高频同步整流BUCK变换器的设计与仿真毕业设计(论文) 精品推荐
Buck变换器建模和仿真

Buck 变换器的建模与仿真(一)Buck 变换器的性能指标带有反馈控制回路Buck 变换器的电路图如图(1-1)所示,我们假定其工作在CCM 方式。
其基本电路参数为: 输入电压g V =2030V 输出电压V =12V 输出纹波125mV (1%)电压跌落250mV (最大,2003out I mA A =) 开关频率s f =100kHz 最大输出电流4A输入电流最大纹波0.4A(峰峰值)图(1-1)带有反馈控制回路的直流斩波电路(二)Buck 变换器参数的选择 1. 滤波电感0L 的选择 由diu Ldt=得 6.max 0.max ()(3012)410180H 0.14in out on out V V T dt L u di I μδ--⨯-⨯⨯====⨯⨯这里我们取0L 为180H μ 最大负载时的峰值电流为.max .max 40.054 4.22peak out out I I I A δ=+=+⨯=2. 滤波电容0C 的选择 由dui cdt=得 其向量形式为I j cU ω=I jcUω=所以需要穿越频率的带宽为2outc out outI f C V π∆=∆如果假定穿越频率为10kHz250892.8out c out V mZ m I ∆===Ω∆ 原则上为了留有设计裕量,电阻的阻抗按13计算阻抗选取 根据上面计算结果,我们可以在Rubycon 公司的ZL 系列,16V 中选取以下规格:C=330F μ,760C rms I mA =@105A C =︒ ,72ESR low R m =Ω@20A T C =︒ ,220ESR low R m =Ω@10A T C =-︒电容ESR 的阻抗应小于输出电容在穿越频率处的阻抗11482 6.2810330c out m f C k π==Ω⨯⨯86c Z m ≤==Ω设计余量不足,我们重新选ZL 系列中C=1000F μ,同样的过程,我们可以得出满足条件。
(完整word版)Buck变换器的设计与仿真

目录1 Buck变换器技术........................................................................................................................... - 1 -1.1 Buck变换器基本工作原理............................................................................................... - 1 -1.2 Buck变换器工作模态分析............................................................................................... - 2 -1。
3 Buck变化器外特性........................................................................................................ - 3 -2 Buck变换器参数设计.................................................................................................................. - 5 -2.1 Buck变换器性能指标....................................................................................................... - 5 -2。
2 Buck变换器主电路设计................................................................................................ - 5 -2.2。
Buck_Boost变换器的设计及仿真

1 概述直流-直流变流电路的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路。
其中,直接直流变流电路又叫斩波电路,它包括降压斩波电路(Buck Chopper)、升压斩波电路(Boost Chopper)、升降压斩波电路(Buck/Boost)、Cuk斩波电路、Sepic斩波电路和Zeta斩波电路共六种基本斩波电路。
Buck/Boost升降压斩波电路同时具有Buck斩波电路和Boost斩波电路的特点,能对直流电直接进行降压或者升压变换,应用广泛。
本文将对Buck/Boost升降压斩波电路进行详细的分析。
RVDRVDRVD 2 主电路拓扑和控制方式2.1 Buck/Boost 主电路的构成Buck/Boost 变换器的主电路与Buck 或Boost 变换器所用元器件相同,也由开关管、二极管、电感、电容等构成,如图1所示。
与Buck 和Boost 不同的是电感L 在中间,不在输出端也不在输入端,且输出电压极性与输入电压极性相反。
开关管也采用PWM 控制方式。
Buck/Boost 变换器也由电感电流连续和断续两种工作方式,但在实际应用中,往往要求电流不断续,即电流连续,当电路中电感值足够大时,就能使得电路工作在电流连续的状态下。
因此为了分析方便,现假设电感足够大,则在一个周期内电流连续。
图2-1 Buck/Boost 主电路结构图电流连续时有两个开关模态,即V 导通时的模态1,等效电路见图2(a );V 关断时的模态2,等效电路见图2(b )。
(a )V 导通(b )V 关断,VD 续流图2-2 Buck/Boost 不同模态等效电路ttttt2.2 电感电流连续时的工作原理及基本关系电感电流连续工作时的工作主要波形见图2-3。
图2-3电感电流连续时的主要波形为了方便分析,假设电感、电容的值足够大,并且忽略电感的寄生电容。
电感电流连续工作时,Buck/Boost 变换器有V 导通和V 关断两种工作模态。
毕业设计基于Buck结构的DCDC转换器建模与仿真设计

目录摘要 (1)Abstract (2)1 绪论 (3)1.1电力电子技术的概述 (3)1.2开关电源的研究现状和发展趋势 (3)1.3 Buck斩波电路的研究意义 (5)1.4 论文的主要研究容 (6)2 Buck斩波电路的原理 (7)2.1 Buck变换器的连续导电模式 (8)2.2 Buck变换器电感电流不连续的导电模式 (10)2.3 电感电流连续的临界条件 (11)2.4 纹波电压ΔU O及电容计算 (12)2.5参数的计算 (12)3 Buck斩波电路的建模 (14)3.1开关电路的建模 (14)3.1.1理想开关模型 (14)3.1.2状态空间平均模型 (15)3.1.3小信号模型 (17)3.2系统的传递函数 (18)3.2.1降压斩波电路的传递函数 (18)3.2.2 PWM比较器的比较函数 (20)3.2.3调节器的传递函数 (21)4 控制电路的设计 (22)4.1电压模式控制电路的设计 (22)4.1.1电压调节器的结构形式 (22)4.1.2电压调节器的参数 (23)4. 2 控制电路结构 (24)5 Buck斩波电路的控制仿真研究 (25)5.1 Matlab简介 (25)5.2 Buck斩波电路主电路的仿真 (25)5.3 Buck斩波电路的PID控制算法的仿真 (27)6全文总结及展望 (30)参考文献 (31)附录1:主电路仿真模型 (32)附录2:主电路仿真波形图 (33)附录3:PID仿真图 (34)致 (35)摘要随着电子产品与人们工作和生活的关系日益密切,便携式和待机时间长的电子产品越来越受到人们的青睐,它们对电源的要求也越来越高。
DC-DC开关电源芯片是一种正在快速发展的功率集成电路,具有集度高,综合性能好等特点,具有很好的市场前景和研究价值。
论文在研究开关电源技术发展现状和前景的基础上,设计一种Buck型DC-DC 开关电源的设计。
首先对主电路的工作原理和系统构成进行了研究和分析,包括工作过程中各个元器件的工作状态和工作特点。
【毕业设计】基于Buck结构的DCDC转换器建模与仿真

【毕业设计】基于Buck结构的DCDC转换器建模与仿真目录摘要 (1)Abstract (2)1 绪论 (3)1.1电力电子技术的概述 (3)1.2开关电源的研究现状和发展趋势 (4)1.3 Buck斩波电路的研究意义 (6)1.4 论文的主要研究内容 (6)2 Buck斩波电路的原理 (8)2.1 Buck变换器的连续导电模式 (9)2.2 Buck变换器电感电流不连续的导电模式 (12)2.3 电感电流连续的临界条件 (13)2.4 纹波电压ΔU O及电容计算142.5参数的计算 (14)3 Buck斩波电路的建模 (17)3.1开关电路的建模 (17)3.1.1理想开关模型 (17)3.1.2状态空间平均模型 (19)3.1.3小信号模型 (20)3.2系统的传递函数 (22)3.2.1降压斩波电路的传递函数 (22)3.2.2 PWM比较器的比较函数 (24)3.2.3调节器的传递函数 (25)4 控制电路的设计 (27)4.1电压模式控制电路的设计 (27)4.1.1电压调节器的结构形式 (27)4.1.2电压调节器的参数 (28)4. 2 控制电路结构 (29)5 Buck斩波电路的控制仿真研究 (30)5.1 Matlab简介 (30)5.2 Buck斩波电路主电路的仿真 (30)5.3 Buck斩波电路的PID控制算法的仿真 (32)6全文总结及展望 (35)参考文献 (36)附录1:主电路仿真模型 (37)附录2:主电路仿真波形图 (39)附录3:PID仿真图 (40)致谢 (41)摘要随着电子产品与人们工作和生活的关系日益密切,便携式和待机时间长的电子产品越来越受到人们的青睐,它们对电源的要求也越来越高。
DC-DC开关电源芯片是一种正在快速发展的功率集成电路,具有集度高,综合性能好等特点,具有很好的市场前景和研究价值。
论文在研究开关电源技术发展现状和前景的基础上,设计一种Buck型DC-DC开关电源的设计。
Buck_Boost变换器的设计及仿真

Buck_Boost变换器的设计及仿真Buck-Boost变换器是一种可以在同一电路内同时实现升压和降压的变换器。
这种变换器可以用于多种不同的应用,主要用于对电压进行放大和缩小,以达到正确的电压水平。
它总是能够将输入电压提高到所需的输出电压。
在本文中,将介绍Buck-Boost变换器的设计及其功能仿真工作。
Buck-Boost变换器的主要部件包括电感器,可变阻器,开关,振荡器和控制器。
电感器的设计是为了提供电流,形成负反馈环。
可变阻器的设计可以改变电路的过载,从而实现电流的调整。
开关的设计是为了实现升压和降压,允许电感器和可变阻器之间的能量交换。
振荡器的设计是为了控制电路内部的电流,以保证开关的实时响应。
通过控制器,可以实现输入和输出电压之间的转换,从而达到预期的电压水平。
为了对Buck-Boost变换器进行仿真,先进行输入,输出和负载之间的建模。
输入模型包括输入电压和要求的输出电压,其中输入电压可以在建模中任意调整。
负载建模通常是一个电阻和一个电容的组合。
输出模型则定义了电路的输出功率和输出电压水平。
接下来,可以对电感器和可变阻器进行建模。
由于电感器是一个电流源,故其建模需要考虑电流大小和电压偏移。
可变阻器建模则需要考虑其阻值和电压偏移。
最后,可以利用仿真软件进行仿真,探究Buck-Boost变换器的性能。
可以仿真该电路的输入和输出电压以及电流,从而分析改变输入电压对系统的影响。
此外,还可以分析负载的影响,比如负载变大时电路的输出能力会怎样受到影响。
这些仿真结果都能为设计者提供宝贵的启发,为确保电路的正常工作奠定基础。
Buck-Boost变化器是一种功能强大的电路,可以改变输入电压并生成预期的输出电压水平。
本文介绍了其设计原理和仿真过程,为设计者提供了宝贵的参考。
未来的研究将会探究更多的变换器类型,继续提高电路的性能和功效。
Buck变换器毕业论文
Buck变换器毕业论文基于ARM的Buck变换器制作摘要电子技术近年来发展迅猛,直流开关电源广泛应用于个人计算机、电信通信、电力系统、航空航天和生物医疗等领域,对开关电源的性能、功率密度、工作效率和可靠性都提出了更高的要求。
BUCK变换器在电池供电的计算机,消费类产品等需多电源供电的电子系统中有着广泛的应用,小型化成为必然的要求。
本文对Buck变换器的整体电路和硬件电路进行了讨论。
首先,对Buck变换器的背景,发展状况进行阐述。
其次,对Buck变换器的硬件设计进行了介绍,STM32处理器的简介和内部主要结构介绍,还有对变换器中的主要电路进行介绍,功率及驱动电路、电源电路、保护电路、软开关电路及控制、电流传感器的电路原理。
再次,对整体电路进行一些简单的描述。
最后,在附录中,本文还将给出一些必要的系统设计资料,供参考之用。
关键词:Buck变换器,ST,M32处理器,硬件电路,整体电路Based on the arm of the changes made a buckAbstractElectronic technology development in recent years,the dc power supply has the wide application in personal computers and telecom communications,the electrical system,air space and biological and medical fields,switching power supplies of power,performance, efficiency and reliability have made a higher demands.Buck change in the battery power of computer,and many consumer products have the power supply of electronic systems are widely used,advocate small-size become inevitable.To buck this transformation of the electrical circuits and hardware circuit discussed.First,buck to change the background and development in the paper.Secondly,the buck from the hardware design,stm32processors,and internal structure,and to introduce major changes in the main circuits to introduce,power and driven circuit,power supply circuits,the protection circuit and the electrical and control,the principle of the circuit.current sensors.Thirdly,the circuit to make some brief description.Finally,in the annex,this will also give some necessary system design,data for reference only.Key words:Buck changes,hardware circuit stm32processor,the circuit目录1绪论 (1)1.1课题背景介绍 (1)1.2课题研究状况 (1)1.3课题研究方法 (2)2STM32处理器 (3)2.1STM32处理器介绍 (3)2.2高级控制定时器(TIM1) (4)2.2.1简介 (4)2.2.2主要特性 (4)2.3通用定时器(TIMx) (5)2.3.1概述 (5)2.3.2主要特性 (5)2.3.3功能描述 (6)2.4模拟/数字转换(ADC) (7)2.4.1介绍 (7)2.4.2主要特征 (7)2.4.3引脚描述 (8)2.4.4功能描述 (9)3系统硬件设计 (11)3.1Buck电路的开关过程分析 (11)3.2功率及驱动电路设计 (12)3.2.1IR2110简介 (12)3.2.2IR2110内部结构和特点 (12)3.3电源电路及保护电路设计 (13)3.3.1电源电路设计 (14)3.3.2保护电路设计 (14)3.4软开关电路及控制电路设计 (18)3.5电流传感器的电路设计 (21)3.5.1电流传感器的介绍 (21)3.5.2工作原理 (21)3.5.3模拟霍尔传感器SS495介绍 (22)结论 (25)致谢 (26)参考文献 (27)附录Buck变换器硬件电路图 (28)1绪论1.1课题背景介绍开关电源技术的发展、应用领域的扩大,别是近几年便携式电子产品的飞速发展,使高效率、高可靠性、高精度、高功率密度成为开关电源的发展方向,对集成电路设计提出了挑战。
电力电子课程设计 Buck变换器设计
电力电子技术课程设计 题 目 Buck变换器设计 学 院专 业年 级学 号姓 名同 组 人指 导 教 师成 绩年 月 日1 1 引言引言 ................................................................................................................... 1 2 PWM 控制 (1) (1) (2)3 3 开环控制回路开环控制回路 (5)................................................................................................................................... 5 ..................................................................................................................... 6 . (6)4 4 主电路主电路 (6) (7) (7) (8)5 5 闭环控制回路闭环控制回路 (8) (8) (9)6 6 总结总结 ................................................................................................................. 12 参考文献 . (14)Buck变换器设计1 引言目前,各种资料都显示,同步整流技术是近几年研究的热点,主要应用于低压大电流领域,其目的是为了解决续流管的导通损耗问题。
采用一般的二极管续流,其导通电阻较大,应用在大电流场合时,损耗很大。
用导通电阻非常小的MOS管代替二极管,可以解决损耗问题,但同时对驱动电路提出了更高的要求[1]。
(完整word版)buck-boost变换器的建模与仿真
题目:Vg 1.5VQ135m Ω100uH100uFR5ΩV D0.5V图1 buck-boost 变换器电路图一、开关模型的建模与仿真图2 buck-boost 变换器的开关模型占空比由0.806变化到0.7的电感电流波形占空比由0.806变化到0.7的电容电压波形图3 buck-boost 变换器的开关模型的仿真二、 大信号模型与仿真1、 开关导通时:Vg 1.5VR on35m ΩV-图4 开关导通时的工作状态此时,电感电压和电容电流方程:(t)v (t)v (t)(t)(t)(t)(t)L g on c di L i R dt dv v i C dt R ⎧==-⎪⎪⎨⎪==-⎪⎩2、 开关断开时:100uH100uFVi c+-0.5Vi图5 开关断开时的工作状态此时,电感电压和电容电流方程:(t)v (t)(t)(t)(t)(t)(t)L D c di L V v dt dv v i C i dt R ⎧==--⎪⎪⎨⎪==-⎪⎩3、平均方程电源电压、电感电流、电容电压变化的不大均为低频信号,则(t)(t)g g v v = ;(t)(t)i i =;v(t)v(t)=又因为:(t)v (t)L d i L dt= (t)(t)c d v i Cdt= 则有,电感电压平均方程:()()'v (t)d(t)v (t)(t)+d (t)(t)L g on D i R V v =---电容电流平均方程:''(t)(t)(t)(t)d(t)()d (t)((t))=d (t)(t)c v v v i i i R R R=-+--+ 输入电流平均方程:g (t)d(t)(t)i i =4、大信号模型:()()''g (t)d(t)v (t)(t)+d (t)(t)d (t)(t)=d (t)(t)(t)d(t)(t)g on D d i L i R V v dt v v C i dt R i i ⎧=---⎪⎪⎪-+⎨⎪⎪=⎪⎩由方程可得到三个等效电路:-+-+-+g (t)i v (t)g (t)v D (t)i 'D (t)i d (t)v Cdt(t)d i Ldt'(0.5D )VonDR '(t)D v v (t)g D 图6 buck-boost 变换器的大信号模型的等效电路大信号模型的仿真电路:图7 大信号模型仿真电路图大信号模型的仿真波形:占空比随时间变化的波形电容电压随占空比变化的波形图8 大信号模型仿真波形图三、 小信号模型假设,gv (t)=V +v (t)d(t)=D+d(t)(t)=(t)v(t)=V+v(t)(t)=(t)g g g g g i I i i I i ΛΛΛΛΛ⎧⎪⎪⎪⎪⎨+⎪⎪⎪⎪+⎩ 且各变量的扰动值远小于其稳态值。
BUCK变换器的研究与设计解决方案
BUCK变换器的研究与设计1总体分析与解决方案1.1问题的提出与简述电力电子及开关电源技术因应用需求不断向前发展,新技术的出现又会使许多应用产品更新换代,还会开拓更多更新的应用领域。
开关电源高频化、模块化、数字化、绿色化等的实现,将标志着这些技术的成熟,实现高效率用电和高品质用电相结合。
伴随着人们对开关电源的进一步升级,低电压,大电流和高效率的开关电源成为研究趋势。
电子设备的小型化和低成本化使电源向轻,薄,小和高效率方向发展。
开关电源因其体积小,重量轻和效率高的优点而在各种电子信息设备中得到广泛的应用。
直流斩波电路(DC Chopper)的功能是将直流电变为另一固定电压或可调电压的直流电,也称为直接直流—直流变换器(DC/DC Converter)。
直流斩波电路一般是指直接将直流电变为另一直流电的情况,不包括直流—交流—直流的情况,直流斩波电路的种类较多,包括6种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波电路,Sepic斩波电路和Zeta斩波电路。
利用不同的基本斩波电路进行组合,可构成复合斩波电路,如电流可逆斩波电路,桥式可逆斩波电路等,利用相同结构的基本斩波电路进行组合,可构成多相多重斩波电路。
其中IGBT降压斩波电路就是直流斩波中最基本的一种电路,是用IGBT作为全控型器件的降压斩波电路,用于直流到直流的降压变换。
IGBT是MOSFET与GTR的复合器件。
它既有MOSFET易驱动的特点,输入阻抗高,又具有功率晶体管电压、电流容量大等优点。
其频率特性介于MOSFET与功率晶体管之间,可正常工作于几十千赫兹频率范围内,故在较高频率的大、中功率应用中占据了主导地位。
所以用IGBT作为全控型器件的降压斩波电路就有了IGBT易驱动,电压、电流容量大的优点,因此发展很快。
直流降压斩波电路主要分为三个部分,分别为主电路模块,控制电路模块,驱动电路模块,除了上述主要模块之外,还必须考虑电路中电力电子器件的保护,以及控制电路与主电路的电气隔离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编号XXXX大学毕业设计题目高频同步整流BUCK变换器的设计与仿真毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:XX大学本科毕业设计(论文)诚信承诺书本人郑重声明:所呈交的毕业设计(论文)(题目:)是本人在导师的指导下独立进行研究所取得的成果。
尽本人所知,除了毕业设计(论文)中特别加以标注引用的内容外,本毕业设计(论文)不包含任何其他个人或集体已经发表或撰写的成果作品。
作者签名:年月日(学号):高频同步整流BUCK变换器的设计与仿真摘要便携式电子产品的广泛应用,推动了开关电源技术的迅速发展。
因为开关电源具有体积小、重量轻以及功率密度和输出效率高等诸多优点,己经逐渐取代了传统的线性电源,随之成为电源芯片中的主流产品。
随着开关电源技术应用领域的扩大,对开关电源的要求也日益提高,高效率、高可靠性以及高功率密度成为趋势,这就对开关电源芯片设计提出了新的挑战。
本文首先概述了现有开关电源设计技术及其发展趋势,接着介绍了BUCK变换器的电路结构、工作原理及控制原理。
最后进行了芯片系统的仿真研究,其中首先介绍了所选芯片的性能特点及其经典电路图,然后利用LTSPICE进行了仿真验证。
关键词:开关电源,BUCK变换器,同步整流,LTSPICE仿真The Design and Simulation of the High-Frequency Synchronous BUCK ConvertersAbstractThe widely use in portable electronic products promoted the rapid development of switching power supply technology. The switching power converters are increasingly replacing traditional linear power supply due to its small space, light weight, low power dissipation, high efficiency, adoption and broad applicability, etc. As the application field expanded, switching power converters have to become more efficient and more reliable with high power density to meet such a stringent requirement. The article introduces the status of switching power converters and its development trend, then shows the circuit of BUCK converters, and then analyzes its working principle and control theory. Finally, the simulation of the BUCK chip was carried out. This section firstly introduces the performance characteristics of the selected chip and its classic circuit, then shows the results of the simulation.Key Words:Switching power supply; BUCK converter; Synchronous rectification; Simulation based on LTSPICE目录摘要 (ⅰ)Abstract (ⅱ)第一章引言 (1)1.1 课题的背景和研究意义 (1)1.2 开关电源技术研究现状 (2)1.2.1 半导体功率器件 (2)1.2.2 软开关技术 (2)1.2.3 同步整流技术 (3)1.2.4 电压调节模块 (3)1.3 开关电源技术发展趋势 (4)1.3.1 高效率 (4)1.3.2 低压大电流 (4)1.3.3 智能化设计 (5)1.3.4 标准化工作 (5)1.4 论文结构和主要内容 (5)第二章同步整流BUCK变换器原理 (7)2.1 BUKC变换器主电路结构和工作原理 (7)2.2 BUKC变换器稳态分析 (8)2.2.1 连续导通模式(CCM) (8)2.2.2 不连续导通模式(DCM) (11)2.2.3 CCM和DCM的临界条件 (14)2.3 BUKC变换器控制原理 (15)2.3.1 脉冲宽度调节(PWM) (16)2.3.2 脉冲频率调节(PFM) (18)第三章降压型开关电源芯片的仿真研究 (20)3.1 LTC3854特点及典型应用电路 (20)3.2 仿真及结果分析 (21)第四章结语 (24)参考文献 (25)致谢 (26)第一章引言1.1 课题的背景和研究意义随着电子技术的快速发展,电子设备的种类越来越多,电子设备与人们的工作、生活的关系也日益密切。
任何电子设备都离不开可靠的电源,它们对电源的要求也越来越高。
传统的晶体管串联调整稳压电源是连续控制的线性稳压电源。
这种传统稳压技术比较成熟,并且已有大量集成化的线性稳压电源模块,具有稳定性能好、输出纹波电压小、可靠性高等优点。
但由于调整管静态损耗大,需要安装一个很大的散热器给它散热。
而且由于变压器工作在50 Hz的工频上,所以其重量较大。
又因为调整管工作在线性放大状态,为了保证输出电压稳定,其集电极与发射极之间需承受较大的电压差,导致调整管功耗较大,电源效率很低,一般只有45 %左右[1]。
受这些缺点的限制,线性稳压电源很难满足现代电子设备发展的要求。
20世纪50年代,美国宇航局以小型化、重量轻为目标,开发了开关电源。
经过近半个世纪的发展,开关电源因具有体积小、重量轻、效率高、发热量低、性能稳定等优点而逐渐取代线性稳压电源并得到了广泛应用[2],各种电池供电的电子产品如照相机、摄像机、录像机、个人数字助理、手机、手提电脑都需要DC/DC 变换器等开关电源芯片[3]。
20世纪80年代,计算机全面实现开关电源化,率先完成计算机的电源换代。
20世纪90年代,开关电源在电子、电气设备、家电领域得到了广泛的应用,开关电源技术进入快速发展时期[4]。
对于非隔离的DC/DC开关电源,按照电路功能划分,有降压式(BUCK)、升压式(BOOST),还有升降压式(BUCK-BOOST)等。
其中品种最多,发展最快的当属降压式(BUCK)。
开关电源技术于20世纪80年代引入我国,随着计算机、通讯、汽车等行业的迅速发展,我国开关电源市场不断增长,开关电源控制器芯片的研究已成为国内功率电子学领域中颇受关注的热点。
我国目前能源紧缺,而电源行业又是一个与能源消耗密切相关的行业,因此我们在设计DC/DC开关电源产品时,转换效率必须作为一个重要的指标加以考虑。
尤其是随着采用3.6 V锂离子电池作为电源的消费类电子产品市场不断扩大,且功能和性能变得更多和更高,对适用于这类产品的BUCK变换器的性能提出了更高的要求。
因此研究BUCK变换器的性能具有重要的理论和现实意义。
1.2开关电源技术研究现状1.2.1 半导体功率器件开关电源变换器最早出现在二十世纪五十年代,只有到了七十年代,随着现代功率半导体器件发展及其稳定性提高,开关电源变换器才得以广泛应用。
功率半导体器件仍然是电力电子技术发展的关键,电力电子技术的进步必须依靠不断推出的新型电力电子器件。
功率MOSFET管因快速性较好,驱动功率小,成本低,易适用于中小功率的场合而得到广泛应用[5][6]。
但是MOSFET只能应用于中小功率产品,为了降低通态电阻,美国IR公司采用提高单位面积内的原胞个数的方法。
如其开发的一种HEXFET场效应管,其沟槽(Trench)原胞密度已达每平方英寸1.12亿个的世界最高水平,通态电阻R可达3 mΩ。
功率MOSFET,500 V TO220封装的HEXFET自1996年以来,其通态电阻以每年50 %的速度下降。
IR公司还开发了一种低栅极电荷(Qg)的HEXFET,使开关速度更快,同时兼顾通态电阻和栅极电荷两者同时降低。
对于肖特基二极管的开发,最近利用Trench结构有望出现压降更小的肖特基二极管,称作TMBS沟槽MOS势垒肖特基,而有可能在极低电源电压应用中与同步整流的MOSFET竞争。
1.2.2 软开关技术脉宽调制(PWM)开关电源按硬开关模式工作,开关过程中,开关器件的电压和电流波形有交叠,因而引起较大的开关损耗。
PWM开关电源高频化可以缩小体积、重量,但频率越高,开关损耗就越大。
为此必须研究开关电压和电流波形不交叠的技术,即所谓的零电压开关(ZVS)和零电流开关(ZCS)技术,或称为软开关技术(相对于PWM 硬开关技术而言)[7]。
1994年2月,IEEE电力电子学会组织会议曾经指出,高功率密度DC-DC零电压开关变换器和开关器件性能、无源元件性能以及封装技术都有很大关系,并预测在不久的将来,在保证可靠性增加一倍的基础上,功率变换器成本将降低一半,功率密度可提高一倍。
现在,达到这一目标的开关变换器产品已经出现。
1.2.3 同步整流技术对于低电压、大电流输出的软开关变换器,进一步提高其效率的措施是设法降低开关的通态损耗。
例如同步整流(SR)技术,即以功率MOS管反接作为整流用开关二极管,代替肖特基二极管(SBD),可降低管压降,从而提高电路效率。
在低电压、大电流输出的情况下,整流二极管的导通压降较高,输出端整流管的损耗突出。
快恢复二极管(FRD)或超快恢复二极管(SRD)可达1.0 V~1.2 V,即使采用低压降的肖特基二极管(SBD),也会产生大约0.6 V的压降,这就导致整流损耗增大,电源效率降低。