统计第五章1

合集下载

统计质量管理第五章 统计过程控制(1)

统计质量管理第五章 统计过程控制(1)
❖ 管理者采用一个培训项目,让专职司机给员工进 行培训,解决问题。
❖ 这两天的变异原因消除后,失控点会从数据中消除。 ❖ 点的消除改变了过程的平均值和标准差。 ❖ 同时,中心线,上下控制限和各分区都会产生变化。
p15/428000.055
UCL(0p.)05350.0505.9450.123
100
LCL(0p.)0-5350.050.59450.0103.000
100
Number Cracked 的 P 控制图
0.14
0.12
+3SL=0.1234
0.10
+2SL=0.1006
比率
0.08
+1SL=0.0778
0.06
_ P=0.055
0.04 0.02 0.00
-1SL=0.0322
-2SL=0.0094 -3SL=0
❖ 如果一个过程的某个特征值是5%,拥有20个单位 的子组的平均计点数是1。而且每一个子组有一个 整数点,产出比例增加5%,那么中心线是0.05, 控制下限是0,控制上限是0.196。
❖ 子组的比例值只有四种情况(0,0.05,0.1,0.15) 是落在控制限以内。利用之前所述之方法寻找失 控点则是毫无意义的。
1
4
7
10
13 16 19 22 25 28
样本
❖ 通过改变过程,消除失控点,重新计算控制限和 区域界限,此时,最初判断为一般变异的点现在 可能会变成缺乏控制的状态。
❖ 这种现象发生时,需要再次进行评估,并消除变 异点。
❖ 但是,这种做法重复得多会产生两个问题,一是 数据库会因此萎缩,控制图的建立会基于越来越 少的子组,不能很好地描述原来的过程。

第五章思考题参考答案 1.什么是总量指标它在统计工作中有何重要作用

第五章思考题参考答案 1.什么是总量指标它在统计工作中有何重要作用

第五章思考题参考答案1.什么是总量指标?它在统计工作中有何重要作用?答:总量指标是反映社会经济现象总体在一定时间、地点、条件下的总规模、总水平或工作总量的统计指标。

总量指标是认识社会经济现象的起点;总量指标是进行经济管理的主要依据;总量指标是基础性指标。

2.总体单位总量和总体标志总量有什么区别?答:总体单位总量指总体单位数之和,即总体本身的规模大小。

总体标志总量是指总体各单位就某一数量标志的标志值之和。

总体单位总量与总体标志总量的相对性。

一个总量指标究竟属于总体单位总量还是总体标志总量,应该随着研究目的不同和研究对象的变化而定。

3.时期指标和时点指标如何区分?答:不同时期指标数值可以累计相加,各个时点指标不具有累加性,也就是说数值相加没有意义;时期指标数值的大小与其计算时期长短有直接关系,时点指标的大小与登记时间间隔长短没有直接关系;时期指标的数值需要连续登记取得,时点指标的数值一般是间断统计取得的。

4.什么是实物指标?有什么作用?答:实物单位是根据事物的自然属性和特点而规定的计量单位。

实物指标是反映国情、国力和研究各行业投入、产出、资源条件、生活环境、经济活动过程等基础的指标。

它能具体反映社会经济现象实际存在的实物数量,体现具体的使用价值量。

5.什么是价值指标?有什么作用?答:以货币作为价值尺度来计量社会物质财富和劳动成果的计量单位。

以货币单位来度量事物的数量,使不能直接相加的经济现象的数量过渡到可以加总,用以综合地说明具有不同使用价值的经济现象的总规模、总水平和总速度。

由于价值指标具有广泛的综合性,所以它在统计核算有广泛的使用途径。

6.计算总量指标有哪些要求?答:明确总量指标的涵义、计算范围;注意总量指标计算时现象的同质性;要有统一的计量单位。

第六章 相思考题参考答案1.什么是相对指标?它有哪几种表现形式?有什么作用?答:相对指标又称相对数,它是将两个有联系的统计指标数值对比求得的比值,是用来反映现象的发展程度、结构、强度、普通程度或比例关系。

2023版新教材高中数学第五章统计与概率5-1统计-数据的直观表示课时作业新人教B版必修第二册

2023版新教材高中数学第五章统计与概率5-1统计-数据的直观表示课时作业新人教B版必修第二册

5.1.3 数据的直观表示必备知识基础练进阶训练第一层1.下列四个图中,用来表示不同品种的奶牛的平均产奶量最为合适的是( )2.如图是两户居民家庭全年各项支出的统计图.根据统计图,下列对两户居民家庭教育支出占全年总支出的百分比作出的判断中,正确的是( )A.甲户比乙户大 B.乙户比甲户大C.甲、乙两户一样大 D.无法确定哪一户大3.端午节期间,某市一周每天最高气温(单位:℃)情况如图所示,则这组表示最高气温数据的中位数是( )A.22 B.24C.25 D.274.甲、乙两名同学12次考试中数学成绩的茎叶图如图所示,则下列说法正确的是( )A.甲同学比乙同学发挥稳定,且平均成绩也比乙同学高B.甲同学比乙同学发挥稳定,但平均成绩比乙同学低C.乙同学比甲同学发挥稳定,且平均成绩也比甲同学高D.乙同学比甲同学发挥稳定,但平均成绩比甲同学低5.某市共有5 000名高三学生参加联考,为了了解这些学生对数学知识的掌握情况,现从中随机抽出若干名学生在这次测试中的数学成绩,制成如下频率分布表:分组频数频率[80,90)①②[90,100)0.050[100,110)0.200[110,120)360.300[120,130)0.275[130,140)12③[140,150]0.050合计④根据上面的频率分布表,可知①处的数值为________,②处的数值为________.6.某幼儿园根据部分同年龄段女童的身高数据绘制了频率分布直方图,其中身高的变化范围是[96,106](单位:厘米),样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106].(1)求出x的值;(2)已知样本中身高小于100厘米的人数是36,求出样本总量N的数值;(3)根据频率分布直方图提供的数据,求出样本中身高大于或等于98厘米并且小于104厘米的学生数.关键能力综合练进阶训练第二层7.(多选)某班数学测试成绩及班级平均分关系的图如下所示.其中说法正确的是( )A.王伟同学的数学学习成绩高于班级平均水平,且较稳定B.张诚同学的数学学习成绩波动最小C.赵磊同学的数学学习成绩低于班级平均水平D.在6次测验中,每一次成绩都是王伟第1,张诚第2,赵磊第38.如图所示的是民航部门统计的某年春运期间12个城市售出的往返机票的平均价格以及相比上年同期变化幅度的数据统计图,根据统计图判断下面叙述不正确的是( )A.深圳的变化幅度最小,北京的平均价格最高B.深圳和厦门的平均价格同去年相比有所下降C.平均价格从高到低居于前三位的城市为北京、深圳、广州D.平均价格的涨幅从高到低居于前三位的城市为天津、西安、厦门9.(多选)某调查机构对某地互联网行业进行了调查统计,得到整个互联网行业从业者的年龄分布扇形图、90后从事互联网行业的岗位分布条形图如图,则下列结论中一定正确的是( )A.互联网行业从业者中90后占一半以上B.互联网行业从事技术岗位的人数超过总人数的20%C.互联网行业从事运营岗位的人数90后比80前多D.互联网行业从事运营岗位的人数90后比80后多10.已知甲、乙两组数可分别用图(1)、(2)表示,估计这两组数的平均数的相对大小是x甲______x乙,方差的相对大小是s________s(填“>”或“<”或“=”).11.“校园安全”受到全社会的广泛关注,某校政教处对部分学生及家长就校园安全知识的了解程度,进行了随机抽样调查,并绘制成如图所示的两幅统计图,请根据统计图中的信息,解答下列问题:(1)参与调查的学生及家长共有________人;(2)在扇形统计图中,“基本了解”所对应的圆心角的度数是________;(3)在条形统计图中,“非常了解”所对应的学生有________人;(4)若全校有1 200名学生,请你估计对“校园安全”知识达到“非常了解”和“基本了解”的学生共有________人.12.某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图的可见部分如图所示,根据图中的信息,可确定被抽测的人数为________,分数在[90,100]内的人数为_ _______.13.某车站在春运期间为了了解旅客购票情况,随机抽样调查了100名旅客从开始在售票窗口排队到购到车票所用的时间t(以下简称为购票用时,单位为min),下面是这次调查统计分析得到的频率分布表和频率分布直方图:分组频数频率一组0≤t<500二组5≤t<10100.10三组10≤t<1510②四组15≤t<20①0.50五组20≤t≤25300.30合计100 1.00解答下列问题:(1)这次抽样的样本容量是多少?(2)在表中填写出缺失的数据并补全频率分布直方图;(3)旅客购票用时的平均数可能落在哪一组?核心素养升级练进阶训练第三层14.(多选)给出如图所示的三幅图:则下列说法中,正确的有( )A.从折线图能看出世界人口的变化情况B.2050年非洲人口将达到大约15亿C.2050年亚洲人口比其他各洲人口的总和还要多D.从1957年到2050年各洲中北美洲人口增长速度最慢15.随着移动互联网的发展,与餐饮美食相关的手机应用软件层出不穷.现从使用A 和B两款订餐软件的商家中分别随机抽取50个商家,对它们的“平均送达时间”进行统计,得到频率分布直方图如图所示.(1)试估计使用A款订餐软件的50个商家的“平均送达时间”的众数及平均数.(2)根据以上抽样调查数据,将频率视为概率,回答下列问题:①能否认为使用B款订餐软件“平均送达时间”不超过40分钟的商家达到75%?②如果你要从A和B两款订餐软件中选择一款订餐,根据平均数你会选择哪款?说明理由.5.1.3 数据的直观表示1.答案:D解析:用统计图表示不同品种的奶牛的平均产奶量,即从图中可以比较各种数量的多少,因此“最为合适”的统计图是柱形统计图.注意B选项中的图不能称为统计图.2.答案:B解析:由条形统计图可知,甲户居民全年总支出为1 200+2 000+1 200+1 600=6 000(元),教育支出占总支出的百分比为×100%=20%,乙户居民教育支出占总支出的百分比为25%,则乙户居民比甲户居民教育支出占总支出的百分比大.故选B.3.答案:B解析:中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为20,22,22,24,25,26,27,∴中位数是按从小到大排列后第4个数为24.4.答案:C解析:由茎叶图的性质可知乙同学比甲同学发挥稳定,且平均成绩比甲同学高.5.答案:3 0.025解析:由位于[110,120)的频数为36,频率为=0.300,得样本容量n=120,所以[130,140)的频率为=0.100,故②处应为1-0.050-0.200-0.300-0.275-0.100-0.050=0.025,①处应为0.025×120=3.6.解析:(1)由于频率分布直方图以面积的形式反映了数据落在各个小组内的频率大小,且频率之和等于1,∴0.050×2+0.100×2+0.125×2+0.150×2+x×2=1,∴x=0.075.(2)样本中身高小于100厘米的频率为(0.050+0.100)×2=0.3.∴样本容量N==120.(3)样本中身高大于或等于98厘米并且小于104厘米的频率为(0.100+0.150+0.125)×2=0.75.∴学生数为120×0.75=90(人).7.答案:AC解析:从图中看出王伟同学的数学学习成绩始终高于班级平均水平,学习情况比较稳定而且成绩优秀.张诚同学的数学成绩不稳定,总是在班级平均水平上下波动,而且波动幅度较大.赵磊同学的数学学习成绩低于班级平均水平,但他的成绩曲线呈上升趋势,表明他的数学成绩在稳步提高,第6次考试张诚没有赵磊的成绩好.8.答案:D解析:由图可知,A、B、C均正确,对于D,涨幅从高到低居于前三位的是天津、西安和南京,所以D错误.9.答案:ABC解析:A中,根据扇形图可知互联网行业从业者中90后占了56%,故正确;B中,互联网行业中从事技术岗位的90后人数占总人数的0.396×0.56≈0.222,故正确;C 中,互联网行业中从事运营岗位的90后人数占总人数的0.17×0.56≈0.095,而80前从事互联网行业的人数才占总人数的0.03,故正确;D中,因为互联网行业中从事运营岗位的80后人数占总人数的比例不能确定,所以无法判断.10.答案:= <解析:x甲=(10×2+20×6+30×6+40×2)=25,x乙=(10×3+20×5+30×5+40×3)=25,s=[(10-25)2×2+(20-25)2×6+(30-25)2×6+(40-25)2×2]=75,s=[(10-25)2×3+(20-25)2×5+(30-25)2×5+(40-25)2×3]=100,故x甲=x乙,s<s.11.答案:(1)400 (2)135° (3)62 (4)790解析:(1)根据参加调查的人中,不了解的占5%,人数是16+4=20人,据此即可求参与调查的学生及家长总人数是:(16+4)÷5%=400(人).(2)利用360°乘以对应的比例即可求解:基本了解的人数是:73+77=150(人),则对应的圆心角的底数是:360°×=135°.(3)利用总人数减去其它的情况的人数即可求解:400-83-77-73-54-31-16-4=62(人).(4)学生人数:62+73+54+16=205(人),“非常了解”和“基本了解”的人数:62+73=135(人).当全校有1 200名学生,“非常了解”和“基本了解”的学生共有:1 200×≈790(人).12.答案:25 2解析:由频率分布直方图知,分数在[90,100]内的频率和[50,60)内的频率相同,所以分数在[90,100]内的人数为2人,总人数为=25人.13.解析:(1)样本容量是100.(2)①50 ②0.10 所补频率分布直方图如图中的阴影部分:(3)设旅客平均购票用时为t min,则有≤t<,即15≤t<20.所以旅客购票用时的平均数可能落在第四组.14.答案:AC解析:从折线图能看出世界人口的变化情况,故A正确;从柱形图中可得到:2050年非洲人口大约将达到17亿,故B错误;从扇形图中能够明显地得到结论:2050年亚洲人口比其他各洲人口的总和还要多,故C正确;由题中三幅图并不能得出从1957年到2050年中哪个洲人口增长速度最慢,故D错误.15.解析:(1)由已知,使用A款订餐软件的50个商家的“平均送达时间”的众数为55.使用A款订餐软件的50个商家的“平均送达时间”的平均数为15×0.06+25×0.34+35×0.12+45×0.04+55×0.4+65×0.04=40.(2)①使用B款订餐软件“平均送达时间”不超过40分钟的商家的比例估计值为0.04+0.20+0.56=0.80=80%>75%.故可以认为使用B款订餐软件“平均送达时间”不超过40分钟的商家达到75%.②使用B款订餐软件的50个商家的“平均送达时间”的平均数为15×0.04+25×0.2+35×0.56+45×0.14+55×0.04+65×0.02=35<40,所以选B款订餐软件.11。

概率论与数理统计-基于R 第五章 第一节 大数定律

概率论与数理统计-基于R 第五章 第一节 大数定律

sin

1
x2 x
4
dx
解:构造J= 2
1
2
x2
e2
sin

1
x
2
x
4
dx,
X
N
(0,1),
g(x)

sin

x2 1 x4

显然J= 2 E(g(x)), 根据辛钦大数定律的推论,
J
2
n
n i 1
sin
• 迄今为止,人们已发现很多大数定律(laws of large numbers) 所谓大数定律,简单地说,就是大量数目的随机变量所呈现 出的规律,主要描述一系列随机变量的和的平均结果的稳定

• 中心极限定理是用来描述满足一定条件的一系列随机变量 的和的概率分布的极限的定理。
• 下面首先来介绍大数定律
以Xi表示第i次试验中事件发生的次数,i=1,2 n 且在每次试验中事件A的概率为p,
n
则n X1 X 2 X n Xi , 且n i 1
对于任意正实数,恒有
B(n, p)
n


lim
n
P

n
n
p




lim
n
P

Xi
i 1
P

1 n
n i 1
Xk





1

推广:设X1, X 2, , X n , 是独立同分布的随机变量序列, g ( x)是一个普通实函数,且E(g ( x))存在,则当n较大时,
E(g(Xi ))

清华大学出版社统计学课后答案

清华大学出版社统计学课后答案
4、
分厂
单位产品成本/元
生产量/件
x0*f0
x1*f1
上期x0
本期x1
上期f0
本期f1
甲分厂
100
90
3000
12000
300000
1080000
60
乙分厂
120
140
7000
8000
840000
1120000
48
合计
10000
20000
1140000
2200000
108
本期平均成本:
上期平均成本:
六、计算题
1、
考试成绩
学生人数
组中值x
xf
60分以下
9
55
495
3969
60-70分
17
65
1105
2057
70-80分
40
75
3000
40
80-90分
23
85
1955
1863
90分以上
11
95
1045
3971
合计
100
7600
11900
(1)平均成绩:
(分)
样本方差:
(分2)
用样本方差代替总体方差,即抽样平均误差:
2、n=40,N=2000
合格率/%
箱数/箱f
组中值p
pf
94-96
9
0.95
8.55
0.004356
96-98
18
0.97
17.46
7.2E-05
98-100
13
0.99
12.87
0.004212

新教材高中数学第五章统计与概率5-1统计-数据的收集课件新人教B版必修第二册

新教材高中数学第五章统计与概率5-1统计-数据的收集课件新人教B版必修第二册
解析:由简单随机抽样的特点可知,(1)(2)均不是简单随机抽样.(1)总体个数 不是有限的.(2)不符合“等可能性”的要求.
题型2 简单随机抽样的应用[经典例题] 例2 (1)要从某汽车厂生产的30辆汽车中随机抽取3辆进行测试,请 选择合适的抽样方法,写出抽样过程; (2)某车间工人加工了一批零件共40件.为了了解这批零件的质量情 况,要从中抽取10件进行检验,如何采用随机数表法抽取样本,写出 抽样步骤.
(2)在随机数表法抽样的过程中要注意: ①编号要求位数相同,读数时应结合编号特点进行读取,如:编号 为两位,则两位、两位地读取;编号为三位,则三位、三位地读取. ②第一个数字的抽取是随机的. ③读数的方向是任意的,且事先定好.
跟踪训练2 (1)第十三届中国(徐州)国际园林博览会于2021年9月开 幕.为做好徐州园博园运营管理工作,2022年春节期间,还需要从30 名大学生中随机抽取8人作为志愿者,请写出抽取样本的过程;
A.100 B.150 C.200 D.250
答案:A
解析:方法一:由题意可得 70 =3
n−70 1
550000,解得n=100,故选A.
方法二:由题意,抽样比为
3
75000=510,总体容量为3
500+1
500=5
000,故n=
5 000×510=100.
4.甲校有3 600名学生,乙校有5 400名学生,丙校有1 800名学生,
新知初探·自主学习
教材要点
知识点一 总体与样本 所 考 察 问 题 涉 及 的 对 象 全 体 是 ___总_体____ , 总 体 中 每 个 对 象 都 是 ___个__体___,抽取的部分对象组成总体的一个样本,一个样本中包含的 个体数目是__样__本____容量. 知识点二 简单随机抽样 1.简单随机抽样的意义:一般地,简单随机抽样(也称为纯随机抽 样)就是从总体中不加任何分组、划类、排队等,完全随机地抽取个 体.简单随机抽样是其它各种抽样形式的基础.通常只是在总体单位

【STATA精品教程】第五章 描述性统计分析


使用tabstat命令计算描述性统计量
. tabstat varlist [if] [in] [weight] [, options]
选项 含义
mean 平均数
count / n 观测值数目
s
range 极差
sd 标准差
var
方差
cv 变异系数 (sd/mean)
meanonly
仅计算和显示平均数,本选项在编程中比较有用。
format
使用变量的显示格式。
separator(#) 每#个变量画一条分界线,默认为separator(5), separator(0) 禁止使用分界线。
【例5-1】现在我们利用小时工资数据集举例说明summarize的使用。 要求使用summarize命令对wage.dta执行如下操作: (1)对wage、educ、exper、tenure、nonwhite、female、married 做基本的统计分析, (2)Summarize命令加上detail选项容许我们对某些重要的变量做 更加详尽的分析, (3)在summarize后使用in或者if来限制条件,可以获得对某个子 样本的描述性统计。 (4)使用outreg2命令导出描述性统计量。
sfrancia varlist [if] [in]
④D’ Agostino检验
sktestdc varlist [=exp] [if exp] [in range] [, noadjust]
【例5-4】下面我们依次举例说明这四个命令的使用,这里用到的 数据仍然是小时工资数据集wage1.dta。 首先我们对wage变量进行偏度—峰度检验, (2)接下来我们对wage变量分别进行W检验Swilk(Shapiro-Wilk W test for normality)和 W' 检验Sfrancia(Shapiro-Francia W' test for normality), (3)最后演示D’ Agostino检验,使用的命令是sktestdc,这里我 们使用未经调整过的卡方检验,即添加noadjust选项:

《概率论与数理统计》5-1 中心极限定理

即: 只要供应 320Q 瓦的电力, 就能以99%的把握保证该 车间的机器能正常工作.
例5. 为了测定一台机床的质量, 将其分解成若干个部件 来称量. 假定每个部件的称量误差(单位: kg )服从区 间 1,1 上的均匀分布, 且每个部件的称量是独立的, 试 问至多分成多少个部件才能以不低于99%的概率保证 机床的称量总误差的绝对值不超过10.
1.55 1.55
2 1.55 1 0.8788.
例3. 有一批钢材, 其中80%的长度不小于3m, 现从钢材 中随机取出100根, 试利用中心极限定理求小于3m的钢 不超过30根的概率. 解 以Yn 为100根钢材中小于3m的钢材根数, 由题意知:
1 E X p, D X p 1 p n


定理5.3 独立同分布情形下大数定律

X1 , X 2 ,
是一个独立同分布的随机变量序列. 且
P E X , D X 2 . 则 X
证明关键步骤:
1 2 E X , D X n
Yn
B 200,0.15 .
Y np N 30 0.95, P Yn N P n np 1 p 25.5 N 30 查表得: 1.645, 即: N 38.3068, 所以可取
25.5
N 39方能以95%的把握保证在该时刻分机可以使用外
在§1.3中, 我们曾经提到频率的稳定性. 设随机事件A的概率P(A)=p, 在n重贝努利试验中事件A 发生的频率为 f n A .当n很大时, 将与p非常接近. 由 于 f n A 本质上是一个随机变量,它随着不同的n次试 验可能取不同的值, 因而需要对随机变量序列引进新 的收敛性定义.

田间统计第5章_方差分析(第1节)


在计算处理内平方和时,kn个离均差
( xij xi ) 要受k个条件的约束,即
(x
j 1
n
ij
xi ) 0 (i=1,2,…,k)
故处理内自由度为资料中观测值的总个数
减 k ,即 kn - k 。 处理内自由度记为 dfe
dfe=kn-k=k(n-1)
因为
nk 1 (k 1) (nk k ) (k 1) k (n 1)
F 分布密度曲线是随自由度df1、df2的
变化而变化的一簇偏态曲线,其形态随着df1、 df2的增大逐渐趋于对称,如图3-15所示。

特点:1、F分布的平均数μ F=1; 2、取值范围[0,+∞]; 3、只有一尾概率,右尾概率; 4、F分布是一组曲线系,当V1、V2都 趋近于+∞时,F分布趋于对称分布。
(二)、F检验
用 F 值出现概率的大小推断一个总
体方差是否大于另一个总体方差的方法
称为F检验(F-test)。F检验是一尾检验。
对于单因素完全随机设计试验资料的方差
分析:
无效假设H0:μ1=μ2=…=μk
备择假设HA:各μi不全相等 或 假设 H0:σt2=σe2 对 HA:σt2﹥σe2, F=MSt / MSe,也就是要判断处理间均方
j
Hale Waihona Puke LSDa t a ( dfe ) S xi x j
t ( df e ) 为在F 检验中误差项自由度下,显著水平
为α的临界t 值, S x x 为均数差数标准误, i j
S xi x j
2MS e / n
MS e 为F 检验中的误差均方,n为各处理的重复数。
当显著水平α=0.05和0.01时,从t 值表中查出

统计学--假设检验(第五章)-(1)-2


左侧检验:
×
抽样分布
Region of Rejection
拒绝H0
置信水平
1 -
Region of Non rejection
临界值
H0
观察到的样本统计量
【例3】一家研究机构估计,某城市中家庭拥有汽车的比例超 过30%。为验证这一估计是否正确,该研究机构随机抽取 了一个样本进行检验。试陈述用于检验的原假设与备择 假设。
36.6
36.9
36.7
37.2
36.3
37.1
36.7
36.8
37.0
37.0
36.1
37.0
根据样本数据,计算的平均值为36.8oC,标准差为0.36oC 根据参数估计方法,健康成年人平均体温的95%的置信区
间为(36.7,36.9) 研究人员发现这个区间内并没有包括37oC! 因此,提出了“不应该再把37oC作为正常人体温的一个有
解:研究者抽检的意图是倾向于证实这种洗涤剂的平均
净含量并不符合说明书中的陈述。
建立的原假设和备择假设为:
H0 : 500 H1 : < 500
<提出假设>
【例3】一家研究机构估计,某城市中家庭拥有汽车的比例超 过30%。为验证这一估计是否正确,该研究机构随机抽取 了一个样本进行检验。试陈述用于检验的原假设与备择 假设。
传统上,做出决策所依据的是样本统 计量,现代检验中人们直接使用由统计量
算出的犯第一类错误的概率,即所谓的P
值。
注:假设检验不能证明原假设正确。
① 假设检验只提供不利于原假设的证据。当拒绝原假设时, 表明样本提供的证据证明它是错误的;当没有拒绝原假设时 ,我们也不说“接受原假设”,因为没法证明原假设是正确 的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章第一节
一、是非题
1、将总体系列不同的综合指标排列起来就构成时间数列。

2、编制时点数列,各项指标的间隔长短必须保持一致。

3、时期数列中每个指标值的大小和它所对应时期的长短有直接关系。

4、时点数列中各个时点的指标值可以相加。

二、单项选择题
1、对时间数列进行动态分析的基础是()
A、发展水平
B、发展速度
C、平均发展水平
D、增长速度
2、时间数列中,每个指标值可以相加的是()
A、相对数时间数列
B、时期数列
C、平均数时间数列
D、时点数列
3、最基本的时间数列是()
A、绝对数时间数列
B、相对数时间数列
C、平均数时间数列
D、时点数列
4、历年的物资库存额时间数列是()
A、时期数列
B、时点数列
C、动态数列
D、相对数动态数列
三、多项选择题
1、各项指标值不能直接相加的时间数列有()
A、时期数列
B、时点数列
C、相对数时间数列
D、平均数时间数列
E、变量数列
2、时期数列的特点是()
A、指标数值具有可加性
B、指标数值不能直接相加
C、指标数值通过连续登记加总取得
D、指标数值只能间断计量
E、指标数值的大小与时间长短有直接关系
3、下列数列中属于时点数列的有()
A、历年银行储蓄存款余额
B、历年产值
C、各月末职工人数
D、各月商品销量
E、历年粮食库存量
4、历年国民生产总值数列是()
A、绝对数时间数列
B、相对数时间数列
C、平均数时间数列
D、时期数列
E、时点数列。

相关文档
最新文档