万有引力,即mg =GMm R 2,这样重力加速度就与行星质量、半径联系在一起,高考也多次在此命题。 计算重力加速度的方法 (1)在地球表面附近的重力加速度g (不考虑地球自转):mg =G mM R 2,得g =GM R 2(2)在地球上空距离地心r =R +h 处的重力加速度为g ′,mg ′= GmM R +h 2 ,得,g ′=GM R +h 2 所以g g ′= R +h 2 R 2 (3)其他星球上的物体,可参考地球上的情况做相应分析. 【典例1】宇航员王亚平在“天宫1号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象。若飞船质量为m ,距地面高度为h ,地球质量为M ,半径为R ,引力常量为G ,则飞船所在处的重力加速度大小为( ) A .0 B.GM R +h 2 C. GMm R +h 2 D. GM h 2 【典例2】假设有一火星探测器升空后,先在地球表面附近以线速度v 环绕地球飞行,再调整速度进入地火转移轨道,最后以线速度v ′在火星表面附近环绕火星飞行。若认为地球和火星都是质量分布均匀的球体,已知火星与地球的半径之比为1∶2,密度之比为5∶7。设火星与地球表面的重力加速度分别为g ′和g 。下列结论正确的是( ) A .g ′∶g =1∶4 B .g ′∶g =7∶10 C .v ′∶v = 5 28D .v ′∶v = 514 【典例3】若在某行星和地球上相对于各自的水平地面附近相同的高度处、以相同的速率平抛一物体,它们在水平方向运动的距离之比为2∶7。已知该行星质量约为地球的7倍,地球的半径为R 。由此可知,该行星的半径约为( )

2019高考物理一轮复习天体运动题型归纳

天体运动题型归纳 李仕才 题型一:天体的自转 【例题1】一物体静置在平均密度为ρ的球形天体表面的赤道上。已知万有引力常量为G ,若由于天体自转使物体对天体表面压力怡好为零,则天体自转周期为( ) A .1 2 4π3G ρ?? ??? B .1 2 34πG ρ?? ??? C .1 2 πG ρ?? ??? D .1 2 3πG ρ?? ??? 解析:在赤道上2 2 R m mg R Mm G ω+=① 根据题目天体表面压力怡好为零而重力等于压力则①式变为 22R m R Mm G ω=②又 T π ω2= ③ 33 4 R M ρπ= ④ ②③④得:2 3GT π ρ= ④即21 )3(ρπG T =选D 练习 1、已知一质量为m 的物体静止在北极与赤道对地面的压力差为ΔN ,假设地球是质量分布 均匀的球体,半径为R 。则地球的自转周期为( ) A. 2T = 2T =R N m T ?=π2 D.N m R T ?=π2 2、假设地球可视为质量均匀分布的球体,已知地球表面的重力加速度在两极的大小为g 0,在赤道的大小为g ;地球自转的周期为T ,引力常数为G ,则地球的密度为: A. 0203g g g GT π- B. 0203g g g GT π- C. 23GT π D. 23g g GT πρ=

题型二:近地问题+绕行问题 【例题1】若宇航员在月球表面附近高h 处以初速度0v 水平抛出一个小球,测出小球的水平射程为L 。已知月球半径为R ,引力常量为G 。则下列说法正确的是 A .月球表面的重力加速度g 月=hv 2 L 2 B .月球的质量m 月=hR 2v 20 GL C .月球的第一宇宙速度v = v 0 L 2h D .月球的平均密度ρ=3hv 2 2πGL 2R 解析 根据平抛运动规律,L =v 0t ,h =12g 月t 2 ,联立解得g 月=2hv 2 0L 2;由mg 月=G mm 月R 2, 解得m 月=2hR 2v 2 0GT 2;由mg 月=m v 2 R ,解得v =v 0L 2hR ;月球的平均密度ρ=m 月43πR 3=3hv 2 2πGL 2R 。 练习:“玉兔号”登月车在月球表面接触的第一步实现了中国人“奔月”的伟大梦想。机器人“玉兔号”在月球表面做了一个自由下落试验,测得物体从静止自由下落h 高度的时间t ,已知月球半径为R ,自转周期为T ,引力常量为G 。则下列说法正确的是 A .月球表面重力加速度为t 2 2h B .月球第一宇宙速度为 Rh t C .月球质量为hR 2 Gt 2 D .月球同步卫星离月球表面高度 3hR 2T 2 2π2t 2-R 【例题2】过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51 peg b ”的发现拉开了研究太阳系外行星的序幕。“51 peg b ”绕其中心恒星做匀速圆周运动,周期约为4天,轨道半径约为地球绕太阳运动半径的1 20 。该中心恒星与太阳的质量比约为 A.1 10 B .1 C .5 D .10

物理作业:求解天体的质量和密度

11(2016武汉汉阳一中模拟)据每日邮报2014年4月18日报道,美国国家航空航天局(NASA )目前宣布首次在太阳系外发现“类地”行星Kepler-186f 。假如宇航员乘坐宇宙飞船到达该行星,进行科学观测:该行星自转周期为T;宇航员在该行星“北极”距该行星地面附近h 处自由释放—个小球(引力视为恒力),落地时间为t 1;宇航员在该行星“赤道”距该行星地面附近h 处自由释放—个小球(引力视为恒力),落地时间为t 2。则行星的半径R 的值 ( ) A . B . C . D. 12(2016·河北邯郸市高三一调)已知某半径为r 0的质量分布均匀的天体,测得它的一个卫星的圆轨道的半径为r ,卫星运行的周期为T 。假设在该天体表面沿竖直方向以初速度v 0向上抛出一个物体,不计阻力,求它可以到达的最大高度h 是( ) A.v 20T 2(r -r 0)2 4π2r 3 B.v 20T 2(r -r 0)28π2r 3 C.v 20T 2r 20 4π2r 3 D.v 20T 2r 208π2r 3 13(2016·四川联考)火星(如图所示)是太阳系中与地球最为类似的行星,人类对火星生命的研究在今年因“火星表面存在流动的液态水”的发现而取得了重要进展。若火星可视为均匀球体,火星表面的重力加速度为g 火星半径为R ,火星自转周期为T ,万有引力常量为G 。求: (1)火星的平均密度ρ。 (2)火星的同步卫星距火星表面的高度h 。 22212221224)(t t hT t t R π+=2 22122 212 22)(t t hT t t R π+=22212221222)(t t hT t t R π-=2 2 2122 21224)(t t hT t t R π-=

天体质量的计算方法(万有引力理论的成就)

万有引力理论的成就 一、计算天体的质量 1.地球质量的计算 利用地球表面的物体,若不考虑地球自转,质量为m 的物体的重力等于地球对物体的万有引 力,即mg =GMm R 2,则M =gR 2G ,由于g 、R 已经测出,因此可计算出地球的质量. 2.太阳质量的计算 利用某一行星:由于行星绕太阳的运动,可看做匀速圆周运动,行星与太阳间的万有引 力充当向心力,即G Mm r =m ω2r ,而ω=2πT ,则可以通过测出行星绕太阳运转的周期和轨道半径,得到太阳质量M =4π2r 3GT 2. 3.其他行星质量的计算 利用绕行星运转的卫星,若测出该卫星绕行星运转的周期和轨道半径同样可得出行星的质量. 二、计算天体的质量 1.“称量”地球的质量 如果不考虑地球自转的影响,地球上的物体所受重力等于地球对它的万有引力. 由万有引力定律mg =GMm R 2 得M =gR 2G ,其中g 为地球表面的重力加速度,R 为地球半径,G 为万有引力常量. 从而得到地球质量M =5.96×1024kg . 通过上面的过程我们可以计算地球的质量,通过其它的方法,或者说已知另外的一些条件能否测出地球质量. 2.天体质量计算的几种方法 (1)若已知月球绕地球做匀速圆周运动的周期为T ,半径为r ,根据万有引力等于向心力,即GM 地·m 月r 2=m 月r ? ?? ??2πT 2,可求得地球质量M 地=4π2r 3GT 2. (2)若已知月球绕地球做匀速圆周运动的半径r 和月球运动的线速度v ,由于地球对月球的引力等于月球做匀速圆周运动的向心力,根据牛顿第二定律,得 G M 地·m 月r 2=m 月v 2r .

80个物理易错疑难考点最新模拟题精选训练— 中心天体质量和密度的测量

一.选择题 1(2016湖南十三校联考)为了测量某行星的质量和半径,宇航员记录了登陆舱在该行星表面做圆周运动的周期T ,登陆舱在行星表面着陆后,用弹簧称称量一个质量为m 的砝码读数为N 。已知引力常量为G 。则下列计算中错误的是: A .该行星的质量为344316m T N π B .该行星的半径为m NT 2 24π C .该行星的密度为2 3GT π D .在该行星的第一宇宙速度为m NT π2 【参考答案】B 【命题立意】本题旨在考查万有引力作用与卫星的圆周运动 【举一反三】在这颗行星表面以v 上抛一物体,经多长时间落地? 2.(2016·河北邯郸市高三一调)已知某半径为r 0的质量分布均匀的天体,测得它的一个卫星的圆轨道的半径为r ,卫星运行的周期为T 。假设在该天体表面沿竖直方向以初速度v 0向上抛出一个物体,不计阻力,求它可以到达的最大高度h 是( ) A.v 20T 2(r -r 0)24π2r 3 B.v 20T 2(r -r 0)28π2r 3 C.v 20T 2r 20 4π2r 3 D.v 20T 2r 208π2r 3 【参考答案】D

由万有引力提供向心力得:GMm r2 = m·4π2r T2 , GMm r20 =mg′,所以g′= 4π2r3 T2r20 ,在该天体表面沿 竖直方向以初速度v0向上抛出一个物体,不计阻力,物体上升的过程中的机械能守恒,mg′h =1 2 mv20,它可以到达的最大高度h= v20T2r20 8π2r3 ,D正确。 3.(2016·河北百校联考)嫦娥五号探测器由轨道器、返回器、着陆器等多个部分组成。探测器预计在2017年由长征五号运载火箭在中国文昌卫星发射中心发射升空,自动完成月面样品采集,并从月球起飞,返回地球,带回约2 kg月球样品。某同学从网上得到一些信息,如表格中的数据所示,请根据题意,判断地球和月球的密度之比为( ) 月球半径R0 月球表面处的重力加速度g0 地球和月球的半径之比R R0 =4 地球表面和月球表面的重力加速度之比g g0 =6 A.2 3 B. 3 2 C.4 D.6 【参考答案】B 【名师解析】 4.(2016·河南郑州高三月考)中国首台探月车“玉兔号”的成功探月,激发起无数中国人对 月球的热爱。根据报道:月球表面的重力加速度为地球表面的1 6 ,月球半径为地球的 1 4 ,则根 据以上数据分析可得( ) A.绕月球表面飞行的卫星与绕地球表面飞行的卫星的周期之比为3∶2 B.绕月球表面飞行的卫星与绕地球表面飞行的卫星的向心加速度之比为1∶6 C.月球与地球的质量之比为1∶96 D.月球与地球的密度之比为2∶3 【参考答案】BCD

2015年高考物理真题分类汇编:万有引力和天体运动

2015年高考物理真题分类汇编:万有引力和天体运动 (2015新课标I-21). 我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4m高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落,已知探测器的质量约为1.3×103kg,地球质量约为月球质量的81倍,地球半径约为月球半径的3.7倍,地球表面的重力加速度约为9.8m/s2,则此探测器 A. 着落前的瞬间,速度大小约为8.9m/s B. 悬停时受到的反冲作用力约为2×103N C. 从离开近月圆轨道这段时间内,机械能守恒 D. 在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度 【答案】B、D 【考点】万有引力定律及共应用;环绕速度 【解析】在中心天体表面上万有引力提供重力:= mg , 则可得月球表面的重力加速度 g月= ≈ 0.17g地= 1.66m/s2 .根据平衡条件,探测器悬停时受到的反作用力F = G探= m探 g月≈ 2×103N,选项B正确;探测器自由下落,由V2=2g月h ,得出着落前瞬间的速度v ≈3.6m/s ,选项A错误;从离开近月圆轨道,关闭发动机后,仅在月球引力作用下机械能守恒,而离开近月轨道后还有制动悬停,发动机做了功,机械能不守恒,故选项C错误;在近月圆轨道 万有引力提供向心力:= m,解得运行的线速度V月= = < , 小于近地卫星线速度,选项D正确。 【2015新课标II-16】16. 由于卫星的发射场不在赤道上,同步卫星发射后需要从转移轨道经过调整再进入地球同步轨道。当卫星在转移轨道上飞经赤道上空时,发动机点火,给卫星一附加速度,使卫星沿同步轨道运行。已知同步卫星的环绕速度约为3.1x103/s,某次发 射卫星飞经赤道上空时的速度为1.55x103/s,此时 卫星的高度与同步轨道的高度相同,转移轨道和 同步轨道的夹角为30°,如图所示,发动机给卫星 的附加速度的方向和大小约为 A. 西偏北方向,1.9x103m/s B. 东偏南方向,1.9x103m/s C. 西偏北方向,2.7x103m/s D. 东偏南方向,2.7x103m/s 【答案】B

2018高中物理 第六章 万有引力与航天 3 破解天体质量和密度的相关计算学案 新人教版必修2

破解天体质量和密度的相关计算 知识点 考纲要求 题型 分值 万有引力的理论成就 会利用万有引力定律求解天体的质量、密度等参数 选择题 6分 一、计算天体的质量基本思路 1. 地球质量的计算 利用地球表面的物体,若不考虑地球自转,质量为m 的物体的重力等于地球对物体的万 有引力,即mg =2 GMm R ,则M =2gR G ,由于g 、R 已经测出,因此可计算出地球的质量。 2. 太阳质量的计算 利用某一行星:由于行星绕太阳的运动,可看作匀速圆周运动,行星与太阳间的万有引 力充当向心力,即G 2 Mm r =mω2 r ,而ω=2T π,则可以通过测出行星绕太阳运转的周期和轨道半径,得到太阳质量M =23 2 4r GT π。 3. 其他行星质量的计算 利用绕行星运转的卫星,若测出该卫星绕行星运转的周期和轨道半径,同样可得出行星的质量。 二、计算天体的质量的具体方法(以地球是中心天体,月球是环绕卫星为例) 如果不考虑地球自转的影响,地球上的物体所受重力等于地球对它的万有引力。 由万有引力定律mg = 2 GMm R 得M =2 gR G ,其中g 为地球表面的重力加速度,R 为地球半径,G 为万有引力常量。 从而得到地球质量M =5.96×1024 kg 。 通过上面的过程,我们可以计算地球的质量,通过其他的方法,或者说已知另外的一些条件能否测出地球质量。 (1)若已知月球绕地球做匀速圆周运动的周期为T ,半径为r ,根据万有引力等于向心 力,即2·M m G r 月地=m 月r 2 2T π?? ??? ,可求得地球质量M 地=2324r GT π。 (2)若已知月球绕地球做匀速圆周运动的半径r 和月球运动的线速度v ,由于地球对 月球的引力等于月球做匀速圆周运动的向心力,根据牛顿第二定律,得 2·M m G r 月地=m 月2v r 解得地球的质量为M 地=2 rv G (3)若已知月球运行的线速度v 和运行周期T ,由于地球对月球的引力等于月球做匀速圆周运动的向心力,根据牛顿第二定律,得

高考物理天体运动公式归纳

高考物理天体运动公式归纳 高考物理天体运动公式 1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)} 2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11Nm2/kg2,方向在它们的连线上) 3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)} 4.卫星绕行速度、角速度、周期:V=(GM/r)1/2; ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量} 5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r 地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s 6.地球同步卫星GMm/(r地+h)2=m4π2(r地 +h)/T2{h&asymp;36000km,h:距地球表面的高度,r地:地球的半径} 强调:(1)天体运动所需的向心力由万有引力提供,F向=F 万;(2)应用万有引力定律可估算天体的质量密度等; (3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同; (4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小;(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

高考物理分子动理论、能量守恒定律公式 1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米 2.油膜法测分子直径d=V/s{V:单分子油膜的体积(m3),S:油膜表面积(m)2} 3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。 4.分子间的引力和斥力(1)r (2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值) (3)r>r0,f引>f斥,F分子力表现为引力 (4)r>10r0,f引=f斥&asymp;0,F分子力&asymp;0,E分子势能&asymp;0 5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的), W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册 P40〕} 6.热力学第二定律 克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性); 开氏表述:不可能从单一热源吸收热量并把它全部用来

计算中心天体的质量和密度

计算天体的质量和密度 知识梳理 注意:计算天体质量需“一个中心、两个基本点”: “一个中心”即只能计算出中心天体的质量;“两个基本点” 即要计算中心天体的质量,除引力常量G 外,还要已知两个独立的物理量。 例题分析 【例1】下列哪一组数据不能估算出地球的质量。引力常量G 已知( ) A.月球绕地球运行的周期与月地之间的距离 B.地球表面的重力加速度与地球的半径 C.绕地球运行卫星的周期与线速度 D.地球表面卫星的周期与地球的密度 【例2】已知引力常量G .月球中心到地球中心的距离R 和月球绕地球运行的周期T 。仅利用这三个数据,可以估算出的物理量有( ) A .月球的质量 B .地球的密度 C .地球的半径 D .月球绕地球运行速度的大小 【例3】(2006北京)一飞船在某行星表面附近沿圆轨道绕该行星飞行,认为行星是密度均匀的球体,要确定该行星的密度,只需要测量( ) A.飞船的轨道半径 B.飞船的运行速度 C.飞船的运行周期 D.行星的质量 【例4】(2005广东)已知万有引力常量G ,地球半径R ,月球和地球之间的距离r ,同步卫星距地面的高度h ,月球绕地球的运转周期T 1,地球的自转周期T 2,地球表面的重力加速度g 。某同学根据以上条件,提出一种估算地球质量M 的方法: 同步卫星绕地球作圆周运动,由得 ⑴请判断上面的结果是否正确,并说明理由。如不正确,请给出 正确的解法和结果。 ⑵请根据已知条件再提出两种估算地球质量的方法并解得结果。 同步练习 1.已知下面的哪组数据可以计算出地球的质量?引力常量G 已知( ) A .月球绕地球运动的周期和月球的半径 B .地球同步卫星离地面的高度 C .地球绕太阳运动的周期和地球到太阳中心的距离 D .人造卫星在地面附近的运动速度和周期 2.下列哪一组数据能够估算出地球的密度。引力常量G 已知( ) A.月球绕地球运行的周期与月地之间的距离 B.地球表面的重力加速度与月地之间的距离 C.绕地球运行卫星的周期与线速度 D.绕地球表面运行卫星的周期 3.(05天津)土星周围有美丽壮观的“光环”,组成环的颗粒是大小不等.线度从1μm 到10m 的岩石.尘埃,类似于卫星, 它们与土星中心的距离从7.3×104 km 延伸到1.4×105 km 。已知环的外缘颗粒绕土星做圆周运动的周期约为14h ,引力常量为6.67×10-11 N ?m 2 /kg 2 ,则土星的质量约为(估算时不考虑环中颗粒间的相互作用)( ) A.9.0×1016 kg B.6.4×1017 kg C.9.0×1025 kg D.6.4×1026 kg 4.地球公转的轨道半径是R 1,周期是T 1;月球绕地球运转的轨道半径是R 2,周期是T 2。则太阳质量与地球质量之比是( ) A. 2 2322 131T R T R B. 2 1322 231T R T R C. 2 2222 121T R T R D. 2 1 222 221T R T R 5.(05全国Ⅲ)最近,科学家在望远镜中看到太阳系外某一恒星有一行星,并测得它围绕该恒星运行一周所用的时间为1200 年,它与该恒星的距离为地球到太阳距离的100 倍。 假定该

专题2.6 中心天体质量密度的计算问题(解析版)

高考物理备考微专题精准突破 专题2.6中心天体质量密度的计算问题【专题诠释】 中心天体质量和密度常用的估算方法 质量的计算使用方法已知量利用公式表达式备注 利用运 行天体 r、T G Mm r2=mr 4π2 T2 M=4π2r3 GT2 只能得 到中心 天体的 质量r、v G Mm r2=m v2 r M=rv2 G v、T G Mm r2=m v2 r G Mm r2=mr 4π2 T2 M=v3T 2πG 密度的计算利用天体表面 重力加速度 g、R mg= GMm R2 M=gR2 G- 利用运 行天体 r、T、R G Mm r2=mr 4π2 T2 M=ρ·4 3 πR3 ρ=3πr3 GT2R3 当r=R时 ρ=3π GT2 利用近 地卫星 只需测 出其运 行周期利用天体 表面重力 加速度 g、R mg=GMm R2 M=ρ·4 3 πR3 ρ=3g 4πGR— 【高考领航】 【2019·新课标全国Ⅰ卷】在星球M上将一轻弹簧竖直固定在水平桌面上,把物体P轻放在弹簧上端,P由静止向下运动,物体的加速度a与弹簧的压缩量x间的关系如图中实线所示。在另一星球N上用完全相同的弹簧,改用物体Q完成同样的过程,其a–x关系如图中虚线所示,假设两星球均为质量均匀分布的球体。已知星球M的半径是星球N的3倍,则()

A .M 与N 的密度相等 B .Q 的质量是P 的3倍 C .Q 下落过程中的最大动能是P 的4倍 D .Q 下落过程中弹簧的最大压缩量是P 的4倍 【答案】AC 【解析】A 、由a –x 图象可知,加速度沿竖直向下方向为正方向,根据牛顿第二定律有:mg kx ma -=,变形式为:k a g x m =- ,该图象的斜率为k m -,纵轴截距为重力加速度g 。根据图象的纵轴截距可知,两星球表面的重力加速度之比为:0033 1 M N a g g a ==;又因为在某星球表面上的物体,所受重力和万有引力相等,即:2Mm G m g R '=',即该星球的质量2 gR M G =。又因为:3 43R M πρ=,联立得34g RG ρπ=。故两星球的密度之比为: 1:1N M M N N M R g g R ρρ=?=,故A 正确;B 、当物体在弹簧上运动过程中,加速度为0的一瞬间,其所受弹力和重力二力平衡,mg kx =,即:kx m g = ;结合a –x 图象可知,当物体P 和物体Q 分别处于平衡位置时,弹簧的压缩量之比为:00122P Q x x x x ==,故物体P 和物体Q 的质量之比为:16 p N P Q Q M x g m m x g =?=,故B 错误;C 、物体P 和物体Q 分别处于各自的平衡位置(a =0)时,它们的动能最大;根据22v ax =,结合a–x 图象面积的物理意义可知:物体P 的最大速度满足2 00001 2332 P v a x a x =? ??=,物体Q 的最大速度满足:2002Q v a x =,则两物体的最大动能之比:2 22212412 Q Q kQ Q Q kP P P P P m v E m v E m v m v ==?=,C 正确;D 、物体P 和物体Q 分别在弹簧上做简谐运动,由平衡位置(a =0)可知,物体P 和Q 振动的振幅A 分别为0x 和02x ,即物体P 所在弹簧最大压缩量为20x ,物体Q 所在弹簧最大压缩量为40x ,则Q 下落过程中,弹簧最大压缩量时P 物体最大压缩量的2倍,D 错误;故本题选AC 。 【2019·浙江选考】20世纪人类最伟大的创举之一是开拓了太空的全新领域。现有一艘远离星球在太空中直

高中物理天体运动多星问题 (2)

双星模型、三星模型、四星模型 天体物理中的双星,三星,四星,多星系统是自然的天文现象,天体之间的相互作用遵循万 有引力的规律,他们的运动规律也同样遵循开普勒行星运动的三条基本规律。双星、三星系统的等效质量的计算,运行周期的计算等都是以万有引力提供向心力为出发点的。双星系统的引力作用遵循牛顿第三定律:F F =',作用力的方向在双星间的连线上,角速度相等,ωωω==21。 【例题1】天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。双星系统在银 r ,1、 持不变,并沿半径不同的同心轨道作匀速园周运动,设双星间距为L ,质量分别为M 1、M 2,试计算(1)双星的轨道半径(2)双星运动的周期。 解析:双星绕两者连线上某点做匀速圆周运动,即: 22 21212 21L M L M L M M G ωω==---------? ..L L L =+21-------?由以上两式可得:L M M M L 2121+= ,L M M M L 2 12 2+= 又由1 2212214L T M L M M G π=.----------?得:) (221M M G L L T +=

【例题3】我们的银河系的恒星中大约四分之一是双星.某双星由质量不等的星体S 1和S 2构成,两 星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动.由天文观察测得其运动周期为T ,S 1到C 点的距离为r 1,S 1和S 2的距离为r ,已知引力常量为G .由此可求出S 2的质量为(D ) A .2 12)(4GT r r r -2π B .2 312π4GT r C .2 32π4GT r D .2 122π4GT r r 答案:D , 球A 引球看成似处理 这样算得的运行周期T 。已知地球和月球的质量分别为且A 对A 根据牛顿第二定律和万有引力定律得L m M T m L +=22)( 化简得) (23 m M G L T +=π ⑵将地月看成双星,由⑴得) (23 1m M G L T +=π 将月球看作绕地心做圆周运动,根据牛顿第二定律和万有引力定律得 L T m L GMm 2 2 )2(π= 化简得GM L T 3 22π=

高中物理天体运动知识

“万有引力定律”习题归类例析 万有引力定律部分内容比较抽象,习题类型较多,不少学生做这部分习题有一种惧怕感,找不着切入点.实际上,只要掌握了每一类习题的解题技巧,困难就迎刃而解了.下面就本章的不同类型习题的解法作以归类分析. 一、求天体的质量(或密度) 1.根据天体表面上物体的重力近似等于物体所受的万有引力,由天体表面上的重力加速度和天体的半径求天体的质量 由mg=G 得.(式中M、g、R分别表示天体的质量、天体表面的重力加速度和天体的半径.) [例1]宇航员站在一星球表面上的某高处,沿水平方向抛出一小球,经过时间t,小球落在星球表面,测得抛出点与落地点之间的距离为L,若抛出时的初速度增大到2倍,则抛出点与落地点间的距离为L,已知两落地点在同一水平面上,该星球的半径为R,引力常量为G,求该星球的质量M和密度ρ. [解析]此题的关键就是要根据在星球表面物体的运动情况求出星球表面的重力加速度,再根据星球表面物体的重力等于物体受到的万有引力求出星球的质量和星球的密度. 根据平抛运动的特点得抛出物体竖直方向上的位移为 设初始平抛小球的初速度为v,则水平位移为x=vt.有○1 当以2v的速度平抛小球时,水平位移为x'= 2vt.所以有② 在星球表面上物体的重力近似等于万有引力,有mg=G ③ 联立以上三个方程解得 而天体的体积为,由密度公式得天体的密度为。 2.根据绕中心天体运动的卫星的运行周期和轨道半径,求中心天体的质量 卫星绕中心天体运动的向心力由中心天体对卫星的万有引力提供,利用牛顿第二定律得 若已知卫星的轨道半径r和卫星的运行周期T、角速度或线速度v,可求得中心天体的质量为 [例2]下列几组数据中能算出地球质量的是(万有引力常量G是已知的)() A.地球绕太阳运行的周期T和地球中心离太阳中心的距离r B.月球绕地球运行的周期T和地球的半径r C.月球绕地球运动的角速度和月球中心离地球中心的距离r D.月球绕地球运动的周期T和轨道半径r [解析]解此题关键是要把式中各字母的含义弄清楚,要区分天体半径和天体圆周运动的轨道半径.已知地球绕太阳运行的周期和地球的轨道半径只能求出太阳的质量,而不能求出地球的质量,所以A项不对.已知月球绕地球运行的周期和地球的半径,不知道月球绕地球的轨道半径,所以不能求地球的质量,所以B 项不对.已知月球绕地球运动的角速度和轨道半径,由可以求出中心天体地球的质量,所以C项正确.由求得地球质量为,所以D项正确. 二、人造地球卫星的运动参量与轨道半径的关系问题 根据人造卫星的动力学关系 可得

2020年高考物理专题复习:天体质量和密度的估算精讲

考点精讲 一、万有引力定律及其应用 1. 内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比、与它们之间距离r 的二次方成反比。 2. 表达式:F =2 21r m Gm ,G 为引力常量:G =6.67×10-11 N·m 2/kg 2。 3. 适用条件: (1)公式适用于质点间的相互作用,当两物体间的距离远远大于物体本身的大小时,物体可视为质点; (2)质量分布均匀的球体可视为质点,r 是两球心间的距离。 二、天体质量和密度的计算 1. 解决天体(卫星)运动问题的基本思路 (1)天体运动的向心力来源于天体之间的万有引力,即 G 2r Mm =ma n =m r v 2=mω2 r =m 2 24T r π; (2)在中心天体表面或附近运动时,万有引力近似等于重力,即G 2R Mm =mg (g 表示天体表面的重力加速度)。 2. 天体质量和密度的计算 (1)利用天体表面的重力加速度g 和天体半径R 。 由于G 2R Mm =mg ,故天体质量M =G gR 2, 天体密度ρ=33 4R M V M π= =GR g π43。 (2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r 。 ①由万有引力等于向心力,即G 2r Mm =m 224T πr ,得出中心天体质量M =2 324GT r π; ②若已知天体半径R ,则天体的平均密度 ρ=3 3 4R M V M π==323 R GT r 3π; ③若天体的卫星在天体表面附近做环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密度ρ=2 3GT π 。可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度。

2020年高考物理《天体运动》专题训练卷及答案解析

2020年高考物理天体运动专题训练卷 1.金星、地球和火星绕太阳的公转均可视为匀速圆周运动,它们的向心加速度大小分别为a 金、a 地、a 火,它们沿轨道运行的速率分别为v 金、v 地、v 火。已知它们的轨道半径R 金< R 地<R 火,由此可以判定 A .a 金>a 地>a 火 B .a 火>a 球>a 金 C .v 地>v 火>v 金 D .v 火>v 地>v 金 解析 金星、地球和火星绕太阳公转时万有引力提供向心力,则有G Mm R 2=ma ,解得a = G M R 2,结合题中R 金<R 地<R 火,可得a 金>a 地>a 火,选项A 正确,B 错误;同理,有G Mm R 2=m v 2R ,解得v = GM R ,再结合题中R 金<R 地<R 火,可得v 金 >v 地>v 火,选项C 、D 均错误。 答案 A 2.若想检验“使月球绕地球运动的力”与“使苹果落地的力”遵循同样的规律,在已知月地距离约为地球半径60倍的情况下,需要验证 A .地球吸引月球的力约为地球吸引苹果的力的1/602 B .月球公转的加速度约为苹果落向地面加速度的1/602 C .自由落体在月球表面的加速度约为地球表面的1/6 D .苹果在月球表面受到的引力约为在地球表面的1/60 解析 若想检验“使月球绕地球运动的力”与“使苹果落地的力”遵循同样的规律——万有引力定律,则应满足G Mm r 2=ma ,即加速度a 与距离r 的平方成反比,由题中数据知,选项B 正确,其余选项错误。 答案 B 3.(多选)已知人造航天器在月球表面附近绕月球做匀速圆周运动,经过时间t (t 小于航天器的绕行周期),航天器运动的弧长为s ,航天器与月球的中心连线扫过角度为θ,万有

相关文档
最新文档