规整填料塔有什么特点
填料塔填料类型及性能

填料类型及性能1、填料类型自填料塔用于工业生产以来,填料的结构形式有重大的改进,特别是近年来发展更快,目前各种类型、各种规格的填料有几百种之多。
填料结构改进的方向可归纳为:①增加流体的通过能力,以适应大规模工业生产的需要;②改善流体的分布与接触,以提高分离效率;③解决放大问题。
填料种类虽然很多,但按结构形式可分为颗粒型填料和规整填料,按装填方式可分为乱堆填料和整砌填料。
(1)颗粒型填料颗粒型填料的结构、形状和堆积方式都影响流体在填料层中的流动状态、分布情况以及气、液接触的密切程度,从而决定填料塔的生产能力、流动阻力以及传质效率。
下面介绍工业中常用的颗粒填料。
①拉西环拉西环是最早使用的填料,常用的拉西环为外径与高度相等的圆环,如图1(a)所示。
在强度允许下,壁厚应尽量薄一些,以提高空隙率及降低堆积密度(单位体积堆积填料层的质量称为堆积密度)。
拉西环在塔内的装填方式有乱堆和整砌两种。
乱堆填料装卸方便,但气体流动阻力较大,一般直径在50mm以下的填料都采用乱堆方式,直径在50mm以上的填料可采用整砌(即整齐排列)的方式。
拉西环除用陶瓷材料制造外,还可用金属、塑料及石墨等材料制成,以适应不同介质的要求。
图1 常用的颗粒填料外形(a)拉西环;(b)鲍尔环;(c)阶梯环;(d)弧鞍;(e)矩鞍;(f)金属鞍环;(g)多面球体;(h)TRI球体拉西环的形状简单,制造容易,成本低,且对其研究较为充分。
但气液分布不均,沟流及壁流现象较严重,因而效率随塔径及层高的增加而显著下降,对气速的变化也较敏感,操作弹性范围较窄,传质阻力大,吸收效率低。
因此,拉西环的应用日趋减少。
②鲍尔环填料鲍尔环填料是针对拉西环的一些主要缺点加以改进而研制出来的填料。
在普通拉西环的侧壁上冲出上、下两层交错排列的矩形小窗,冲出的叶片除一端连在环壁上,其余部分均弯入环内,在环中心相搭,如图1(b)所示。
鲍尔环一般用金属或塑料制造。
考虑到改善气、液的接触状况,侧壁上开孔率应不小于30%;为保持填料有一定的强度,开孔率最大不得超过60%。
技术贴看完了你不仅能认识塔器的填料,更会成为半个专家了

技术贴看完了你不仅能认识塔器的填料,更会成为半个专家了导语之前小编为大家介绍了多种塔设备工作原理及特点,塔设备作为一种重要的单元操作设备,要实现气—液相或液—液相之间的充分接触,从而达到相际间的进行传质及传热的目的,塔内部的填料或者塔板至关重要。
今天我们先为大家详细介绍填料的各种类型,以及如何去选择填料以达到最优效果。
填料的类型填料作为填料塔的核心内件,与其他内件共同决定了填料塔的性能。
因此,设计填料塔时,首先就要选择填料,要想选好填料,就得先了解不同填料的性能。
填料按装填方法一般分为散装填料和规整填料两大类。
散装填料散装填料是指安装以乱堆为主的填料,这种填料是具有一定外形结构的颗粒体,故又称颗粒填料。
根据形状,可分为环形,鞍形,环鞍形。
以下是最常用的几种散装填料:1拉西环1914年、拉西环填料诞生、是填料塔的新纪元。
拉西环填料作为最早提出的工业填料,其结构为外径与高度相等的圆环,可用陶瓷,塑料,金属等材质制造。
其缺点是气液分布较差,传质效率低,阻力大,通量小,目前工业中已经很少应用。
2鲍尔环1948年、在德国首先出现。
鲍尔环填料是在拉西环的基础上改进而得。
其结构为在拉西环的侧壁上开出两排长方形的窗孔,大大提高了环内空间及环内表面的利用率。
可以用陶瓷,金属,塑料等材质制造。
优点是与拉西环相比,其通量可增加50%以上,传质效率提高30%左右。
鲍尔环的气流阻力小,液体分布均匀,是目前应用较广泛的填料之一。
3阶梯环阶梯环填料又是对鲍尔环填料的改进,与鲍尔环相比,阶梯环高度减少了一般,并在一端增加了一个锥形翻遍。
这样由于高径比的减少,使得气体通过填料的阻力降低。
同时由于锥形翻边能增加填料的机械强度,同时使得填料之间由西安接触变成点接触为主,增加了填料间的空隙,有利于传质效率的提高。
目前是所使用的环形填料中最优良的一种。
4弧鞍填料它属于鞍形填料的一种,其形状如同马鞍,一般采用瓷质材料制成。
其特点是表面全部敞开,不分内外,液体在表面两侧均匀流动,表面的利用率高,流到呈弧形,阻力小。
化工原理5.6 填料塔

选择气体输
送设备
设计填料塔
的塔径
5.6
5.6.4
填料塔
填料塔的附件
5.6.4.1 支承板
(1)支承板是用以支撑填料和塔内持液的部件。
(2)基本条件:
① 足够的机械强度
② 支承板的自由截面积不应小于填料层的自由截面积,以免气液在通过支承板时
流动阻力过大,在支承板处首先发生液泛。
,1
L ,1
B
Τ
2
2′
பைடு நூலகம்2
∗ =
A
2′ 2
1′
1
X
5.6
填料塔
【例5-12】 填料塔逆流吸收,2 降低,其余操作条件不变,2 、1 、吸收操作线如何
变化?
解:
Y
′
(1) 和S 的变化情况:
Y1
=
/
1
=
=
+
1
Ω
率的三次方之比。
② 特点:反映气体通过湿填料时的流动特性。当流体流过填料时,填料实际空
隙率变小,填料的实际比表面积也发生变化。
5.6
5.6.2.2
填料塔
填料的类型
(1)按装填方式来分——乱堆填料和整砌填料
(2)按使用效率来分——普通填料和高效填料
(3)按结构类型来分——实体填料和网体填料
(4)常见的填料:
(2)逆流操作与并流操作平均吸收推动力的比。(1.83倍)
5.6
填料塔
(2)吸收剂的流量 L
若填料塔的入口条件 , , 一定,吸收剂流量 ↑,即Τ ↑ ,则吸收操作
填料塔及板式塔的区别

拉西环
缺点:高径比大,堆积时填料间易形 成线接触,故液体常存在严重的沟流 和壁流现象。且拉西环填料的内表面 润湿率较低,因而传质速率也丌高。 在拉西环基础上衍生了θ 环、十字环及 螺旋环等,其基本改进是在拉西环内 增加一结构,以增大填料的比表面积。
环
32
②鲍尔环(pall ring):
在环的侧壁上开一层或两层长方形 小孔,小孔的母材并丌脱离侧壁而 是形成向内弯的叶片。上下两层长 方形小孔位置交错。 同尺寸的鲍尔环不拉西环虽有相同 的比表面积和空隙率,但鲍尔环在 其侧壁上的小孔可供气液流通,使 环的内壁面得以充分利用。
20
对填料支承装置的要求: 对于普通填料,支承装置的自由截面积应丌低于 全塔面积的50%,并且要大于填料层的自由截面积; 具有足够的机械强度、刚度; 结构要合理,利于气液两相均匀分布,阻力小, 便于拆装。
21
2)液体分布装置
液体在填料塔内均匀分 布,可以增大填料的润 湿表面积。以提高分离 效率,因此液体的初始 分布十分重要。 常用的液体分布装置有: 莲蓬式、盘式、齿槽式及 多孔环管式分布器等。
筛板
效率较高,成本低
安装要求水平,易堵, 操作范围窄 操作范围窄,效率较 低 操作范围比浮阀塔和 泡罩塔窄
舌形板
结构简单,生产能力 大 生产能力大,效率高
斜孔板
三、填料塔的结构及填料特性
1.填料塔的结构 填料层:提供气液接触的场所。 液体分布器:均匀分布液体,以避免发生沟流现象。 液体再分布器:避免壁流现象发生。 支撑板:支撑填料层,使气体均匀分布。 除沫器:防止塔顶气体出口处夹带液体。
优点:结构简单,生产能力和操作弹性大,板效率高。综合性能较优 异。 缺点:不易处理易结焦或粘度大的系统。
塔填料的类型结构及特性

塔填料的类型结构及特性塔填料的作用是为气、液两相提供充分的接触面,并为提高其湍动程度(要紧是气相)制造条件,以利于传质(包括传热)。
它们应能使气、液接触面大、传质系数高,同时通量大而阻力小,因此要求填料层间隙率高、比表面积大、表面潮湿性能好,并在结构上还要有利于两相紧密接触,促进喘流。
制造材料又要对所处理的物料有耐腐蚀性,并具有一定的机械强度,使填料层底部不致因受压而碎裂、变形。
常用的塔填料可分为两大类:散装填料与规整填料。
a.散装填料散装填料有中空的环形填料,表面放开的鞍形填料等。
常用的构造材料包括陶瓷、金属、玻璃、石墨等。
几种要紧散装填料的特点如下。
(1)拉西环拉西环为高与直径相等的圆环,常用的直径为25~75mm(亦有小至6mm,大至150mm的,但少用),陶瓷环壁厚2.5~9.5mm,金属环壁厚0.8~1.6mm。
填料多乱堆在塔内,直径大的亦可整砌,以降低阻力及减少液体流向塔壁的趋势。
拉西环结构简单,但与其他填料相比,气体通过能力低,阻力也大,液体到达环内部比较困难,因而潮湿不易充分,传质成效差,故近年来使用较少。
在拉西环内部空间的直径位置上加一隔板,即成为列辛环;环内加螺旋形隔板则成为螺旋环。
隔板有提高填料能力与增大表面的作用。
(2)弧鞍弧鞍又称贝尔鞍(Berl saddle),是显现较早的鞍形填料,形如马鞍,大小自25mm至50mm 的较常用。
弧鞍的表面不分内外,全部放开,流体在两侧表面分布同样平均。
它的另一特点是堆放在塔内时,对塔壁侧压力比环形填料小。
但由于两侧表面构形相同,堆放时填料容易叠合,因而减少暴露的表面,最近已渐为构形改善了的矩鞍填料所代替。
弧鞍填料多用陶瓷制造。
(3)矩鞍(Intalox saddle)矩鞍两侧表面不能叠合,且较耐压力,构形简单,加工比弧鞍方便,多用陶瓷制造。
在以陶瓷为材料的填料中,此种填料的水力性能与传质性能都比较优越。
以上各种散装填料的壁上不开孔或槽,多用陶瓷制成。
规整填料塔设计浅析

规整填料塔设计浅析规整填料塔设计浅析引言:规整填料,是一种在塔内按均匀几何图形排列、整齐堆砌的填料,具有较高的传质性能和生产能力。
因此,规整填料塔的应用范围是越来越广泛,其设计的要求也越来越高。
1 规整填料塔的结构填料塔由筒体、塔内件及填料构成。
填料分为散装和规整填料两大类。
塔内件有各种形式的液体分布装置、填料固定装置或填料压紧装置、填料支承装置、液体收集再分布装置与进料装置及气体分布装置等。
筒体有整体式结构及法兰连接分段式结构。
对于直径800mm 以上的大塔一般采用整体式结构,填料及所有塔内件从人孔送入塔内组装,如图1所示:图1规整填料塔填料塔结构示意图2 规整填料塔的特点规整填料塔不仅结构简单,而且具有生产能力大(通量大)、分离效率高、持液量小、操作弹性大、压强降低等特点。
通过填料材质的选择,可处理腐蚀性的物料。
尤其对于压强降较低的真空精馏操作,更显示出其优越性。
但是,规整填料塔的造价通常高于板式塔,对于含有悬浮物的料液、易聚合的物系则不适用,而且对于有侧线出料的场合等也不大适宜。
图2 规整填料3 填料塔的设计3.1液泛气速计算液泛是指逆流填料塔中气液两相交互作用达到一种特定流体力学现象。
发生液泛时,持液量增加,气液鼓泡传质,气流脉动,液体被大量带出塔顶部,塔操作不稳定甚至被破坏。
因此,填料塔只有在泛点气速以下才可能稳定地操作,但如果气速太低又会造成设备的浪费以及气、液体分布的不均匀。
通常认为,液泛气速是填料塔逆流操作的极限气速,一般取操作气速为液泛气速的50%~80%[1]。
规整填料塔设计的首要任务是根据填料类型,将其在操作条件下的泛点气速算出,再确定适宜的塔径和塔内实际操作气速下的填料层压降。
利用Bain-Haugen公式计算液泛气速在工业中使用非常广泛,而且参数少,易查找,计算精度较高,对规整填料非常适用。
该公式是Bain-Haugen[2]修正Sherwood等提出的,修正后的公式为:式中,L、G为液相、气相流率,kg/s;为液泛气速,m/s;为气相密度,kg/m3 ;为干填料因子,m-1;为液相、气相密度,kg/m3;为液相粘度,Pa?s。
填料塔填料发展现状与趋势

填料塔填料发展现状与趋势xxx(北京化工大学化学工程学院,北京 100029)摘要:填料塔是化工类企业中最常用的气、液传质设备之一,具有效率高、压降低、持液量小、构造简单、安装容易、投资少等优点,广泛用于分离操作。
而塔填料又是填料塔技术发展的关键。
本文论述了国内外塔填料的发展现状及发展趋势,详细介绍了各种新型散堆填料、规整填料结构特点、流体力学性能和传质性能,并比较了各自的优缺点,说明了塔填料在填料塔技术中的重要性。
关键词:填料塔;散堆填料;规整填料引言填料塔具有效率高、压降低、持液量小、构造简单、安装容易、投资少等优点,是石油、化工、化纤、轻工、制药及原子能等工业中广泛应用的气液接触传质设备之一。
塔填料是填料塔的核心构件,是气液两相进行热和质交换的场所,它为气液两相间热、质传递提供了有效的相界面。
塔填料的性质决定了填料塔的操作,只有性能优良的塔填料再辅以理想的塔内件,才有望构成技术上先进的填料塔。
因此,人们对塔填料的研究十分活跃。
对塔填料改进与更新的目的在于:改善流体的均匀分布,提高传递效率,减少流动阻力,增大流体的流量以满足降耗、节能、设备放大、高纯产品制备等各种需要。
本文就是对填料塔填料的一个综述。
1 塔填料分类及特点塔填料主要分两大类:散装填料和规整填料。
散堆填料是具有一定几何尺寸的颗粒体,在塔内以散堆方式堆积。
散堆填料及其塔设备主要用在吸收、解吸、精馏、干燥和萃取等气-液或液-液接触的传质传热过程。
近年来一些新型高效散堆填料的出现以及在一些行业的成功应用,说明散堆填料将在某些领域得到新的发展[1]。
另外,国内外最新的研究表明,在液液萃取、液气比很大的吸收和高压精馏情况下,应用散堆填料的操作性能优于规整填料和塔盘[2]。
因此在合成氨的气体净化、石油化工和焦化等领域,散堆填料得到广泛的应用。
此外,反应蒸馏、硫化干燥和超重力分离等领域也在使用散堆填料。
规整填料是一种在塔内按均匀几何图形排布、整齐堆砌的填料。
《化工原理》第3章 塔设备2012定稿-填料塔

四 填料塔的结构
气体 液体 捕沫器
填料压板 塔壳 填料 填料支承板 液体再分布器 填料压板 填研室
主要塔内附属结构简介
(1) 液体分布器 作用:使液体能够均匀地分布在填料层上。 类型:多孔型、溢流型。
(a)莲蓬头式
(b)溢流管式
请看演示
《化工原理》
《化工原理》
食品与生物工程学院化原教研室
三 填料的选择
1、填料用材的选择
耐高温,但不耐腐蚀。不锈钢可 耐一般的酸碱腐蚀(含C1-的酸 除外),但价格较昂贵
塑料
陶瓷
金属
设备操作温度较低,体系 对塑料无溶胀除浓硫酸、 浓硝酸等强酸外但塑料表 面对水溶液的润湿性差。
一般用于腐蚀性介质, 尤其是高温时,但对HF 和高温下的H3PO4与碱不 能使用
《化工原理》
食品与生物工程学院化原教研室
表征填料特性的主要参数
(4)堆积密度 ρP 单位体积填料所具有的质量, [kg/m3]。
p
填料尺寸小 a , 填料尺寸大 a ,
气体短路 壁流现象严重
参阅:p181
/product/27-raschig-ring-12-5596/ /product/27-metal-cascade-ring-gmcmr-8017/
《化工原理》
食品与生物工程学院化原教研室
2.液泛气速uF
可由Eckert关联图(P185)上的泛点线确定泛点气速。
(1) 图中最上方的三条线分别为弦栅、整砌拉西环及乱堆填料的泛点 线,与泛点线相对应的纵座标中包含空塔泛点气速umax。
(2) 图中左下方线为乱堆填料层的等压强降线,在设计中可根据规定 的压强降,求其相应的空塔气速,反之,根据选定的空塔气速求压 强降。 埃克特通用关联图适用于各种乱堆填料,如拉西环、鲍尔环、弧 鞍、矩鞍等,但需确知填料的φ值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
规整填料塔有什么特点?
规整填料在空分设备中的上塔,粗氩塔和精氩塔获得广泛应用,使空分设备的能耗、氧和氩的提取率,装置的启动时间及变工况技术都有明显提高。
规整填料塔一般具有以下几方面的特点:(1)规整填料压降显著低。
由于规整填料中气一液两相呈膜式接触,不同于筛板塔中两相的鼓泡接触,因此填料塔的压降只有筛板塔的1/4~1/6。
如规整填料上塔的操作阻力为3.5~4.2kPa,底部的操作压力仅为35~45kPa,下塔一般仍采用筛板塔,操作阻力亦未改变,因此下塔的操作压力相应下降了0.05~0.06MPa,一般为0.44~0.48MPa,这样空压机的轴功率可降低5%~7%。
(2)规整填料分离效率高。
上塔的操作压力越低,就大大有利于氧、氮、氩的分离,尤其是氧和氩的分离,一般氧的提取率可以提高1%~3%、氩的提取率可以提高5%~10%,实践证明,空分设备氧的提取率已达到99%以上,氩的提取率已达到80%以上。
经实测,上塔含氮污的含氧量均可少于0. 1%,甚至可达到150~200×10-4%,就是说明上塔已达到完整的精馏工况。
由于氧的提取率高、加工空气量少,空分设备的能耗已下降至0.4~0.45kwh/m3O2。
(3)规整填料持液量少。
规整填料塔持液量一般仅为塔容积的1%~6%,而筛板塔的持液量为塔容积的8%~10%。
持液量少,意味着液体在塔内停留时间短,操作压降小,有利于变工况操作。
规整填料塔设计范围可达40%~120%。
(4)规整填料空隙大。
规整填料的空隙率达95%以上。
在筛板塔中孔板面积占塔截面的80%,而开孔率均为8%~12%,均远远少于填料层的空隙率。
对同一负荷而言,填料塔的塔经比筛板塔小;一般情况下其截面积只有筛板塔的70%左右,这对于大型空分设备来说,塔经缩小有利于运输。
(5)装置启动时间大幅度缩短。
上塔采用规整填料后,其正常精馏时所持有的液体量大幅度下降后,使空分设备的启动时间大幅度缩短,一般启动时间仅需26~30小时。
(6)氩馏分中的含氧量约为90%左右。
欲采用低温精馏法直接降低到1~2×10-4%,精馏塔的理论塔板数约需180块,筛板塔板约需300多块,阻力高达100kPa左右,显然粗氩就无法排出塔外,而规整填料高约需45m左右。
阻力仅为14~16kPa,因此全精馏制氩工艺的实现成为可能。
规整填料精馏塔与筛板塔相比有什么特点?
答:精馏塔分为筛板塔和填料塔两大类。
填料塔又分为散堆填料和规整填料两种。
筛板塔虽然结构较简单,适应性强,宜于放大,在空分设备中被广泛采用。
但是,随着气液传热、传质技术的发展,对高效规整填料的研究,一些效率高、压降小、持液量小的规整填料的开发,在近十多年内,有逐步替代筛板塔的趋势。
规整填料由厚约0.22mm的金属波纹板组成,一块块排列起来的金属波纹板,低温液体在每一片填料表面上都形成一层液膜,与上升的蒸气相接触,进行传热传质。
规整填料的金属比表面积约是填料为筛板的30倍,液氧持留量仅为筛板的35%~40%。
而且,因为精馏塔截面积比筛板塔小1/3,填料垂直排列,不存在水平方向浓度梯度的问题,只要液体分布均匀,精馏效率较高,压力降较小,气体穿过填料液膜的压差比穿过筛板液层的压差要小得多,约只有50Pa。
上塔底部压力的下降,必然可导致下塔压力降低,进而主空压机的出口压力相应降低,使整套空分的能耗降低。
同时,规整填料液体的滞留量小,因此,对负荷变化的应变能力较强。
归纳起来,规整填料塔与筛板塔相比,有以下优点:
1)压降非常小。
气相在填料中的液相膜表面进行对流传热、传质,不存在塔板上清液层及筛孔的阻力。
在正常情况下,规整填料的阻力只有相应筛板塔阻力的1/5~1/6;
2)热、质交换充分,分离效率高,使产品的提取率提高;
3)操作弹性大,不产生液泛或漏液,所以负荷调节范围大,适应性强。
负荷调节范围可以在30%~110%,筛板塔的调节范围在70%~100%;
4)液体滞留量少,启动和负荷调节速度快;
5)可节约能源。
由于阻力小,空气进塔压力可降低0.07MPa左右,因而使空气压缩能耗减少6.5%左右;
6)塔径可以减小。
此外,应用规整填料后,由于当量理论塔板的压差减小,全精馏制氩可能实现,氩提取率提高10%~15%。
规整填料精馏塔一般分为3~5段填料层,每段之间有液体收集器和再分布器,传统筛板塔的板间距为110~160mm,而规整填料的等板高为250~300mm,因此填料塔的高度会增加。
一般都选择铝作为规整填料的材料,这样可减轻重量和减少费用,但必须控制好填料金属表面残留润滑油量小于50mg/m2。
在这样条件下,可认为铝填料塔和铝筛板塔用于氧精馏是同样安全的。
当然,规整填料的成本要比筛板塔高,塔身也较高。
但是,它的优点是突出的,所以,进入90年代后,许多空分设备生产厂首先在上塔和氩塔用规整填料塔替代了筛板塔,并有进一步在下塔也加以采用的趋势。