第四章扭转
合集下载
材料力学 第四章 扭转

W = Me 2 n
60 外力偶每秒所做的功即为输入的功率
P 1000= Me 2 n
60
明德行远 交通天下
材料力学
P─kW
M e 9549
P n
n─r/min
M e ─N m
或
P─PS(马力)
Me
7024
P
n
n─r/min M e ─N m
明德行远 交通天下
材料力学
二、扭矩及扭矩图
D
2 d
2
2
2
d
32
(D4
d
4)
D4 (1 4 ) 0.1D4 (1 4 )
32
d
( Dd )
O
D
明德行远 交通天下
材料力学
④ 应力分布
(实心截面)
(空心截面)
工程上采用空心截面构件:提高强度,节约材料,重量轻,
结构轻便,应用广泛。
明德行远 交通天下
材料力学
⑤ 确定最大剪应力:
由
Ip—极惯性矩,纯几何量,无物理意义。
Ip A 2dA
单位:mm4,m4。
③ 尽管由实心圆截面杆推出,但同样适用于空心圆截面杆,只是Ip值不同。
明德行远 交通天下
材料力学
对实心圆截面:
D
I p A 2dA
2 2 2 d
0
D4 0.1D4
32
d
O
D
对于空心圆截面:
d
I p A 2dA
A
B
M1 =9.55 103
P1 n
9.55
103
500 300
N
m=15.9kN
m
M 2 =M3 =9.55103
60 外力偶每秒所做的功即为输入的功率
P 1000= Me 2 n
60
明德行远 交通天下
材料力学
P─kW
M e 9549
P n
n─r/min
M e ─N m
或
P─PS(马力)
Me
7024
P
n
n─r/min M e ─N m
明德行远 交通天下
材料力学
二、扭矩及扭矩图
D
2 d
2
2
2
d
32
(D4
d
4)
D4 (1 4 ) 0.1D4 (1 4 )
32
d
( Dd )
O
D
明德行远 交通天下
材料力学
④ 应力分布
(实心截面)
(空心截面)
工程上采用空心截面构件:提高强度,节约材料,重量轻,
结构轻便,应用广泛。
明德行远 交通天下
材料力学
⑤ 确定最大剪应力:
由
Ip—极惯性矩,纯几何量,无物理意义。
Ip A 2dA
单位:mm4,m4。
③ 尽管由实心圆截面杆推出,但同样适用于空心圆截面杆,只是Ip值不同。
明德行远 交通天下
材料力学
对实心圆截面:
D
I p A 2dA
2 2 2 d
0
D4 0.1D4
32
d
O
D
对于空心圆截面:
d
I p A 2dA
A
B
M1 =9.55 103
P1 n
9.55
103
500 300
N
m=15.9kN
m
M 2 =M3 =9.55103
第四章 扭转(张新占主编 材料力学)

2M A M e M B 0 (2)
联立式(1)与式(2),得
Me MB 3
MA MB Me 3
26
4.6 等直圆轴扭转时的应变能
圆轴在外力偶作用下发生扭转变形,轴内将积蓄应变能。这种 应变能在数值上等于外力所做的功。
T1 在位移 d1上所做的功为 dW T1d1
PB M eB M eC 9549 n 796(N m) PA M eA 9549 1910(N m) n PD M eD 9549 318(N m) n
5
(2)求扭矩(扭矩按正方向假设) 1-1 截面
M M M
x
0
T1 M eB 0
T1 M eB 796N m
d1 85.3 mm
取 d1 85.3 mm。 BC段:同理,由扭转强度条件得 d2 67.4 mm ,由扭转刚度条件得
d 2 74.4 mm
取 d 2 74.4 mm。
23
(2)将轴改为空心圆轴后,根据强度条件和刚度条件确定轴的 外径D。 由强度条件得 D 96.3 mm 由刚度条件得 D 97.3 mm 取 D 97.3 mm ,则内径为
T Me
M e RdA RRd 2R 2
A 0
2
Me 2 2R
8
二、切应力互等定理
M
z
0
(dy)dx ( dx)dy
得到
切应力互等定理:在单元体在相互垂直的一对平面上,切应力 同时存在,数值相等,且都垂直于两个平面的交线,方向共同 指向或共同背离这一交线。 纯剪应力状态:单元体上四个侧面上只有切应力,而无正应力 作用
材料力学4.

1. 剪应力互等定理 由 MZ 0
'dxdz dy dydzdx 0
得: '
图4-1
2. 剪切虎克定律 在弹性范围内应有:
G G ——剪切弹性模量
图4-2
3.E、G、μ μ μ 的关系
G
E
21
低碳钢:
E 2 105 MPa
Mnmax 4.5KN m
max
M nmax Wn
Wn
D3
16
M nmax
解得: D 66mm
(三)由刚度条件设计 D 。
max
M nmax GI p
180
D4
32
Ip
M nmax
G
180
解得: D 102mm
从以上计算可知,该轴直径应由刚度条件确定,选用 D=102mm 。
六、矩形截面杆的自由扭转
1. 矩形截面杆的剪应力及扭转角计算
最大剪应力发生在长边中点处:
max
Mn
hb2
4
9
单位长度的扭转角为:
Mn
G hb3
4 10
剪应力分布图 图4-10
材料力学
第四章 扭转
一、扭转时的内力及扭矩图
扭转时横截面上的内力以 Mn 表示,称为扭矩。杆件 上各截面上的扭矩如果以图来表示,该图就是扭矩图。
下面结合实例来加以说明。
例1 传动轴受力如图示,试求各段内力并绘扭矩图。 例1图
'dxdz dy dydzdx 0
得: '
图4-1
2. 剪切虎克定律 在弹性范围内应有:
G G ——剪切弹性模量
图4-2
3.E、G、μ μ μ 的关系
G
E
21
低碳钢:
E 2 105 MPa
Mnmax 4.5KN m
max
M nmax Wn
Wn
D3
16
M nmax
解得: D 66mm
(三)由刚度条件设计 D 。
max
M nmax GI p
180
D4
32
Ip
M nmax
G
180
解得: D 102mm
从以上计算可知,该轴直径应由刚度条件确定,选用 D=102mm 。
六、矩形截面杆的自由扭转
1. 矩形截面杆的剪应力及扭转角计算
最大剪应力发生在长边中点处:
max
Mn
hb2
4
9
单位长度的扭转角为:
Mn
G hb3
4 10
剪应力分布图 图4-10
材料力学
第四章 扭转
一、扭转时的内力及扭矩图
扭转时横截面上的内力以 Mn 表示,称为扭矩。杆件 上各截面上的扭矩如果以图来表示,该图就是扭矩图。
下面结合实例来加以说明。
例1 传动轴受力如图示,试求各段内力并绘扭矩图。 例1图
第四章:扭转

T Ip
——切应力公式
扭转
4、圆轴扭转时横截面上的最大切应力
max 发生在横截面周边上各点处
max
T max TR T Ip Ip Ip R
max
取 I p /R = Wt —抗扭截面系数 最大切应力: max
max
O
T
T Wt
注意: 以上公式只适合于扭转圆轴, 且材料服从胡克定律。
R γ l
剪切胡克定律:
当切应力不超过材料的剪切比例极 限,切应力与切应变成正比,即:
Gγ
G ——剪变模量
对各向同性材料,E, , G 之间关系: G
E 2(1 )
扭转
四、圆轴扭转时的应力 1、实验现象:
圆周线——形状、大小、
间距不变,各圆周线绕轴 线相对转动了一个角度。
横截面上的最大切应力
max
T 1000 6 Pa 41.7 10 Pa 41.7 MPa 6 Wt 24 10
扭转
例4-4 如图所示,圆轴 AB的 AC 段为空心,CB段为实 心。已知 D 3cm、 d 2cm ;圆轴传递的功率 P 7.5kW,转速 n 360 r/ min。试求 AC及CB段的 Me Me 最大与最小切应力。 解:(1)计算扭矩
许用切应力
u
n
max
u s u b
T
max
塑性材料 脆性材料
对等截面圆轴
Wt
圆轴强度计算可解决工程中的三类问题:
(1)强度校核;(2)截面设计;(3)确定许用载荷。
扭转
例4-5 如图阶梯轴, d1 80mm、d 2 50mm;外力偶矩 M 2 3.2 kN m 、M 3 1.8kN m; M 1 5 kN m 、 材料的许用切应力[ ] 60 MPa 。试校核该轴强度。
第四章 扭转

T3 MD
T2 7.64KN m M B
M C T2
M D T3 0 T3 M D 5.09KN m
Chapter 4
③SkIenttcehrntha单al ttoer击xqpure此esdsiea处sgtrha编emlaw辑扭o矩f母c图ha版nge标of 题the 样torque
are unk• n第o三wn级, however, the powers transmitted by
shaft are u–s第u»四al第级ly五k级nown.
input power :P
The relation between
the transmission
Me
n
power, revolution and
Me
7.1•2第1 三P 级(kN –n第四级
m)
Where: P - horsepower (HP) n - r/min or(rpm)
» 第五B级
C
A
D
A: input power
n
B ,C , D:
output power
MB
MC
Chapter 4
MA
MD
2. Internal torque and its diagram 扭矩与扭矩图
§4–2 Eto单xrteqr击uneaa此lntod处rtqour编equo辑fe adit母argarn版asmm标issi题on样shaft 外力偶矩的计算 式扭矩和扭矩图
1.•E单xte击rn此al t处or编que辑o母f a版tra文ns本mi样ssi式on shaft
So传m–动et第i轴m二的es级,外th力e偶tw矩isting couples applied on shaft
T2 7.64KN m M B
M C T2
M D T3 0 T3 M D 5.09KN m
Chapter 4
③SkIenttcehrntha单al ttoer击xqpure此esdsiea处sgtrha编emlaw辑扭o矩f母c图ha版nge标of 题the 样torque
are unk• n第o三wn级, however, the powers transmitted by
shaft are u–s第u»四al第级ly五k级nown.
input power :P
The relation between
the transmission
Me
n
power, revolution and
Me
7.1•2第1 三P 级(kN –n第四级
m)
Where: P - horsepower (HP) n - r/min or(rpm)
» 第五B级
C
A
D
A: input power
n
B ,C , D:
output power
MB
MC
Chapter 4
MA
MD
2. Internal torque and its diagram 扭矩与扭矩图
§4–2 Eto单xrteqr击uneaa此lntod处rtqour编equo辑fe adit母argarn版asmm标issi题on样shaft 外力偶矩的计算 式扭矩和扭矩图
1.•E单xte击rn此al t处or编que辑o母f a版tra文ns本mi样ssi式on shaft
So传m–动et第i轴m二的es级,外th力e偶tw矩isting couples applied on shaft
材料力学第四章 扭转

则上式改写为
max
T GI p
180
(/m)
×
例5 图示圆轴,已知mA =1kN.m, mB =3kN.m, mC
=2kN.m;l1 =0.7m,l2 =0.3m;[]=60MPa,[ ]=0.3°/m,
G=80GPa;试选择该轴的直径。
mA
mB mC 解: ⑴按强度条件
A
l1
B l2 C
max
9.55
200 300
6.37
(kN m)
×
n D
m2 1 m3 2 m1 3 m4
n A 1 B 2 C 3D
②求扭矩(扭矩按正方向假设)
m 0 , T1 m2 0, T1 m2 4.78kN m m 0; T2 m1 m2 0
T2 m2 m3 (4.78 4.78) 9.56kN m
T
2 r02
t
T 2 A0
t
T
A0为平均半径所作圆的面积。
×
三、切应力互等定理:
´
a
b
dy
´
c
z
dx
d t
mz 0; t dxdy t dxdy
'
这就是切应力互等定理:在单元体相互垂直的两个截面
上,切应力必然成对出现,且数值相等,两者都垂直于两平
面的交线,其方向或共同指向交线,或共同背离交线。
垂直,则杆件发生的变形为扭转变形。
A
B O
A
BO
m
m
——扭转角(两端面相对转过的角度)
——剪切角,剪切角也称切应变。
×
§4–2 扭转的内力—扭矩与扭矩图
一、扭矩 圆杆扭转横截面的内力合成
结果为一合力偶,合力偶的力偶 矩称为截面的扭矩,用T 表示之。 m
max
T GI p
180
(/m)
×
例5 图示圆轴,已知mA =1kN.m, mB =3kN.m, mC
=2kN.m;l1 =0.7m,l2 =0.3m;[]=60MPa,[ ]=0.3°/m,
G=80GPa;试选择该轴的直径。
mA
mB mC 解: ⑴按强度条件
A
l1
B l2 C
max
9.55
200 300
6.37
(kN m)
×
n D
m2 1 m3 2 m1 3 m4
n A 1 B 2 C 3D
②求扭矩(扭矩按正方向假设)
m 0 , T1 m2 0, T1 m2 4.78kN m m 0; T2 m1 m2 0
T2 m2 m3 (4.78 4.78) 9.56kN m
T
2 r02
t
T 2 A0
t
T
A0为平均半径所作圆的面积。
×
三、切应力互等定理:
´
a
b
dy
´
c
z
dx
d t
mz 0; t dxdy t dxdy
'
这就是切应力互等定理:在单元体相互垂直的两个截面
上,切应力必然成对出现,且数值相等,两者都垂直于两平
面的交线,其方向或共同指向交线,或共同背离交线。
垂直,则杆件发生的变形为扭转变形。
A
B O
A
BO
m
m
——扭转角(两端面相对转过的角度)
——剪切角,剪切角也称切应变。
×
§4–2 扭转的内力—扭矩与扭矩图
一、扭矩 圆杆扭转横截面的内力合成
结果为一合力偶,合力偶的力偶 矩称为截面的扭矩,用T 表示之。 m
单辉祖材力-4(第四章 扭转)

最大切应力发生在簧丝截 面内侧,其值为:
max max
d 8 FD 1 3 2D d
当D >> d 时, 略去 剪力的影响和簧圈 曲率的影响: 当D / d < 10 时, 或计 算精度要求较高时,须 考虑剪力和簧圈曲率 的影响:
max max
8 FD 3 d
8 FD 4 m 2 3 d 4 m 3
d
mD
§4-5 等直圆轴扭转时的变形•刚度条件
Ⅰ、扭转时的变形 ——两个横截面的相对扭转角 Me Me
a T O1 A b T O2 d b
a
D D' dx
扭转角沿杆长的变化率 d T d x GI p 相距d x 的微段两端截面间 相对扭转角为 T d dx GI p
即该轴满足强度条件。
14
例 实心圆截面轴Ⅰ和空心圆截面轴Ⅱ (= d2/D2 =0.8) 的材料、扭转力偶矩 Me 和长度l 均相同。试求在 两圆轴横截面上最大切应力相等的情况下,D2/d1 之比以及两轴的重量比。 Me Me Ⅰ (a) l
d
Me D2 (b) l
d1
Ⅱ
Me
2
πd πD 4 W W 1 解 p1 p2 16 16 : T1 M e 16 M e 1,max Wp1 Wp1 πd13 Me 16 M e T2 2,max 3 1 4 Wp 2 Wp 2 πD2
首先必须计算作用在各轮上的外力偶矩 解 : M M M M4 1 3 2 1 2 3 A
1
B
3
2
C
3
D
500 M 1 (9.55 10 ) N m 15.9kN m 300 3 150 M 2 M 3 (9.55 10 ) N m 4.78kN m 100 200 3 M 4 (9.55 10 ) N m 6.37 kN m 300
材料力学 第4章_扭转

z
d x d z d y d y d z d x 0
返回
4. 切应力互等定理
切应力互等定理: 也称切应力双生定理, 指在单元体相互垂直的两 个面上,切应力必成对存 在,且数值相等;两者都 垂直于两个平面的交线, 方向共同指向或背离这一 交线。
纯剪切
BC B
TCD mB mC 700N m
(b)
TDA mA 1146N m
可见:主动轮与从动轮位置不 同,轴内最大扭矩也不同,显 然(a)方案比(b)方案合理。
返回
§4.3 圆轴扭转时的应力与强度条件
返回总目录
一、薄壁圆筒扭转时的切应力 1. 变形现象 圆周线大小、形状、间距 不变,纵向线相同倾斜。 2. 横截面上应力分析 因纵向纤维无正应变, 有角应变,因此横截面上 无,有, 与圆周相切。 又因壁很薄,可近似认 为沿壁厚应力相等。
第4章 扭转
第4章 扭转
§4.1 扭转的概念 §4.2 外力偶矩、扭矩和扭矩图
§4.3 圆轴扭转时的应力与强度条件
§4.4 圆杆扭转时的变形及刚度条件
§4.5 非圆截面杆的扭转概念
§4.1 扭转的概念
返回总目录
工程中的受扭转杆件
拧紧螺母的工具杆产生扭转变形
返回
工程中的受扭转杆件
返回
工程中的受扭转杆件
r
d dx
横截面上任一点的 ⊥半 径,并与该点到轴线的距离 成正比。
返回
4. 应力公式 静力关系
T
dA
横截面上分布内力系对 圆心的矩等于扭矩T。
T d A A d d 2 G d A G d A A dx dx A
d x d z d y d y d z d x 0
返回
4. 切应力互等定理
切应力互等定理: 也称切应力双生定理, 指在单元体相互垂直的两 个面上,切应力必成对存 在,且数值相等;两者都 垂直于两个平面的交线, 方向共同指向或背离这一 交线。
纯剪切
BC B
TCD mB mC 700N m
(b)
TDA mA 1146N m
可见:主动轮与从动轮位置不 同,轴内最大扭矩也不同,显 然(a)方案比(b)方案合理。
返回
§4.3 圆轴扭转时的应力与强度条件
返回总目录
一、薄壁圆筒扭转时的切应力 1. 变形现象 圆周线大小、形状、间距 不变,纵向线相同倾斜。 2. 横截面上应力分析 因纵向纤维无正应变, 有角应变,因此横截面上 无,有, 与圆周相切。 又因壁很薄,可近似认 为沿壁厚应力相等。
第4章 扭转
第4章 扭转
§4.1 扭转的概念 §4.2 外力偶矩、扭矩和扭矩图
§4.3 圆轴扭转时的应力与强度条件
§4.4 圆杆扭转时的变形及刚度条件
§4.5 非圆截面杆的扭转概念
§4.1 扭转的概念
返回总目录
工程中的受扭转杆件
拧紧螺母的工具杆产生扭转变形
返回
工程中的受扭转杆件
返回
工程中的受扭转杆件
r
d dx
横截面上任一点的 ⊥半 径,并与该点到轴线的距离 成正比。
返回
4. 应力公式 静力关系
T
dA
横截面上分布内力系对 圆心的矩等于扭矩T。
T d A A d d 2 G d A G d A A dx dx A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)圆杆扭转时横截面上的最大切应力发生在外表面处
式中Wt=Ip/R,称为圆杆抗扭截面系数(或抗抟截面模量)。
圆杆扭转时的强度条件
(4)圆杆扭转时,圆杆各点处于“纯剪切”应力状态,如图3—1所示。其最大拉应力、最大压应力和最大切应力数值相等。
低碳钢材料抗拉与抗压的屈服强度相等,抗剪能力较差,所以低碳钢材料圆杆扭转破坏是沿横截面被剪断的。
答: =
13、一薄壁钢管受扭矩Me=2kN.m作用。己知D=60mm,d=50mm,E=210GPa。己测得管表面上相距l=200mm的AB两截面的相对扭转角 =0.430,试求材料的泊松比。
答:μ=0.3
14、一联轴器,由分别分布在半径为R1和R2圆周上的8只直径相同的螺栓相联接(如图所示)。则内圈(R1)螺栓横截面上的切应力 与外圈(R2)螺栓截面上的切应力 的比值为()。
(8) 矩形截面杆自由扭转时,横截面上的剪应力呈线性分布。(错)
3、选择题
(1)阶梯圆轴的最大切应力发生在(D)。
A 扭矩最大的截面; B 直径最小的截面
C 单位长度扭转角最大的截面 D 不能确定
(2)空心圆轴的外径为D,内径为d, =d /D。其抗扭截面系数为(D)。
A B
C C
(3)扭转切应力公式 适用于(D)杆件。
在相互垂直的两个平面上,切应力必然成对存在且数值相等,两者都垂直于两个平面的交线、方向到共同指向或共同背离积这一交线,这就是切应力互等定理。
5、切应变剪切虎克定律
对于纯剪切的单元体,其变形是相对两侧面发生的微小错动,以γ来度量错动变形程度,即称切应变。
当切应力不超过材料的剪切比例极限时,切应力τ和切应变γ成正比,即
第三部分扭转
4.1预备知识
一、基本概念
1、扭转变形
扭转变形是杆件的基本变形之一,扭转变形的受力特点是:杆件受力偶系的作用,这些力偶的作用面都垂直于杆轴。此时,截面B相对于截面A转了一个角度 ,称为扭转角。同时,杆件表面的纵向直线也转了一个角度 变为螺旋线, 称为剪切角。
2、外力偶
杆件所受外力偶的大小一般不是直接给出时,应经过适当的换算。若己知轴传递的功率P(kW)和转速n(r/min),则轴所受的外力偶矩 。
A) ;(B) ;(C) ;(D)
15、 试作图4—32所示各轴的扭矩图,并求出 及其作用处。
16、 齿轮轴上有四个齿轮,见图4—33,己算出各轮所受外力偶矩为mA=52N•m、mB=120N·m、mC=40N·m、mD=28N·m.己知各段轴的直径分别为dAB=15mm、dBC=20mm、dCD=12mm。
11、图示某带轮传动轴,己知:P=14kW,n=300r/min, =40MPa, =0.01rad/min,G=80GPa。试根据强度和刚度条件计算两种截面的直径:(1)实心圆截面的直径d;(2)空心圆截面的内径d1和外径d2(d1/d2=3/4)
答:d≥49mm,d2≥53.7mm
12、图示一圆截面杆,左端固定,右端自由,在全长范围内受均布力偶矩作用,其集度为me。设杆的材料的切变模量为G,截面的极惯性矩为Ip,杆长为l。试求自由端的扭转角 。
d=31mm
二、计算题
一为实心、一为空心的两根圆轴,材料、长度和所受外力偶均一样,实心直径d1,空心轴外径D2、内径d2,内外径之比α=d2/D2=0.8。若两轴重量一样,试求两轴最大相对扭转角之比。
解:两轴材料、重量和长度一样,则截面积也一样A1=A2,即
可得
因承受的外力偶矩相同,两轴截面上扭矩也应相等T1=T2。
答:
10、图示一传动轴,主动轮I传递力偶矩1kN.m,从动轮Ⅱ传递力偶0.4kN.m,从动轮Ⅲ传递力偶矩0.6kN.m.。己知轴的直径d=40mm,各轮间距l=500mm,材料的切变模量G=80GPa。要求(1)合理布置各轮的位置;(2)求出轴在合理位置时的最大切应力 和最大扭转角 。
答: =47.8MPa, =0.015rad
(2)矩形截面杆
矩形截面杆扭转时,由切应力互等定理可知,横截面周边上的切应力和周边相切,角点处切应力为零。横截面上最大切应力发生在长边的中点处。
设矩形截面杆长为l,承受扭矩T,矩形截面的长为h,宽为b。
最大切应力
杆两端的相时扭转角
式中α,β是与长宽比h/b相关的系数,计算时可查阅有关手册。
当长宽比 时,称为狭长矩形,α,β可近似为1/3。
A 任意截面; B 任意实心截面;
C 任意材料的圆截面 D 线弹性材料的圆截面。
(4)单位长度扭转角 与(A)无关。
A 杆的长度; B 扭矩
C 材料性质; D 截面几何性质。
(5)图示圆轴由钢杆和铝套管牢固地结合在一起。扭转变形时,横截面上切应力分布如图(B)所示。
(6)若将受扭实心圆轴的直径增加一圆轴扭转时,截面上的内力矩称为扭矩,用T表示。扭矩的正负号,按右手螺旋法则判定。如扭矩矢量与截面外向法线一致,为正扭矩,反之为负;求扭矩时仍采用截面法。扭矩图是扭矩沿轴线变化图形,与轴力图的画法是相似
4、纯剪切切应力互等定理
单元体的左右两个侧面上只有切应力而无正应力,此种单元体发生的变形称为纯剪切。
A 2倍 B 4倍
C 8倍 D 16倍
(7) 空心圆轴,其内外径之比为 ,扭转时轴内的最大剪应力为 ,这时横截面上内边缘的剪应力为( B )。
A B
C 零 D
(8) 实心圆轴扭转,己知不发生屈服的极限扭矩为T0,若将其横截面积增加1倍,那么极限扭矩是( C )。
A B
C D
(9) 对于受扭的圆轴,关于如下结论:
答:τmax=100MPa
3、设将例题4—2中直径d=0.06m的实心圆轴制成外径D与内径d之比为3/2的空心圆轴,仍受力偶矩Me=2.5kN.m的作用。试求:使τmax与该例题相同时,能节省多少材料?
答:D=0.065m
4、图示一圆锥形杆AB,受力偶矩Me作用,杆长为l,两端截面的直径分别为d1和d2=1.2d1,材料的切变模量为G。试求:(1)截面A和B的扭转角 ,(2)若按平均直径的等直杆计算扭转角,误差等于多少?
一、计算题
等截面传动轴的转速n=150r/min,由A转输入功率NA=8kW,由B、C、D各轮输出功率分别为NB=3kW,NC=1kW,ND=4kW。己知轴的许用剪应力[τ]=60MPa,剪切弹性模量G=80GPa,[θ]=20/m。要求首先安排各轮的位置,然后绘出传动轴的扭矩图,并确定轴的直径。
解:四轮各位置如图,其中A轮应放在轴的中间位置,使得从A轮输入的扭矩由该轮的两侧分担,不会使轴的某段承担输入的全部扭矩。根据功率转化为扭矩关系,A、B、C、D各点的扭矩
己知各轮承担的扭矩后,由截面法可得各截面的扭矩,扭矩图如图。从扭矩图可知,最大扭矩应在DA、AB段,为
最大剪应力为
强度条件为
得到
(1)
由于轴为等截面的,最大单位长度的扭转角也应在DA、AB段,等圆截面杆的单位长度的扭转角
刚度条件为
得
(2)
从式(1)和式(2)中选择较大的作为轴的直径,可同时满足刚度和强度条件,轴的直径
答:d=85mm
8、钻探机钻杆的外径D=60mm,内径d=50mm,切率P=7.355kW,轴的转速n=180r/min,钻杆钻入土层的深度l=40m,材料的切变模量G=80GPa,许用切应力 =40MPa,假设土壤对钻杆的阻力沿长度均匀分布,试求:(1)土壤对钻杆单位长度的阻力矩m;(2)作钻杆的扭矩图,并进行强度校核;(3)计算A、B截面的相对扭转角。
解(1)开口薄壁圆环
开口薄壁圆环可以看成一个长为 、宽为t的狭长矩形,则最大切应力
扭转角
(2)闭口薄壁圆环
最大切应力
扭转角
对于薄壁圆环,Ip可以写成
因此
(3)两杆最大切应力之比
两杆扭转角之比
讨论:由本题的计算结果可以看出,闭口薄壁圆环的切应力及扭转角要比开口薄壁圆环小得多,因而在薄壁构件中应尽量采用闭口薄壁杆件。
实心轴和空心轴最大相对扭转角分别是
式中,l为轴的长度。故两轴最大相对扭转角之比
将 代入上式,则
再将α=0.8代入上式,得
可见,空心轴的扭转角远小于实心轴的。因此,采用空心圆轴不仅强度高,而且刚度也远优于实心圆轴。
三、计算题
两个受扭薄壁杆截面,一个是开有纵向细缝的开口薄壁圆环,另一个是闭口薄壁圆环,如图所示。两杆的材料相同,尺寸相同,平均直径D=40mm,壁厚t=2mm,长度为l。两杆承受的扭矩相同。试求两杆最大切应力之比及扭转角之比。
①最大剪应力只出现在横截面上;
②在横截面上和包含杆件的纵向截面上均无正应力;
③圆轴内最大拉应力的值和最大剪应力的值相等。
现有四种答案,正确的是( A )。
A②③对 B①③对
C①②对 D 全对
二、计算题
1、试用截面法求出图示圆轴各段内的扭矩T,并作扭矩图。
答:
2、图示一齿轮传动轴,传递力偶矩Me=10kN.m,轴的直径d=80mm.。试求轴的最大切应力。
答:
7、图示传动轴,主动轮B输入功率P1=368kW,从动轮A,阵C输出的功率分别为P2=147kW,P3=221kW,轴的转速n=500r/min,材料的G=80GPa,许用切应力 =70MPa,许用单位长度扭转角 =10/m。(1)画出轴的扭矩图;(2)设计轴的直径;(3)讨论提高轴强度和刚度的措施
二、重点与难点
1、受扭杆件所受的外力偶矩,常由杆件所传递的功率及其转速来换算。
2、圆杆扭转时,横截面上切应力沿半径线性分布,并垂直于半径,最大切应力在外表面处。
3、低碳钢材料圆杆扭转破坏时,将沿横截面被剪断。铸铁材料圆杆扭转破坏时,将沿与杆轴线成450螺旋面被拉断。
三、解题方法要点
1、
2、
4.2典型题解
(3)薄壁圆管和空心圆管的扭转切应力公式完全一样。(错)
式中Wt=Ip/R,称为圆杆抗扭截面系数(或抗抟截面模量)。
圆杆扭转时的强度条件
(4)圆杆扭转时,圆杆各点处于“纯剪切”应力状态,如图3—1所示。其最大拉应力、最大压应力和最大切应力数值相等。
低碳钢材料抗拉与抗压的屈服强度相等,抗剪能力较差,所以低碳钢材料圆杆扭转破坏是沿横截面被剪断的。
答: =
13、一薄壁钢管受扭矩Me=2kN.m作用。己知D=60mm,d=50mm,E=210GPa。己测得管表面上相距l=200mm的AB两截面的相对扭转角 =0.430,试求材料的泊松比。
答:μ=0.3
14、一联轴器,由分别分布在半径为R1和R2圆周上的8只直径相同的螺栓相联接(如图所示)。则内圈(R1)螺栓横截面上的切应力 与外圈(R2)螺栓截面上的切应力 的比值为()。
(8) 矩形截面杆自由扭转时,横截面上的剪应力呈线性分布。(错)
3、选择题
(1)阶梯圆轴的最大切应力发生在(D)。
A 扭矩最大的截面; B 直径最小的截面
C 单位长度扭转角最大的截面 D 不能确定
(2)空心圆轴的外径为D,内径为d, =d /D。其抗扭截面系数为(D)。
A B
C C
(3)扭转切应力公式 适用于(D)杆件。
在相互垂直的两个平面上,切应力必然成对存在且数值相等,两者都垂直于两个平面的交线、方向到共同指向或共同背离积这一交线,这就是切应力互等定理。
5、切应变剪切虎克定律
对于纯剪切的单元体,其变形是相对两侧面发生的微小错动,以γ来度量错动变形程度,即称切应变。
当切应力不超过材料的剪切比例极限时,切应力τ和切应变γ成正比,即
第三部分扭转
4.1预备知识
一、基本概念
1、扭转变形
扭转变形是杆件的基本变形之一,扭转变形的受力特点是:杆件受力偶系的作用,这些力偶的作用面都垂直于杆轴。此时,截面B相对于截面A转了一个角度 ,称为扭转角。同时,杆件表面的纵向直线也转了一个角度 变为螺旋线, 称为剪切角。
2、外力偶
杆件所受外力偶的大小一般不是直接给出时,应经过适当的换算。若己知轴传递的功率P(kW)和转速n(r/min),则轴所受的外力偶矩 。
A) ;(B) ;(C) ;(D)
15、 试作图4—32所示各轴的扭矩图,并求出 及其作用处。
16、 齿轮轴上有四个齿轮,见图4—33,己算出各轮所受外力偶矩为mA=52N•m、mB=120N·m、mC=40N·m、mD=28N·m.己知各段轴的直径分别为dAB=15mm、dBC=20mm、dCD=12mm。
11、图示某带轮传动轴,己知:P=14kW,n=300r/min, =40MPa, =0.01rad/min,G=80GPa。试根据强度和刚度条件计算两种截面的直径:(1)实心圆截面的直径d;(2)空心圆截面的内径d1和外径d2(d1/d2=3/4)
答:d≥49mm,d2≥53.7mm
12、图示一圆截面杆,左端固定,右端自由,在全长范围内受均布力偶矩作用,其集度为me。设杆的材料的切变模量为G,截面的极惯性矩为Ip,杆长为l。试求自由端的扭转角 。
d=31mm
二、计算题
一为实心、一为空心的两根圆轴,材料、长度和所受外力偶均一样,实心直径d1,空心轴外径D2、内径d2,内外径之比α=d2/D2=0.8。若两轴重量一样,试求两轴最大相对扭转角之比。
解:两轴材料、重量和长度一样,则截面积也一样A1=A2,即
可得
因承受的外力偶矩相同,两轴截面上扭矩也应相等T1=T2。
答:
10、图示一传动轴,主动轮I传递力偶矩1kN.m,从动轮Ⅱ传递力偶0.4kN.m,从动轮Ⅲ传递力偶矩0.6kN.m.。己知轴的直径d=40mm,各轮间距l=500mm,材料的切变模量G=80GPa。要求(1)合理布置各轮的位置;(2)求出轴在合理位置时的最大切应力 和最大扭转角 。
答: =47.8MPa, =0.015rad
(2)矩形截面杆
矩形截面杆扭转时,由切应力互等定理可知,横截面周边上的切应力和周边相切,角点处切应力为零。横截面上最大切应力发生在长边的中点处。
设矩形截面杆长为l,承受扭矩T,矩形截面的长为h,宽为b。
最大切应力
杆两端的相时扭转角
式中α,β是与长宽比h/b相关的系数,计算时可查阅有关手册。
当长宽比 时,称为狭长矩形,α,β可近似为1/3。
A 任意截面; B 任意实心截面;
C 任意材料的圆截面 D 线弹性材料的圆截面。
(4)单位长度扭转角 与(A)无关。
A 杆的长度; B 扭矩
C 材料性质; D 截面几何性质。
(5)图示圆轴由钢杆和铝套管牢固地结合在一起。扭转变形时,横截面上切应力分布如图(B)所示。
(6)若将受扭实心圆轴的直径增加一圆轴扭转时,截面上的内力矩称为扭矩,用T表示。扭矩的正负号,按右手螺旋法则判定。如扭矩矢量与截面外向法线一致,为正扭矩,反之为负;求扭矩时仍采用截面法。扭矩图是扭矩沿轴线变化图形,与轴力图的画法是相似
4、纯剪切切应力互等定理
单元体的左右两个侧面上只有切应力而无正应力,此种单元体发生的变形称为纯剪切。
A 2倍 B 4倍
C 8倍 D 16倍
(7) 空心圆轴,其内外径之比为 ,扭转时轴内的最大剪应力为 ,这时横截面上内边缘的剪应力为( B )。
A B
C 零 D
(8) 实心圆轴扭转,己知不发生屈服的极限扭矩为T0,若将其横截面积增加1倍,那么极限扭矩是( C )。
A B
C D
(9) 对于受扭的圆轴,关于如下结论:
答:τmax=100MPa
3、设将例题4—2中直径d=0.06m的实心圆轴制成外径D与内径d之比为3/2的空心圆轴,仍受力偶矩Me=2.5kN.m的作用。试求:使τmax与该例题相同时,能节省多少材料?
答:D=0.065m
4、图示一圆锥形杆AB,受力偶矩Me作用,杆长为l,两端截面的直径分别为d1和d2=1.2d1,材料的切变模量为G。试求:(1)截面A和B的扭转角 ,(2)若按平均直径的等直杆计算扭转角,误差等于多少?
一、计算题
等截面传动轴的转速n=150r/min,由A转输入功率NA=8kW,由B、C、D各轮输出功率分别为NB=3kW,NC=1kW,ND=4kW。己知轴的许用剪应力[τ]=60MPa,剪切弹性模量G=80GPa,[θ]=20/m。要求首先安排各轮的位置,然后绘出传动轴的扭矩图,并确定轴的直径。
解:四轮各位置如图,其中A轮应放在轴的中间位置,使得从A轮输入的扭矩由该轮的两侧分担,不会使轴的某段承担输入的全部扭矩。根据功率转化为扭矩关系,A、B、C、D各点的扭矩
己知各轮承担的扭矩后,由截面法可得各截面的扭矩,扭矩图如图。从扭矩图可知,最大扭矩应在DA、AB段,为
最大剪应力为
强度条件为
得到
(1)
由于轴为等截面的,最大单位长度的扭转角也应在DA、AB段,等圆截面杆的单位长度的扭转角
刚度条件为
得
(2)
从式(1)和式(2)中选择较大的作为轴的直径,可同时满足刚度和强度条件,轴的直径
答:d=85mm
8、钻探机钻杆的外径D=60mm,内径d=50mm,切率P=7.355kW,轴的转速n=180r/min,钻杆钻入土层的深度l=40m,材料的切变模量G=80GPa,许用切应力 =40MPa,假设土壤对钻杆的阻力沿长度均匀分布,试求:(1)土壤对钻杆单位长度的阻力矩m;(2)作钻杆的扭矩图,并进行强度校核;(3)计算A、B截面的相对扭转角。
解(1)开口薄壁圆环
开口薄壁圆环可以看成一个长为 、宽为t的狭长矩形,则最大切应力
扭转角
(2)闭口薄壁圆环
最大切应力
扭转角
对于薄壁圆环,Ip可以写成
因此
(3)两杆最大切应力之比
两杆扭转角之比
讨论:由本题的计算结果可以看出,闭口薄壁圆环的切应力及扭转角要比开口薄壁圆环小得多,因而在薄壁构件中应尽量采用闭口薄壁杆件。
实心轴和空心轴最大相对扭转角分别是
式中,l为轴的长度。故两轴最大相对扭转角之比
将 代入上式,则
再将α=0.8代入上式,得
可见,空心轴的扭转角远小于实心轴的。因此,采用空心圆轴不仅强度高,而且刚度也远优于实心圆轴。
三、计算题
两个受扭薄壁杆截面,一个是开有纵向细缝的开口薄壁圆环,另一个是闭口薄壁圆环,如图所示。两杆的材料相同,尺寸相同,平均直径D=40mm,壁厚t=2mm,长度为l。两杆承受的扭矩相同。试求两杆最大切应力之比及扭转角之比。
①最大剪应力只出现在横截面上;
②在横截面上和包含杆件的纵向截面上均无正应力;
③圆轴内最大拉应力的值和最大剪应力的值相等。
现有四种答案,正确的是( A )。
A②③对 B①③对
C①②对 D 全对
二、计算题
1、试用截面法求出图示圆轴各段内的扭矩T,并作扭矩图。
答:
2、图示一齿轮传动轴,传递力偶矩Me=10kN.m,轴的直径d=80mm.。试求轴的最大切应力。
答:
7、图示传动轴,主动轮B输入功率P1=368kW,从动轮A,阵C输出的功率分别为P2=147kW,P3=221kW,轴的转速n=500r/min,材料的G=80GPa,许用切应力 =70MPa,许用单位长度扭转角 =10/m。(1)画出轴的扭矩图;(2)设计轴的直径;(3)讨论提高轴强度和刚度的措施
二、重点与难点
1、受扭杆件所受的外力偶矩,常由杆件所传递的功率及其转速来换算。
2、圆杆扭转时,横截面上切应力沿半径线性分布,并垂直于半径,最大切应力在外表面处。
3、低碳钢材料圆杆扭转破坏时,将沿横截面被剪断。铸铁材料圆杆扭转破坏时,将沿与杆轴线成450螺旋面被拉断。
三、解题方法要点
1、
2、
4.2典型题解
(3)薄壁圆管和空心圆管的扭转切应力公式完全一样。(错)