多元回归分析:推断问题-ppt
合集下载
第9章多元线性回归-PPT精品文档

9.1 9.2 9.3 9.4 9.5 多元线性回归模型 拟合优度和显著性检验 多重共线性及其处理 利用回归方程进行预测 虚拟自变量的回归
统计学
STATISTICS (第三版)
学习目标
多元线性回归模型、回归方程与估计的回 归方程 回归方程的拟合优度与显著性检验 多重共线性问题及其处理 利用回归方程进行预测 虚拟自变量的回归 用Excel和SPSS进行回归分析
统 计 学
(第三版)
2019
作者 贾俊平
统计学
STATISTICS (第三版)
统计名言
上好的模型选择可遵循一个称为奥 克姆剃刀(Occam’s Razor)的基本原 理:最好的科学模型往往最简单, 且能解释所观察到的事实。
——William Navidi
9-2 2019年8月
第 9 章 多元线性回归
b1,b假定其他变量不变,当 xi 每变 动一个单位时,y 的平均变动值
9 - 10
2019年8月
统计学
STATISTICS (第三版)
估计的多元线性回归的方程
(estimated multiple linear regression equation)
9 - 11 2019年8月
9.1 多元线性回归模型 9.1.2 参数的最小二乘估计
统计学
STATISTICS (第三版)
参数的最小二乘估计
1. 使因变量的观察值与估计值之间的离差平方和 ˆ ,b ˆ ,b ˆ ,, b ˆ 。即 达到最小来求得 b 0 1 2 k
2 2 ˆ ,b ˆ ,b ˆ ,, b ˆ ) (y y ˆ Q( b ) e i i i 最小 0 1 2 k i 1 i 1 n n
统计学
STATISTICS (第三版)
学习目标
多元线性回归模型、回归方程与估计的回 归方程 回归方程的拟合优度与显著性检验 多重共线性问题及其处理 利用回归方程进行预测 虚拟自变量的回归 用Excel和SPSS进行回归分析
统 计 学
(第三版)
2019
作者 贾俊平
统计学
STATISTICS (第三版)
统计名言
上好的模型选择可遵循一个称为奥 克姆剃刀(Occam’s Razor)的基本原 理:最好的科学模型往往最简单, 且能解释所观察到的事实。
——William Navidi
9-2 2019年8月
第 9 章 多元线性回归
b1,b假定其他变量不变,当 xi 每变 动一个单位时,y 的平均变动值
9 - 10
2019年8月
统计学
STATISTICS (第三版)
估计的多元线性回归的方程
(estimated multiple linear regression equation)
9 - 11 2019年8月
9.1 多元线性回归模型 9.1.2 参数的最小二乘估计
统计学
STATISTICS (第三版)
参数的最小二乘估计
1. 使因变量的观察值与估计值之间的离差平方和 ˆ ,b ˆ ,b ˆ ,, b ˆ 。即 达到最小来求得 b 0 1 2 k
2 2 ˆ ,b ˆ ,b ˆ ,, b ˆ ) (y y ˆ Q( b ) e i i i 最小 0 1 2 k i 1 i 1 n n
第四章多元回归分析:推断

第四章 多元回归分析:推断
受教育年限与每小时工资 yˆ 0.0144 0.7241x
如果受教育年限的单位为月
yˆ 0.0144 (0.7241/12)(12x) 0.0144 0.0603z
如果受教育年限的单位为日 yˆ 0.0144 (0.7241/ 365)(365x) 0.0144 0.0020w
se(ˆ)=se(ˆ ˆ)= Var(ˆ) Var(ˆ)+2Cov(ˆ, ˆ)
能否直接将作为模型参数进行估计?
= + = -
原模型变换为:
ln Q=lnA+lnK+(-)lnL+u
即:
lnQ=lnA+ln(K/L)+lnL+u
若定义参数:
= +-1
原假设变为标准的显著性检验:
H0: =0
H0:j=0
H1: j0
相应的检验为双侧检验(two-tailed test) 单侧备择假设:
H0:j=0
或者
H1: j>0
H0:j=0
H1: j<0
相应的检验为单侧检验(one-tailed test)
➢ 双侧检验
若原假设成立:
j=0
tˆ j
ˆ j j se(ˆ j )
ˆ j se(ˆ
j
受约束模型,即认为原假设成立时的模型:
ln(salary)=0+1 years+2gamesyr+u
若原假设真的成立,即 3= 4= 5=,0 不受约束模 型和受约束模型的估计结果应该差异不大,两者的残差平 方和(SSR)应该比较接近
若 tˆj t/2(n k 1),拒绝H0,xj对y的影响是统计显著的。 若 tˆj t/2(n k 1),不能拒绝H0,xj对y的影响统计上不显著。
受教育年限与每小时工资 yˆ 0.0144 0.7241x
如果受教育年限的单位为月
yˆ 0.0144 (0.7241/12)(12x) 0.0144 0.0603z
如果受教育年限的单位为日 yˆ 0.0144 (0.7241/ 365)(365x) 0.0144 0.0020w
se(ˆ)=se(ˆ ˆ)= Var(ˆ) Var(ˆ)+2Cov(ˆ, ˆ)
能否直接将作为模型参数进行估计?
= + = -
原模型变换为:
ln Q=lnA+lnK+(-)lnL+u
即:
lnQ=lnA+ln(K/L)+lnL+u
若定义参数:
= +-1
原假设变为标准的显著性检验:
H0: =0
H0:j=0
H1: j0
相应的检验为双侧检验(two-tailed test) 单侧备择假设:
H0:j=0
或者
H1: j>0
H0:j=0
H1: j<0
相应的检验为单侧检验(one-tailed test)
➢ 双侧检验
若原假设成立:
j=0
tˆ j
ˆ j j se(ˆ j )
ˆ j se(ˆ
j
受约束模型,即认为原假设成立时的模型:
ln(salary)=0+1 years+2gamesyr+u
若原假设真的成立,即 3= 4= 5=,0 不受约束模 型和受约束模型的估计结果应该差异不大,两者的残差平 方和(SSR)应该比较接近
若 tˆj t/2(n k 1),拒绝H0,xj对y的影响是统计显著的。 若 tˆj t/2(n k 1),不能拒绝H0,xj对y的影响统计上不显著。
多因变量的多元线性回归课件

多因变量的多元线性回归课件
contents
目录
• 引言 • 多因变量的多元线性回归模型 • 多因变量的多元线性回归的评估指标 • 多因变量的多元线性回归的实例分析 • 多因变量的多元线性回归的优缺点与改
进方向 • 多因变量的多元线性回归在实际应用中
的注意事项
01
引言
多元线性回归的定义与背景
多元线性回归的定义
模型选择
根据实际问题和数据特点,选择合适的多元线性回归模型,如普通多元线性回 归、岭回归、Lasso回归等。
评估指标选择
选择合适的评估指标对模型进行评估,如均方误差(MSE)、均方根误差( RMSE)、决定系数(R^2)等。
模型解释与应用场景
模型解释
对选定的多元线性回归模型进行详细解释,包括模型的假设条件、参数意义、适 用范围等方面。
改进方向
验证假设
在应用多元线性回归之前,需要对假设条件 进行验证,确保满足条件。
引入其他模型
如果多元线性回归不适用,可以考虑引入其 他模型,如支持向量机、神经网络等。
降维处理
如果自变量数量过多,可以考虑进行降维处 理,减少计算复杂度。
数据预处理
对数据进行预处理,如缺失值填充、异常值 处理等,以提高回归结果的准确性。
岭回归
当自变量之间存在多重共 线性时,可以使用岭回归 来估计模型的参数。
模型的假设检验
01
02
03
04
线性性检验
检验自变量和因变量之间是否 存在线性关系。
共线性检验
检验自变量之间是否存在多重 共线性。
异方差性检验
正态性检验
检验误差项是否具有相同的方 差。
检验误差项是否服从正态分布。
contents
目录
• 引言 • 多因变量的多元线性回归模型 • 多因变量的多元线性回归的评估指标 • 多因变量的多元线性回归的实例分析 • 多因变量的多元线性回归的优缺点与改
进方向 • 多因变量的多元线性回归在实际应用中
的注意事项
01
引言
多元线性回归的定义与背景
多元线性回归的定义
模型选择
根据实际问题和数据特点,选择合适的多元线性回归模型,如普通多元线性回 归、岭回归、Lasso回归等。
评估指标选择
选择合适的评估指标对模型进行评估,如均方误差(MSE)、均方根误差( RMSE)、决定系数(R^2)等。
模型解释与应用场景
模型解释
对选定的多元线性回归模型进行详细解释,包括模型的假设条件、参数意义、适 用范围等方面。
改进方向
验证假设
在应用多元线性回归之前,需要对假设条件 进行验证,确保满足条件。
引入其他模型
如果多元线性回归不适用,可以考虑引入其 他模型,如支持向量机、神经网络等。
降维处理
如果自变量数量过多,可以考虑进行降维处 理,减少计算复杂度。
数据预处理
对数据进行预处理,如缺失值填充、异常值 处理等,以提高回归结果的准确性。
岭回归
当自变量之间存在多重共 线性时,可以使用岭回归 来估计模型的参数。
模型的假设检验
01
02
03
04
线性性检验
检验自变量和因变量之间是否 存在线性关系。
共线性检验
检验自变量之间是否存在多重 共线性。
异方差性检验
正态性检验
检验误差项是否具有相同的方 差。
检验误差项是否服从正态分布。
第8章多元回归分析:推断问题

例 119个发展中国家1960-1985年的GDP增长率与相对 人均GDP
该模型只解释了GDPG变动的53%。但查F表可得,在5%的显著性 水平上是显著的,p值实际上是0.0425。因此,尽管R2只有0.053, 我们仍能拒绝这两个回归元对回归子没有影响的虚拟假设。
五、解释变量的“增量”或“边际”贡献
第八章
多元回归分析:推断问题
第八章
多元回归分析:推断问题
◆ 学习目的
理解多元线性回归模型的区间估计 和假设检验。
第八章
多元回归分析:推断问题
◆多元回归中的假设检验 ◆检验个别偏回归系数的假设 ◆检验样本回归的总显著性 ◆检验线性等式约束条件 ◆邹至庄检验
第一节
一、正态性假定
多元回归的假设检验
假定ui 遵循均值为零、方差σ2 为常数的正态分布。
例8.3 19551974年墨西哥 经济的CobbDouglas生产 函数
Dependent Variable: LNGDP Method: Least Squares Date: 02/21/12 Time: 16:22 Sample: 1955 1974 Included observations: 20 Variable C Coefficient -1.65242 Std. Error 0.606198 t-Statistic -2.72587 Prob. 0.0144
单位检验的
=1.671,拒绝虚拟假设。
假设检验和置信区间估计之间的关系
β2 的95%置信区间是: 具体到本例变为:
即是:
这样,如果选取了大小同为64的100个样本并构造像(8.4.2)这样的 100个置信区间,则我们预期其中的95个包含着真实总体参数β2 。由 于虚拟假设的零值不落在(8.4.2)区间内,故以95%的置信系数拒 绝虚拟假设β2 =0。 @qtdist(p,v):自由度为v的t统计量的p显著性水平(双尾)。 scalar h1=eq01.@coefs(2)+@qtdist(0.975,61)*@stderrs(2) scalar h2=eq01.@coefs(2)-@qtdist(0.975,61)*@stderrs(2)
回归分析应用PPT课件

回归分析的应用场景
A
经济预测
通过分析历史数据,预测未来的经济趋势,如 股票价格、GDP等。
市场营销
通过研究消费者行为和购买历史,预测未 来的销售趋势和客户行为。
B
C
医学研究
研究疾病与风险因素之间的关系,预测疾病 的发生概率。
科学研究
在各种科学领域中,如生物学、物理学、化 学等,回归分析被广泛应用于探索变量之间 的关系和预测结果。
06 回归分析的局限性
多重共线性问题
总结词
多重共线性问题是指自变量之间存在高 度相关关系,导致回归系数不稳定,影 响模型预测精度。
VS
详细描述
在回归分析中,如果多个自变量之间存在 高度相关关系,会导致回归系数的不稳定 性,使得模型预测精度降低。这种情况在 数据量较小或者自变量较多的情况下更容 易出现。为了解决这个问题,可以采用减 少自变量数量、使用主成分分析等方法。
预测能力评估
使用模型进行预测,并比较预 测值与实际观测值之间的误差
,评估模型的预测能力。
03 多元线性回归分析
多元线性回归模型
01
确定因变量和自变 量
在多元线性回归模型中,因变量 是我们要预测的变量,而自变量 是影响因变量的因素。
02
建立数学模型
03
模型参数解释
通过最小二乘法等估计方法,建 立因变量与自变量之间的线性关 系式。
回归分析可以帮助我们理解数据的内在规律,预测未来的趋势,并优化决 策。
回归分析的分类
01
一元回归分析
研究一个自变量和一个因变量之间的关系。
02
多元回归分析
研究多个自变量和一个因变量之间的关系。
03
线性和非线性回归分析
《多元Logistic回归》课件

交叉验证是一种评估模型泛化能力的手段,通过将数据集 分成训练集和验证集,反复训练和验证模型,以获得更可 靠的评估结果。常用的交叉验证方法有k-fold交叉验证、 留出交叉验证等。
03
多元Logistic回归的实现步 骤
数据预处理:特征选择、缺失值处理等
特征选择
选择与目标变量相关的特征,去除无关 或冗余特征,提高模型的预测性能。
多元Logistic回归与一元Logistic回归的区别
一元Logistic回归只涉及一个自变量,而多元 Logistic回归涉及多个自变量。
多元Logistic回归能够同时处理多个特征,更准确 地描述数据的复杂关系,提高预测精度。
多元Logistic回归需要更多的数据和计算资源,因 为需要迭代计算每个特征与因变量言 • 多元Logistic回归的原理 • 多元Logistic回归的实现步骤 • 多元Logistic回归的优缺点 • 多元Logistic回归的案例分析 • 总结与展望
01
引言
多元Logistic回归的定义
多元Logistic回归是一种用于处理分 类问题的统计方法,它通过将多个自 变量与因变量之间的关系转换为概率 形式,从而对因变量进行预测。
结果。
它能够提供每个类别的预测概率 ,这在某些情况下非常有用,例 如在医学诊断中确定疾病的风险
。
多元Logistic回归在处理分类问 题时具有较高的预测精度和稳定
性。
缺点
多元Logistic回归对数据的分布 假设较为严格,通常要求数据 呈正态分布或近似正态分布。
它还假设自变量与因变量之间 存在线性关系,这在某些情况 下可能不成立,导致模型的预
案例三:用户点击率预测
总结词
用户点击率预测是多元Logistic回归在互联 网广告领域的典型应用,通过分析用户行为 和广告特征,预测用户是否会点击广告。
多元回归分析-推断
3
经典线性模型
o 正态性假定是最强的一个假定,它意味着零条件均值和同 方差性是成立的。
o 如果正态性假定成立,那么OLS估计量将服从特定的分布 ,从而可以进行统计推断
o 简单地看,误差项度量了影响被解释变量的多种因素的作 用之和,根据中心极限定理,它应该近似地服从正态分布 。当然,这是一个很不严格的解释,很多情况下正态性假 定都不成立。事实上,如果样本容量足够大,那么误差项 是否服从正态分布并不很重要,这将在第5讲讨论
linear model, CLM)
对 于 总 体 回 归 函 数Y 0 1 X1 k X k u
MLR.1 参 数 的 线 性 性 : 回 归 模型 对 于 参 数 而 言 是 线 性的 MLR.2 样 本 的 随 机 性 : 样 本 是从 总 体 中 随 机 抽 样 得 到的 MLR.3 不 存 在 完 全 共 线 性 ; 每个 解 释 变 量 具 有 一 定 变异
o 正态性假定意味着,对于给定的一组解释变量的取值,被 解释变量服从正态分布。即:
Y | X1,, Xk ~ N (0 1X1 k Xk , 2 )
4
经典线性模型
经典线性模型
概 率 密 度
X:受教育年限 Y:工资
正态分布
Y
PRF
X
5
OLS估计量的性质
经典线性模型OLS估计量的性质(证明见课本p765,附录E.3)
2
SSTj (1
R
2 j
)
,
2
1 nk
1
2
ui
6
二、t检验
1. t检验 2. 对于参数的一个线性约束的检验
7
t检验
对单个参数的假设检验(参看“关于t检验的说明”以及课本附录C.6
经典线性模型
o 正态性假定是最强的一个假定,它意味着零条件均值和同 方差性是成立的。
o 如果正态性假定成立,那么OLS估计量将服从特定的分布 ,从而可以进行统计推断
o 简单地看,误差项度量了影响被解释变量的多种因素的作 用之和,根据中心极限定理,它应该近似地服从正态分布 。当然,这是一个很不严格的解释,很多情况下正态性假 定都不成立。事实上,如果样本容量足够大,那么误差项 是否服从正态分布并不很重要,这将在第5讲讨论
linear model, CLM)
对 于 总 体 回 归 函 数Y 0 1 X1 k X k u
MLR.1 参 数 的 线 性 性 : 回 归 模型 对 于 参 数 而 言 是 线 性的 MLR.2 样 本 的 随 机 性 : 样 本 是从 总 体 中 随 机 抽 样 得 到的 MLR.3 不 存 在 完 全 共 线 性 ; 每个 解 释 变 量 具 有 一 定 变异
o 正态性假定意味着,对于给定的一组解释变量的取值,被 解释变量服从正态分布。即:
Y | X1,, Xk ~ N (0 1X1 k Xk , 2 )
4
经典线性模型
经典线性模型
概 率 密 度
X:受教育年限 Y:工资
正态分布
Y
PRF
X
5
OLS估计量的性质
经典线性模型OLS估计量的性质(证明见课本p765,附录E.3)
2
SSTj (1
R
2 j
)
,
2
1 nk
1
2
ui
6
二、t检验
1. t检验 2. 对于参数的一个线性约束的检验
7
t检验
对单个参数的假设检验(参看“关于t检验的说明”以及课本附录C.6
四、多元回归分析:推断
+ β 4 hrunsyr + β 5 rbisyr + u • 式中,salary为1993年总薪水;years为加入俱乐部 的年数;gamesyr为平均每年比赛的次数;bavg为 平均职业击球次数;hrunsyr为平均每年的本垒打次 数;rbisyr为每年的击球跑垒得分。
• 我们想检验的是:一旦控制了加入俱乐部的年数和 每年的比赛次数,度量球员表现的统计指标 (bavg,hrunsyr & rbisyr)对薪水有没有影响。零假设 可表示为: H 0 : β 3 = 0, β 4 = 0, β5 = 0 • 这里零假设称为多重约束,对多重约束进行的检验 称为多重假设检验(multiple hypotheses test)或联 合假设检验(joint hypotheses test)。相应的对立假 设为 H1 : H 0不正确
H0 : β j = a j
t=
• 相应的t统计量为
β j − aj
se( β j )
^
^
• 下面以两个例子来说明这种检验方法。
校园犯罪与注册人数
• 考虑大学校园内犯罪次数(crime)和学生注册人数的一个简 单模型
log(crime) = β 0 + β1 log(enroll ) + u
• 利用美国1992年97个大学和学院的数据,针对 β1 > 1 来检验 β1 = 1 。数据来源于联邦调查局的《统 一犯罪报告》。回归结果如下:
(0.104)
(0.007)
~
(0.0017)
(0.003)
R 2 = 0.316 • 针对exper对log(wage)的影响,考察下面三种检验: (1)H 0 : β exp er = 0, H1 : β exp er > 0 拒绝零假设;
回归分析法PPT课件
线性回归模型的参数估计
最小二乘法
通过最小化误差平方和的方法来估计 模型参数。
最大似然估计
通过最大化似然函数的方法来估计模 型参数。
参数估计的步骤
包括数据收集、模型设定、参数初值、 迭代计算等步骤。
参数估计的注意事项
包括异常值处理、多重共线性、自变 量间的交互作用等。
线性回归模型的假设检验
假设检验的基本原理
回归分析法的历史与发展
总结词
回归分析法自19世纪末诞生以来,经历 了多个发展阶段,不断完善和改进。
VS
详细描述
19世纪末,英国统计学家Francis Galton 在研究遗传学时提出了回归分析法的概念 。后来,统计学家R.A. Fisher对其进行了 改进和发展,提出了线性回归分析和方差 分析的方法。随着计算机技术的发展,回 归分析法的应用越来越广泛,并出现了多 种新的回归模型和技术,如多元回归、岭 回归、套索回归等。
回归分析法的应用场景
总结词
回归分析法广泛应用于各个领域,如经济学、金融学、生物学、医学等。
详细描述
在经济学中,回归分析法用于研究影响经济发展的各种因素,如GDP、消费、投资等;在金融学中,回归分析法 用于股票价格、收益率等金融变量的预测;在生物学和医学中,回归分析法用于研究疾病发生、药物疗效等因素 与结果之间的关系。
梯度下降法
基于目标函数对参数的偏导数, 通过不断更新参数值来最小化目 标函数,实现参数的迭代优化。
非线性回归模型的假设检验
1 2
模型检验
对非线性回归模型的适用性和有效性进行检验, 包括残差分析、正态性检验、异方差性检验等。
参数检验
通过t检验、z检验等方法对非线性回归模型的参 数进行假设检验,以验证参数的显著性和可信度。
回归分析学习课件PPT课件
03 网格搜索
为了找到最优的参数组合,可以使用网格搜索方 法对参数空间进行穷举或随机搜索,通过比较不 同参数组合下的预测性能来选择最优的参数。
非线性回归模型的假设检验与评估
假设检验
与线性回归模型类似,非线性回归模型也需要进行假设检验,以检验模型是否满足某些统计假 设,如误差项的独立性、同方差性等。
整估计。
最大似然法
03
基于似然函数的最大值来估计参数,能够同时估计参数和模型
选择。
多元回归模型的假设检验与评估
线性假设检验
检验回归模型的线性关系 是否成立,通常使用F检 验或t检验。
异方差性检验
检验回归模型残差的异方 差性,常用的方法有图检 验、White检验和 Goldfeld-Quandt检验。
多重共线性检验
检验回归模型中自变量之 间的多重共线性问题,常 用的方法有VIF、条件指数 等。
模型评估指标
包括R方、调整R方、AIC、 BIC等指标,用于评估模 型的拟合优度和预测能力。
05
回归分析的实践应用
案例一:股票价格预测
总结词
通过历史数据建立回归模型,预测未来股票 价格走势。
详细描述
利用股票市场的历史数据,如开盘价、收盘价、成 交量等,通过回归分析方法建立模型,预测未来股 票价格的走势。
描述因变量与自变量之间的非线性关系,通过变 换或使用其他方法来适应非线性关系。
03 混合效应回归模型
同时考虑固定效应和随机效应,适用于面板数据 或重复测量数据。
多元回归模型的参数估计
最小二乘法
01
通过最小化残差平方和来估计参数,是最常用的参数估计方法。
加权最小二乘法
02
适用于异方差性数据,通过给不同观测值赋予不同的权重来调
为了找到最优的参数组合,可以使用网格搜索方 法对参数空间进行穷举或随机搜索,通过比较不 同参数组合下的预测性能来选择最优的参数。
非线性回归模型的假设检验与评估
假设检验
与线性回归模型类似,非线性回归模型也需要进行假设检验,以检验模型是否满足某些统计假 设,如误差项的独立性、同方差性等。
整估计。
最大似然法
03
基于似然函数的最大值来估计参数,能够同时估计参数和模型
选择。
多元回归模型的假设检验与评估
线性假设检验
检验回归模型的线性关系 是否成立,通常使用F检 验或t检验。
异方差性检验
检验回归模型残差的异方 差性,常用的方法有图检 验、White检验和 Goldfeld-Quandt检验。
多重共线性检验
检验回归模型中自变量之 间的多重共线性问题,常 用的方法有VIF、条件指数 等。
模型评估指标
包括R方、调整R方、AIC、 BIC等指标,用于评估模 型的拟合优度和预测能力。
05
回归分析的实践应用
案例一:股票价格预测
总结词
通过历史数据建立回归模型,预测未来股票 价格走势。
详细描述
利用股票市场的历史数据,如开盘价、收盘价、成 交量等,通过回归分析方法建立模型,预测未来股 票价格的走势。
描述因变量与自变量之间的非线性关系,通过变 换或使用其他方法来适应非线性关系。
03 混合效应回归模型
同时考虑固定效应和随机效应,适用于面板数据 或重复测量数据。
多元回归模型的参数估计
最小二乘法
01
通过最小化残差平方和来估计参数,是最常用的参数估计方法。
加权最小二乘法
02
适用于异方差性数据,通过给不同观测值赋予不同的权重来调