高速铁路路基工程资料
高速铁路《路基工程》(二)

扣件阻力就是钢轨和轨枕之间的阻力。 试验表明,有螺栓扣件的阻力与螺栓扭矩摩 擦系数的大小有关,扣件扭矩越大,扣压力 越大,扣件能提供的阻力也越大。对于无螺 栓扣件,由弹条的变形量确定扣件的扣压力。
英国潘德罗(Pandrol)扣件(无砟)
英国潘德罗(Pandrol)扣件(有砟)
二、信号 (一)一般规定 1.信号系统设计应符合双线、双方向运行 的要求。正方向运行应采用自动闭塞,反方向 宜采用自动站间闭塞。 2.信号系统设计应符合规定的列车追踪运 行间隔时分的要求。
(二)地面固定信号
1.车站(含区间无配线站)应设进站、出
站信号机。根据需要,作业量较大的车站可设进
路信号机、调车信号机和复示信号机。作业较
沪杭线Ⅱ轨道板
已经生产出来的Ⅱ轨道板
沪杭线铺设Ⅱ型板
Ⅰ轨道板铺设完成后灌注CA砂浆
哈大线正在铺设Ⅰ轨道板
沪宁城际曲线处无砟轨道底座板准备施工(Ⅰ型板)
请思考: 板内钢筋交叉点为什么要绝缘?
双块式无砟轨道结构
路基双块式无砟轨道结构
双块式轨枕实物照片
双块式无砟轨道道床板施工方法 首先预制双块式轨枕,运至现场后将用工具轨将 轨枕悬挂在道床板模板内,调整好工具轨的轨面标 高后,灌注混凝土,将双块式轨枕浇注在道床板内, 完成无砟轨道的施工。
3.车站及区间通信、信号等与行车有关的 一级负荷应由电力一级负荷、综合负荷贯通线 路提供两路相互独立电源供电,高压接引方式 宜为环网接线,并宜独立设置变电所;当供电 能力允许时,贯通线路可对难以取得外部电源的 其他用电负荷供电。
4.特大型旅客站房应设应急备用发电机组
(二)变、配电所
1.两路电源供电的10 (6) kV变、配电所应
为单一的中间站、越行站列车进路上可不设调
高速铁路路基及地基处理

对软弱地基、松软土、湿陷性黄土等地基处理采用了桩网、桩 筏、桩板等加固新结构新技术。湿陷性黄土地基除强夯、水泥 土挤密桩、柱锤夯扩桩等措施消除黄土湿陷性外,采用了 CFG桩和水泥挤密桩长短桩技术、桩筏、桩板结构。对膨胀 土地基主要采用了换填、冲击碾压和CFG桩加固。对岩溶地 区主要采用了帷幕注浆加固技术。
高速铁路路基及地基处理
路基及过渡段基本知识
高速铁路路基要求地基工后沉降小、基床强度高、 路基的刚度沿线路变化平缓,防排水系统完善,支挡 防护体稳定可靠。路基设计采用土工结构物设计理念。 路基基床表层采用级配碎石或级配砂砾石,基床底层 采用优良的A、B组填料或化学改良土,填料压实质 量采用物理和力学指标双控,保证填筑质量。与桥梁、 涵洞、隧道等结构物之间设置路桥、路涵、路隧、桥 隧及堤堑等各种过渡段,实现路基在线路纵向的沉降 变形和刚度的均匀过渡。
(五)排水固结法:采用塑料排水板、袋装砂井。 (六)挤密桩复合地基法:采用砂桩、碎石桩。 (七)半刚性桩复合地基法:采用粉喷桩、搅拌桩、 旋喷桩。
五、路基沉降
高速铁路无砟轨道主要是根据扣除施工误差、运营期 间轨道预留调整量后,留给路基沉降的允许调高量确 定的。无砟轨道路基工后沉降不大于15mm,与桥隧 涵洞等结构物交界处工后沉降差不大于5.0mm、不均 匀沉降造成的折角不大于1/1000,当沉降较为均匀, 又难于控制,可通过更换扣件圆顺线路调整,但工后 沉降不大于30mm;并采用工后沉降动态设计。有砟 轨道的工后沉降量限值的确定依据主要是经济性和短 时间内沉降过大也不会出现维修困难而危及正常行车。 250km/h和350km/h高速铁路要求有砟轨道路基工后 沉降分别不大于100mm和50mm、过渡段不大于 50mm和30mm;沉降速率分别不大于30mm/年和 20mm/年。
高速铁路路基施工方案

高速铁路路基施工方案一、引言高速铁路作为一种重要的交通运输方式,对于现代社会的发展起着至关重要的作用。
而高速铁路的路基施工方案,是确保铁路线路安全稳定的重要环节。
本文将对高速铁路路基施工方案进行详细的阐述,包括施工流程、施工技术和质量控制等内容。
二、施工流程1. 前期准备:在施工前,应进行综合勘察和设计,确定施工的具体方案和工程量,制定施工计划,并对施工人员进行培训,确保施工过程的安全和可行性。
2. 路基平整:首先需要对铁路基底进行平整处理,清理杂物和浸泡土壤,确保路基的稳定性。
然后根据设计要求进行平整,铺设碎石层作为基础层。
3. 确定路基高度:根据设计要求和地形状况,确定路基的高度和坡度。
在这一阶段,需要使用测量仪器进行精确测量,确保路基的高度和坡度符合要求。
4. 施工设备准备:根据施工方案,组织采购和准备所需的施工设备和材料,包括挖掘机、卡车、混凝土搅拌站等。
5. 填筑路基:利用挖掘机和卡车等设备,将挖掘出的土方倒入路基位置,并进行压实,确保路基的稳定性和承载能力。
6. 增加支撑工程:针对特殊地质条件或需要加固的路段,根据设计要求增加支撑工程,以提高路基的稳定性。
7. 配置砂石料:根据设计要求,将砂石料进行筛分和洗净,并按照一定比例进行混合,以保证路基的强度和稳定性。
8. 碾压路基:利用碾压机对路基进行碾压,以提高其密实度和承载能力。
保持适当的温度和湿度,确保路基的质量。
9. 巩固路基:在路基表面施工边坡保护结构,如草坪、防护墙等,以保护路基免受外力破坏。
三、施工技术1. 施工设备的选择和使用:高速铁路路基施工需要使用各种设备,如挖掘机、卡车、压路机等。
在选择和使用这些设备时,应根据具体情况进行判断和调整,确保施工的效率和质量。
2. 土方挖掘和处理:在进行路基施工时,需要挖掘一定深度的土方。
在挖掘土方时,应注重处理挖掘出的土方,避免对环境和交通造成不良影响。
3. 土方填筑和压实:在进行土方填筑时,应注意土方的均匀分布和压实程度。
高速铁路路基设计

高速铁路路基设计高速铁路的建设已经成为现代交通领域的重要项目之一。
而作为高速铁路的重要组成部分,路基设计在保障铁路安全、提高运行效率方面起着至关重要的作用。
本文将就高速铁路路基设计的相关内容展开论述,包括设计原则、技术要点以及相关工程实践经验。
1. 设计原则高速铁路路基设计的目标是确保铁路线路的安全、稳定和持久性。
因此,在路基设计过程中需要遵循以下原则:1.1 特性适应性原则:考虑到高速铁路的基础特点,包括载荷、速度和频率,路基设计应该充分考虑并适应这些特性,保证铁路的正常运营和使用。
1.2 抗震原则:地震是高速铁路建设中需要重点考虑的因素之一。
路基设计应通过合理的抗震设计,确保在地震发生时铁路的稳定和安全。
1.3 沉降控制原则:路基施工完成后,由于填路和加重载荷,沉降是不可避免的。
为了保证铁路的平稳运行,路基设计应该合理控制沉降量,避免过大的沉降影响铁路线路的使用寿命。
2. 技术要点高速铁路路基设计需要考虑以下技术要点,以确保路基的安全和持久性:2.1 地质勘察:在路基设计之前,进行全面的地质勘察是必要的。
这包括地质结构、土质条件和地下水位等方面的调查,从而为设计提供准确的地质信息。
2.2 路基平整度:为保证列车的平稳运行,路基设计中需要考虑路基的平整度。
通过合理的设计和工程施工,减小路堑与路基之间的高差,确保列车在高速运行时的稳定性。
2.3 排水设计:排水是路基设计中非常重要的一环。
合理的排水设计可以防止积水和渗水,保持路基的稳定性。
通过采用适当的排水材料、排水沟和排水管道,确保铁路线路在降水期间的正常通行。
2.4 坡度设计:在高速铁路路基设计中,坡度的设计至关重要。
合理的坡度设计可以减小铁路线路的曲线半径,提高列车在弯道运行时的安全性和运行效率。
3. 工程实践经验高速铁路路基设计在实践中积累了丰富的经验,以下是一些工程实践经验的总结:3.1 建立完善的质量控制体系:通过建立全面的质量控制体系,包括严格的施工标准和工艺流程,确保路基的施工质量。
高速铁路路基施工技术要点

高速铁路路基施工技术要点摘要:高速铁路的建设是国家重大基础设施的建设工程之一,其中路基施工是完成高速铁路建设的重要环节。
本文从高速铁路路基施工的基本原理、工艺流程、关键技术和质量要求等方面进行阐述,以期为高速铁路路基施工提供一些参考。
关键词:高速铁路;路基施工;基本原理;工艺流程;关键技术;质量要求一、概述随着经济和交通的发展,高速铁路的建设已成为国家重大基础设施的建设工程之一。
高速铁路具有运行速度快、运输能力大、效率高等优点,对于促进国家经济发展、优化交通结构、提升国际竞争力具有重要意义。
高速铁路的运营需要维护一组良好的高速铁路路基,确保其稳定和安全运营。
高速铁路路基是铁路线路中的重要组成部分,其施工质量直接影响整条高速铁路的安全和舒适性。
高速铁路路基施工是高速铁路建设中的重要环节,其施工要求高标准、高精度、高质量。
本文从高速铁路路基施工的基本原理、工艺流程、关键技术和质量要求等方面进行了阐述。
二、高速铁路路基施工的基本原理高速铁路路基施工的基本原理是在保证铁路线路稳定性和安全性的前提下,按照设计要求,完成路基施工的各项任务,使路基具有承载能力、稳定性、耐久性等必要性能。
在施工过程中应按照规范进行施工,合理利用材料和资源,采用先进的施工方法和技术手段,确保施工进度和质量。
路基施工过程中应严格控制施工质量,保证施工的安全和可靠性。
三、高速铁路路基施工的工艺流程高速铁路路基施工的工艺流程包括勘测设计、路基开挖、路基填筑、路基加固等环节。
3.1 勘测设计勘测设计阶段是高速铁路路基施工的基础工作,为保证施工过程中的高质量完成,必须制定详细而准确的施工设计,确保路基的高标准施工。
勘测设计环节包括路线勘测、工程设计和施工图纸等。
在勘测设计过程中,应根据地形、地貌、地质地貌等条件,进行细致地勘测,确保勘测结果准确。
根据勘测结果,进行工程设计,制定施工方案,在施工图纸中明确定义路基高程、长度、宽度等要素,确保施工的准确性和规模。
铁路工程施工资料-高速铁路路基填筑试验段施工方案

铁路工程施工资料-高速铁路路基填筑试验段施工方案
项目概述
本项目是为了研究高速铁路路基填筑试验段的施工方案。
高速铁路的建设对于我国经济社会发展有着重要意义,而路基填土施工是其中至关重要的环节之一。
本项目旨在通过试验段的施工,验证施工方案的可行性,并为未来高速铁路的规划和建设提供参考。
工程背景
高速铁路是现代交通运输的重要组成部分,而路基填土施工是高速铁路建设中必不可少的工作内容。
在实际工程中,路基填土施工的质量直接关系到高速铁路的运行安全和稳定性。
因此,制定科学合理的施工方案对于保证路基填土施工质量至关重要。
施工方案
1.物料准备
–根据设计要求,筛选符合要求的填土物料。
–对填土物料进行检测和试验,确保其满足施工要求。
2.施工前工作
–清理施工现场,确保施工环境整洁。
–制定详细的施工计划和施工方案。
3.施工过程
–按照工程设计要求,对填土进行分层填筑,每层填土高度不超过规定的厚度。
–采取适当的压实措施,保证填土的密实度和稳定性。
4.验收与保养
–完成填土后,进行验收工作,检查填土的密实度、平整度等指标是否符合设计要求。
–在施工结束后进行保养工作,包括对填土进行养护和加固等工作。
结语
通过铁路工程施工资料中高速铁路路基填筑试验段的施工方案,可以有效地保证高速铁路路基填土施工质量,为高速铁路的建设提供可靠的技术保障。
同时,本施工方案也为未来高速铁路建设提供了宝贵的经验和参考。
以上为高速铁路路基填筑试验段施工方案的详细内容,希望能够对相关工程从业人员提供帮助和参考。
高速铁路路基工程施工

一、项目概述高速铁路是一种重要的交通基础设施,其建设涉及多个领域,其中路基工程是高速铁路建设的重要组成部分。
路基工程是高速铁路的基础,它直接影响到高速铁路的安全、舒适和运行速度。
高速铁路路基工程施工是指在高速铁路建设过程中,对路基进行平整、整齐、牢固、安全、美观等综合施工的过程,是高速铁路建设的重要环节之一。
二、施工前的准备工作1. 路基设计方案的确定:在进行路基工程施工前,需要根据高速铁路的设计要求,确定路基的设计方案,包括路基的几何形状、坡度等参数。
2. 土木工程勘测:在确定了路基设计方案后,需要进行土木工程勘测,确定路基的基础土壤状况及地形地貌等情况,为后续施工提供数据支持。
3. 施工人员培训:在施工前,需要对施工人员进行相关培训,使他们了解工程施工须知和相关安全规定,提高工作效率和安全性。
4. 施工物资准备:在施工前需要准备相关施工物资,包括机械设备、材料等,以保障施工的顺利进行。
5. 施工计划编制:在确定了路基设计方案后,需编制路基工程施工计划,明确施工的时间节点、施工内容及相关配合工作。
三、路基工程施工流程1. 清理路基:首先需要对路基进行清理,清除上面的草木杂物、垃圾等,以确保路基的平整度。
2. 路基压实:根据设计要求,对路基进行压实工作,以提高路基的牢固度和稳定性。
3. 坡面挖填:对路基的坡面进行挖填工作,保证路基的坡度符合设计要求。
4. 接合缝处理:对路基的接合缝进行处理,使接合处平整、牢固、无缝隙,以免对列车行驶造成影响。
5. 路基排水:对路基进行排水处理,确保路基排水系统通畅,防止因雨水积聚导致路基沉降等问题。
6. 环境保护:在施工过程中,需要做好环境保护工作,防止对周围环境造成污染。
7. 完工验收:在路基工程施工完成后,需要进行完工验收,查看施工质量是否符合设计要求。
1. 土质不符:在施工过程中,可能出现土质与设计要求不符的情况,需要及时处理。
2. 施工机械故障:施工机械设备存在故障,会引起施工进度延误,需要及时维修处理。
高速铁路路基工程课件

表面平整度
路基表面应平整,无明显凹凸 和起伏,以保证轨道平顺。
压实度
路基压实度应达到设计要求, 以保证路基的承载能力和稳定 性。
动态性能
路基应具有良好的动力响应和 稳定性,避免列车运行时出现
共振、失稳等现象。
常见质量问题与处理措施
1 2
路基沉降
由于填筑材料或施工工艺不当,导致路基沉降过 大或不均匀沉降,应采取换填、夯实等措施进行 处理。
ห้องสมุดไป่ตู้,确保填筑质量。
路基压实标准
制定合理的压实标准和检测方 法,确保填料压实度符合要求
,提高路基承载能力。
过渡段设计
针对不同地质和地形条件,设 计合理的过渡段结构,减少不
均匀沉降和刚度突变。
路基排水设计
01
02
03
地面排水设计
设置合理的地面排水设施 ,如边沟、截水沟等,将 地表水引排至远离路基的 范围。
裂缝
路基表面出现裂缝或断裂,可能是由于材料收缩 或温差影响,应进行灌缝、填补等处理。
3
松散与剥落
路基填筑材料松散或剥落,影响路基的稳定性和 承载能力,应进行夯实、换填等处理。
05
高速铁路路基维护与加固
路基日常维护
路基日常巡检
定期对路基进行巡检,检查路基是否有裂缝、沉陷、滑坡等异常情 况,以及排水设施是否畅通。
填筑质量控制
对填筑过程进行严格的质量控制,包括填筑厚度 、含水量、压实度等指标的检测和监控。
压实施工
压实设备选择
根据工程需要选择合适的压实设备,如振动压路机、夯实机等。
压实工艺
采用合理的压实工艺,如振动碾压、夯实等,确保压实效果。
压实质量控制
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
郑西客运专线路基试验段
郑西客运专线
坪塬村
试验段
高速公路
强夯
水泥土挤密桩 柱锤冲扩桩
柴油罐
水泥土拌合
试验段简介
郑西客运专线湿陷性黄土试验段位于陕西省华 阴市坪塬村,试验段总长140m,地基处理采用 了强夯、水泥土挤密桩和柱锤冲扩桩三种方法。 路基本体和基床底层采用8%石灰和5%水泥改 良土填筑,基床表层采用级配碎石填筑,3m堆 载预压进行路基沉降观测。 试验段进行了地基处理前检测、地基处理和路 基填筑施工工艺、路基填筑工艺、地基处理和 路基填筑试验检测、路基沉降观测及路基浸水 等科研项目。
高速铁路路基工程
中国铁道科学研究院
2002年11月27日321.5km/h
压 实 标 准 基床以下路基 地基系数K30 (MPa/m) 孔 隙 率n (%) 压实系数K ≥0.92 注:EV2 检测时,EV2 / EV1≤3.0。 改良细 粒土 ≥90 ≥45 砂类土及 碎石类及 细砾土 粗砾土 60 60 ≥130 60 ≥110 ≥45 ≥45 <31 <31
设计、施工面临的几个问题
路基工后沉降预测技术; 特殊土地区低路堤、土质路堑的个别设 计; 改良土的施工技术; 复杂地质条件下的路基设计。
ห้องสมุดไป่ตู้
新技术的应用
桩网结构形式的选取、设计计算理论及 不同地质条件下的施工工艺尚未成熟; 桩板结构是无砟轨道新的结构形式,其 工作原理、动力特性和设计理论等需要 开展研究。
8.0
3.0
1:
堆载预压土方
13.6
2.3 0.4
带排水槽拱形骨架护坡 骨架内液压喷播植草
1
级配碎石
5.0
1:1
M7.5浆砌片石 厚度0.3m
.5
5%~7%水泥改良土
2.0
0.6
8%~10%石灰改良土 铺设2层双向土工格栅 双向土工格栅,抗拉强度25KN/m 宽度3m,层距0.5m 抗拉强度60KN/m 5%水泥改良土
土的工程分类
可从土类和土名中初步了解其主要的工程特性; 当用作地基土时,可结合其它指标确定地基土 的承载力、初步估计建筑物的沉降; 当用于路基填料时,可初步评估填料的压实强 度、透水性和稳定性,合理的选择施工方案, 这就是土的工程分类的目的 。
路基填料的分组
填料按照土的粒径、级配等分组; 粗粒土按照粒径、级配以及细颗粒含量 分为A、B、C(分化的软块石为D)组; 细粒土按照液塑限及有机质含量分为C、 D、E组; 路基填料组的选择按照设计要求选择, 客运专线基本采用较好的A组填料及灰土 改良土填筑。
地基处理的种类多
对于浅层软弱地基采用了换填碾压处理、或换填砂垫层 处理; 对于深层软基的主要地段采用袋装砂井、塑料排水板的 排水固结加预压的处理方法; 对于工后沉降要求高及路桥过渡段,根据地质条件和经 济对比,采用了砂桩、碎石桩、粉喷桩、搅拌桩、旋喷 桩等地基处理方法; 对于有地震液化的粉土或粉细砂层的地基段,采用了挤 密砂桩的处理方法; 新建的一些客运专线采用强夯、CFG桩、灰土挤密桩、 桩网、桩板等地基处理方法。
严格控制路基变形和工后沉降
工后沉降是高速铁路路基设计的主 要控制因素,路基发生强度破坏之 前,已经出现了不能容许的变形; 我国对无砟轨道的路基工后沉降要 求一般不应超过扣件可调高量15mm, 路桥路隧差异沉降不超过5mm。
路桥及横向构筑物间设置过渡段
路桥及横向构筑物间的过渡段,是以往设计及 施工中的薄弱环节,也是既有线发生路基病害 的重要部位。由于桥台与路堤的刚度相差显著, 高速列车通过时对轨道结构及列车自身会产生 冲击,从而降低列车运行的平稳性和舒适度, 加快结构物和车辆的损坏。 为保证列车高速运行时的平稳舒适,对路桥过 渡段采用了刚度过渡的设计方法。在桥台后一 定范围内,采用刚度较大的级配碎石作为过渡 填筑段,与路堤相接处采用1:2的斜坡过渡。
双线标准路堤横断面(350km/h)
变形模量Ev2(MPa)
高速铁路路基技术特点
路基按照结构物设计,填料和压实标准 高; 严格控制路基变形和工后沉降; 路桥及横向构筑物间设置过渡段; 路基动态设计; 地基处理类型多。
路基填筑质量标准高
基床表层采用级配碎石强化结构,K30 、 Ev2、Evd、n 指标满足设计要求。 基床底层采用A、B组或改良土填筑, K30、Ev2、K 、n满足设计要求 基床以下路基采用A、B、C组或改良土 填筑, K30、Ev2、K 、n满足设计要求
土的三相组成
土的基本物理指标
天然密度
m v
土粒比重
ms Gs vs (4C )
反映土的松密程度指标
孔隙比
VV e VS
孔隙率
VV n V
反映土的含水程度指标
含水率
m ms
土的饱和度
V Sr VV
土的最大干密度和最优含水率
最少的机械功获得最大压实度; 轻型击实试验; 重型击实试验; 灰土击实试验。
我国高速铁路路基面临的主要问题
技术标准的修改和完善; 车-轨-路系统合理匹配理论研究; 设计、施工面临的几个问题; 新技术的应用。
技术标准的修改和完善
路基工后沉降控制标准; 无砟轨道路基基床厚度200-350km/h没 有区分确定; 地基刚度的标准,直接关系到地基处理 的成本。
0.4
二八灰土垫层 厚度0.3m
郑西客运专线试验段
地基处理 路基填筑 堆载预压与沉降观测 铁路路基科研
地基处理前检测
机械钻孔取样 静力触探 雷达测试 面波测试 荷载板试验
(1)地貌单元属渭河II级阶地,勘探 深度内地基土由砂质黄土、黑垆土、 古土壤、粉质粘土及砂层组成; (2)试验场地属自重湿陷性黄土场 地,湿陷等级为IV级(很严重); (3)地基处理深度范围内天然含水 率为12.2 ~ 20.4%,击实最大干密度 为1.74~1.76g/cm3,最优含水率为 15.5~17%(轻型击实); (4)地下水位埋深为40.50m,地基 处理可不考虑其影响
路基动态设计
为了有效地控制工后沉降量及沉降速率,需要 开展路基动态设计。 根据沉降观测资料及沉降发展趋势、工期要求 等,采取相应的措施,如调整预压土高度,确 定预压土卸荷时间,以及铺轨前对路基进行评 估及合理确定铺轨时间,以确保铺轨后路基工 后沉降量与沉降速率控制在允许范围内。路基 动态设计的成果可以为后续的轨道工程打下了 良好的基础。