2017年春季学期新人教B版高中数学选修1-1导学案:3.3.2利用导数研究函数的极值 Word版
高中数学 3.3.1函数的单调性与导数导学案 新人教版选修1-1-新人教版高二选修1-1数学学案

函数的单调性与导数导学案【学习目标】1、了解可导函数的单调性与其导数的关系.2、掌握利用导数判断函数单调性的方法.【学习重难点】教学重点:利用导数判断一个函数在其定义区间内的单调性.教学难点:判断复合函数的单调区间及应用;利用导数的符号判断函数的单调性. 【学法指导】运用导数这个工具研究函数的单调性,体会导数在研究函数中的应用,并与以前知识相比较,体会导数在研究函数中优越性。
知识链接一、【自主学习】1.增函数、减函数的定义一般地,设函数f(x) 的定义域为I:如果对于属于定义域I内某个区间上的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数.当x1<x2时,都有f(x1)>f(x2),那么就说 f(x) 在这个区间上是减函数.2.函数的单调性如果函数y=f(x) 在某个区间是增函数或减函数,那么就说函数y=f(x) 在这一区间具有(严格的)单调性,这一区间叫做y=f(x) 的单调区间.在单调区间上增函数的图象是上升的,减函数的图象是下降的.1.观察23页图1.3.2的四副图,完成下列表格。
2、以小组为单位完成上列表格二【合作探究】1、学生以小组为单位讨论上述表格函数的单调性与其导数的正负的关系:2、抽生回答3、师总结:在区间[a’b]内,若f '(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f '(x)<0,那么函数y=f(x)在这个区间内单调递减。
备注:f '(x )>0是函数单调递增的充分不必要条件 f '(x )<0是函数单调递减的充分不必要条件。
f '(x )》0f '(x )《0例.确定函数f (x )=2x 3-6x 2+7在哪个区间内是增函数,哪个区间内是减函数.师扮演过程:解:f (x )'=6x 2-12x .令6x 2-12x >0,解得x <0或x >2.因此,当x ∈(-∞, 0)时,函数f(x)是增函数, 当x ∈(2, +∞)时, f (x )也是增函数. 令6x 2-12x <0,解得0<x <2. 因此,当x ∈(0, 2)时,f (x )是减函数. 师总结:利用导数确定函数的单调性的步骤:(1) 确定函数f (x )的定义域; (2) 求出函数的导数;(3) 解不等式f '(x )>0,得函数的单调递增区间;解不等式f '(x )<0,得函数的单调递减区间.练习1:教材P24面的例2 【课堂小结】1.判断函数的单调性的方法; 2.导数与单调性的关系; 3.证明单调性的方法. 【达标检测】1、求下列函数的单调区间.(1)y =x -ln x ; (2)y =12x.2、已知c bx ax x f ++=24)(的图象经过点(0,1),且在1x =处的切线方程是2y x =- (1) 求)(x f y =的解析式;(2)求)(x f y =的单调递增区间。
2017-2018学年人教B版高中数学选修1-1第三章导数及其应用3.2导数的四则运算法则同步导学案

3.2.1导数的四则运算法则学习目标:1掌握函数的和、差、积、商的求导法则2 能利用导数的四种运算法则求较简单初等函数的导数德育目标:通过学生的主动参与,师生、生生的合作交流,提高学生的学习兴趣,激发其求知欲,培养探索精神重点:掌握函数的和、差、积、商的求导法则难点:会运用导数的四则运算法则解决一些函数的求导问题活动一:自主预习,知识梳理设()()x g x f ,是可导的,则1.函数和(或差)的求导法则:()()()=±/x g x f 即两个函数的和(或差)的导数,等于这两个函数的导数这个法则可推广到任意有限个可导函数的和(或差),即n n ff f f f f /2/1/21)(±±±=±±± 2.函数积的求导法则:()()[]=/xg x f即两个函数的积的导数,等于 个函数的导数乘上第二个函数,加上第一个函数乘上 个函数的导数。
()[]()x Cf x Cf //=,此式可表述为:常数与函数积的导数,等于常数乘以函数的导数3.函数商的求导法则:()()=⎥⎦⎤⎢⎣⎡/x g x f (其中())0≠x g 特别时有()()()x g x g x g 2//1-=⎥⎦⎤⎢⎣⎡活动二:问题探究导数的运算法则成立的条件是什么?活动三:要点导学,合作探究要点一:利用导数运算法则求函数的导数例1: 求下列函数的导数(1)765432)(2345+-+-+=x x x x x x f(2)x x y sin = (3)x y 2sin =(4)x y tan =练习:求下列函数的导数(1)x x y ln -= (2))1)(1(2-+=x x y (3)()22ln x x x f x+= (4)332++=x x y要点二:导数运算法则的综合应用例2:已知函数()),(23123R a R x ax x x x f ∈∈+-=,在曲线()x f y =的所有切线中,有且仅有一条切线l 与直线x y =垂直。
高中数学新人教版B版精品教案《人教版B高中数学选修1-1 3.2.3 导数的四则运算法则》1

3.2.3 导数的四则运算法则沈阳市青松中学易飞(一)教学目标1.知识与技能:了解函数的和、差、积、商的导数公式的推导;掌握两个函数的和、差、积、商的求导法则;能正确运用两个函数的和差积商的求导法则和已有的导数公式求某些简单函数的导数。
2.过程与方法:利用学生已掌握的导数的定义,得出一个简单的两个函数的和的导数,从而提出问题,引入课题,通过学生的猜想、尝试,探究出函数的和、差、积、商的求导法则,使学生加深对求导法则的理解。
3.情感与价值观:通过学生的主动参与,师生、生生的合作交流,提高学生的学习兴趣,激发其求知欲,培养探索精神。
(二)教学重点、难点教学重点:掌握函数的和、差、积、商的求导法则。
教学难点:学生对积和商的求导法则的理解和运用。
(三)教学方法本节在教学中分组合作,运用尝试探索、类比联想、变式练习等方法进行。
教学中应用电化教学,包括平板电脑互联网平台。
(四)教学过程(五)板书设计1和(或差)的导数:例1:2积的导数:3商的导数:例2:(六)教学反思由于这节课的内容是一计公式算及应用为主,所以把所学的内容提前布置给学生,然他们分组解决每一个公式及相应的例题。
这样做极大的增强和激发了学生学习的兴趣。
和(或差)的导数的运算要充分放手,留有适当的时间,让学生发现和论证,即使出现错误(类比这些错误,及时纠正),把握时机恰时恰当的处理,这样的课堂教学才能出现闪光点,富有激情和生命力。
对于积和商的导数,学生对公式的应用开始可能存在一定的障碍,教师应及时指导学生,注意导数定义的形成。
内容不多,也很容易,可以放手让学生进行充分的探究。
2017-2018学年人教B版高中数学选修1-1全册学案

2017-2018学年高中数学人教B版选修1-1全册同步学案目录1.1.1 命题1.1.2 量词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式2.1.1椭圆及其标准方程2.1.2 椭圆的几何性质(一)2.1.2 椭圆的几何性质(二)2.2.1双曲线及其标准方程2.2.2 双曲线的几何性质2.3.1 抛物线及其标准方程2.3.2 抛物线的几何性质第二章末复习提升3.1.1 函数的平均变化率3.1.2瞬时速度与导数3.1.3 导数的几何意义3.2.1常数与幂函数的导数-3.2.2导数公式表3.2.3导数的四则运算法则3.3.1 利用导数判断函数的单调性3.3.2 第1课时利用导数研究函数的极值3.3.2 第2课时利用导数研究函数的最值3.3.3导数的实际应用第三章末复习提升1.1命题与量词1.1.1命题[学习目标] 1.了解命题的概念.2.会判断命题的真假.[知识链接]在初中,我们已学过许多数学命题,当时是如何定义命题的,你能举出一些例子吗?答判断一件事情的句子叫命题.如:有两边相等的三角形是等腰三角形.[预习导引]1.命题的概念在数学中,我们常常碰到许多用语言、符号或式子表达的语句,其中能判断真假的陈述句叫做命题.2.命题的真假判断为真的语句叫做真命题,判断为假的语句叫做假命题.要点一命题的判断例1下列语句是命题的是()A.x-1=0B.2+3=8C.你会说英语吗?D.这是一棵大树答案B解析A中x不确定,x-1=0的真假无法判断;B中2+3=8是命题,且是假命题;C不是陈述句,故不是命题;D中“大”的标准不确定,无法判断真假.规律方法并不是所有的语句都是命题,只有能判断真假的陈述句才是命题,命题首先是“陈述句”,其他语句如疑问句、祈使句、感叹句等一般都不是命题;其次是“能判断真假”,不能判断真假的陈述句不是命题,如“x≥2”、“小明的个子很高”等都不能判断真假,故都不是命题.因此,判断一个语句是否为命题,关键有两点:①是否为陈述句;②能否判断真假.跟踪演练1判断下列语句是否是命题.(1)求证3是无理数.(2)x2+2x+1≥0.(3)你是高二的学生吗?(4)并非所有的人都喜欢苹果.(5)一个正整数不是质数就是合数.(6)若x∈R,则x2+4x+7>0.(7)x+3>0.解(1)(3)(7)不是命题,(2)(4)(5)(6)是命题.要点二命题真假的判断例2判断下列命题的真假:(1)已知a,b,c,d∈R,若a≠c,b≠d,则a+b≠c+d;(2)如果x∈N,则x3>x2成立;(3)如果m>1,则方程x2-2x+m=0无实数根;(4)存在一个三角形没有外接圆.解(1)假命题.反例:1≠4,5≠2,但1+5=4+2.(2)假命题.反例:当x=0时,x3>x2不成立.(3)真命题.∵m>1⇒Δ=4-4m<0,∴方程x2-2x+m=0无实数根.(4)假命题.因为不共线的三点确定一个圆,即任何三角形都有外接圆.规律方法要判断一个命题是真命题,一般需要经过严格的推理论证,在证明时,要有理有据,有时应综合各种情况作出正确的判断,而判断一个命题是假命题,只需举出一个反例即可.跟踪演练2下列命题:①如果xy=1,则x、y互为倒数;②四条边相等的四边形是正方形;③平行四边形是梯形;④如果ac2>bc2,则a>b.其中真命题的序号是________.答案①④解析①④是真命题,②四条边相等的四边形是菱形,不一定是正方形,③平行四边形不是梯形.1.下列语句不是命题的有()①2<1;②x<1;③如果x<2,则x<1;④函数f(x)=x2是R上的偶函数.A.0个B.1个C.2个D.3个答案B解析①③④可以判断真假,是命题;②不能判断真假,所以不是命题.2.下列命题中的真命题是()A.互余的两个角不相等B.相等的两个角是同位角C.如果a2=b2,则|a|=|b|D.三角形的一个外角等于和它不相邻的一个内角答案C解析由平面几何知识可知A、B、D三项都是错误的.3.命题“函数y=2x+1是增函数”的条件是________________,结论是________________.答案函数为y=2x+1该函数是增函数4.下列命题:①面积相等的三角形是全等三角形;②若xy=0,则|x|+|y|=0;③若a>b,则ac2>bc2;④矩形的对角线互相垂直.其中假命题的个数是________.答案4解析①等底等高的三角形都是面积相等的三角形,但不一定全等;②当x,y中一个为零,另一个不为零时,|x|+|y|≠0;③当c=0时不成立;④菱形的对角线互相垂直.矩形的对角线不一定垂直.1.根据命题的意义,能判断真假的陈述句是命题,命题的条件与结论之间属于因果关系,真命题需要给出证明,假命题只需举出一个反例即可.2.任何命题都是由条件和结论构成的,可以写成“如果p,则q”的形式.含有大前提的命题写成“如果p,则q”的形式,大前提应保持不变,且不写在条件p中.1.1.2量词[学习目标] 1.通过生活和数学中的丰富实例,理解全称量词与存在量词的意义.2.能正确的对含有一个量词的命题进行否定.3.知道全称命题的否定是存在性命题,存在性命题的否定是全称命题.[知识链接]下列语句是命题吗?(1)与(3),(2)与(4)之间有什么关系?(1)x>3;(2)2x+1是整数;(3)对所有的x∈R,x>3;(4)至少有一个x∈Z,使2x+1是整数.答:语句(1)、(2)含有变量x,由于不知道变量x代表什么数,无法判断它们的真假,因而不是命题.语句(3)在(1)的基础上,用短语“对所有的”对变量x进行限定;语句(4)在(2)的基础上,用短语“至少有一个”对变量x进行限定,从而使(3)(4)成为可以判断真假的语句,因此语句(3)、(4)是命题.[预习导引]1.全称量词和全称命题(1)全称量词:短语“所有”在陈述中表示事物的全体,逻辑中通常叫做全称量词,并用符号“∀”表示.(2)全称命题:含有全称量词的命题叫做全称命题.即是陈述某集合所有元素都具有某种性质的命题.其形式为“对M中的所有x,p(x)”的命题,用符号简记为∀x∈M,p(x).2.存在量词和存在性命题(1)存在量词短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号“∃”表示.(2)存在性命题含有存在量词的命题,叫做存在性命题.即是陈述某集合M的有些元素x具有某种性质的命题,那么存在性命题就是形如“存在集合M中的元素x,q(x)”的命题,用符号简记为∃x∈M,q(x).要点一全称量词与全称命题例1试判断下列全称命题的真假:(1)∀x∈R,x2+2>0;(2)∀x∈N,x4≥1;(3)对任意角α,都有sin2α+cos2α=1.解(1)由于∀x∈R,都有x2≥0,因而有x2+2≥2>0,即x2+2>0,所以命题“∀x∈R,x2+2>0”是真命题.(2)由于0∈N,当x=0时,x4≥1不成立,所以命题“∀x∈N,x4≥1”是假命题.(3)由于∀α∈R,sin2α+cos2α=1成立.所以命题“对任意角α,都有sin2α+cos2α=1”是真命题.规律方法判断全称命题为真时,要看命题是否对给定集合中的所有元素都成立.判断全称命题为假时,可以用反例进行否定.跟踪演练1判断下列全称命题的真假:(1)所有的素数是奇数;(2)∀x∈R,x2+1≥1;(3)对每一个无理数x,x2也是无理数.解(1)2是素数,但2不是奇数.所以,全称命题“所有的素数是奇数”是假命题.(2)∀x∈R,总有x2≥0,因而x2+1≥1.所以,全称命题“∀x ∈R ,x 2+1≥1”是真命题. (3)2是无理数,但(2)2=2是有理数.所以,全称命题“对每一个无理数x ,x 2也是无理数”是假命题. 要点二 存在量词与存在性命题 例2 判断下列命题的真假: (1)∃x ∈Z ,x 3<1;(2)存在一个四边形不是平行四边形; (3)有一个实数α,tan α无意义.(4)∃x ∈R ,cos x =π2.解 (1)∵-1∈Z ,且(-1)3=-1<1, ∴“∃x ∈Z ,x 3<1”是真命题.(2)真命题,如梯形.(3)真命题,当α=π2时,tan α无意义.(4)∵当x ∈R 时,cos x ∈[-1,1],而π2>1,∴不存在x ∈R ,使cos x =π2,∴原命题是假命题.规律方法 存在性命题是含有存在量词的命题,判定一个存在性命题为真,只需在指定集合中找到一个元素满足命题结论即可. 跟踪演练2 判断下列存在性命题的真假: (1)有一个实数x ,使x 2+2x +3=0; (2)存在两个相交平面垂直于同一条直线; (3)有些整数只有两个正因数.解 (1)由于∀x ∈R ,x 2+2x +3=(x +1)2+2≥2,因此使x 2+2x +3=0的实数x 不存在.所以,存在性命题“有一个实数x ,使x 2+2x +3=0”是假命题.(2)由于垂直于同一条直线的两个平面是互相平行的,因此不存在两个相交的平面垂直于同一条直线.所以,存在性命题“存在两个相交平面垂直于同一条直线”是假命题. (3)由于存在整数3只有两个正因数1和3,所以存在性命题“有些整数只有两个正因数”是真命题.要点三 全称命题、存在性命题的应用例3 (1)对于任意实数x ,不等式sin x +cos x >m 恒成立.求实数m 的取值范围; (2)存在实数x ,不等式sin x +cos x >m 有解,求实数m 的取值范围. 解 (1)令y =sin x +cos x ,x ∈R ,∵y =sin x +cos x =2sin(x +π4)≥-2,又∵∀x ∈R ,sin x +cos x >m 恒成立, ∴只要m <-2即可.∴所求m 的取值范围是(-∞,-2). (2)令y =sin x +cos x ,x ∈R ,∵y =sin x +cos x =2sin(x +π4)∈[-2,2].又∵∃x ∈R ,sin x +cos x >m 有解, ∴只要m <2即可,∴所求m 的取值范围是(-∞,2).规律方法 有解和恒成立问题是存在性命题和全称命题的应用,注意二者的区别. 跟踪演练3 (1)已知关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集非空,求实数a 的取值范围;(2)若命题p :1-sin2x =sin x -cos x 是真命题,求实数x 的取值范围.解 (1)关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集非空,∴Δ=(2a +1)2-4(a 2+2)≥0,即4a -7≥0,解得a ≥74,∴实数a 的取值范围为[74,+∞).(2)由1-sin2x =sin x -cos x ,得sin 2x +cos 2x -2sin x cos x =sin x -cos x , ∴(sin x -cos x )2=sin x -cos x , 即|sin x -cos x |=sin x -cos x , ∴sin x ≥cos x .结合三角函数图象,得2k π+π4≤x ≤2k π+5π4(k ∈Z ),此即为所求x 的取值范围.即p :∀x ∈[2k π+π4,2k π+5π4](k ∈Z ),有1-sin2x =sin x -cos x 是真命题.1.给出四个命题:①末位数是偶数的整数能被2整除;②有的菱形是正方形;③存在实数x ,x >0;④对于任意实数x,2x +1是奇数.下列说法正确的是( ) A .四个命题都是真命题 B .①②是全称命题 C .②③是存在性命题 D .四个命题中有两个假命题 答案 C解析 ①④为全称命题;②③为存在性命题;①②③为真命题;④为假命题. 2.下列命题中,不是全称命题的是( ) A .任何一个实数乘以0都等于0 B .自然数都是正整数 C .每一个向量都有大小D .一定存在没有最大值的二次函数 答案 D解析 D 选项是存在性命题.3.下列存在性命题是假命题的是( ) A .存在x ∈Q ,使2x -x 3=0 B .存在x ∈R ,使x 2+x +1=0 C .有的素数是偶数 D .有的有理数没有倒数 答案 B解析 对于任意的x ∈R ,x 2+x +1=(x +12)2+34>0恒成立.4.用量词符号“∀”“∃”表述下列命题: (1)凸n 边形的外角和等于2π. (2)有一个有理数x 满足x 2=3. (3)对任意角α,都有sin 2α+cos 2α=1.解 (1)∀x ∈{x |x 是凸n 边形},x 的外角和是2π. (2)∃x ∈Q ,x 2=3.(3)∀α∈R ,sin 2α+cos 2α=1.1.判断命题是全称命题还是存在性命题,主要是根据命题涉及的意义去判断,命题中有的含有全称量词和存在量词,有的不含全称量词和存在量词,一定要抓实质,不能看表面.2.要确定一个全称命题是真命题,需保证该命题对所有的元素都成立;要确定一个全称命题是假命题,举出一个反例即可.3.要确定一个存在性命题是真命题,举出一个例子说明该命题成立即可;若经过逻辑推理得到命题对所有的元素都不成立,则该存在性命题是假命题.1.2基本逻辑联结词1.2.1“且”与“或”[学习目标] 1.理解逻辑联结词“且”、“或”的含义.2.会用逻辑联结词联结两个命题或改写某些数学命题,并能判断命题的真假.[知识链接]1.观察三个命题:①5是10的约数;②5是15的约数;③5是10的约数且是15的约数,它们之间有什么关系?答:命题③是将命题①,②用“且”联结得到的新命题.“且”与集合运算中交集的定义A∩B={x|x∈A,且x∈B}中“且”的意义相同,叫逻辑联结词,表示“并且”,“同时”的意思.2.观察三个命题:①3>2;②3=2;③3≥2它们之间有什么关系?答:命题③是命题①,②用逻辑联结词“或”联结得到的新命题.“或”与集合运算中并集A∪B={x|x∈A,或x∈B}中的“或”的意义相同,有“可兼”的含义.[预习导引]1.用逻辑联结词构成新命题(1)一般地,用逻辑联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作p∧q,读作“p且q”.由“且”的含义,可以用“且”来定义集合A和集合B的交集A∩B={x|(x∈A)∧(x∈B)}.(2)一般地,用逻辑联结词“或”把命题p,q联结起来,就得到一个新命题,记作p∨q,读作“p或q”.由“或”的含义,可以用“或”来定义集合A和集合B的并集A∪B={x|(x∈A)∨(x∈B)}.2假假假假要点一含逻辑联结词的命题的构成例1指出下列命题的形式及构成它的简单命题:(1)24既是8的倍数,也是6的倍数;(2)菱形是圆的内接四边形或是圆的外切四边形.解(1)这个命题是“p∧q”的形式,其中p:24是8的倍数,q:24是6的倍数.(2)这个命题是“p∨q”的形式,其中p:菱形是圆的内接四边形,q:菱形是圆的外切四边形.规律方法(1)正确理解逻辑联结词“且”“或”是解题的关键.(2)有些命题并不一定包含“或”“且”这些逻辑联结词,要结合命题的具体含义正确的判定命题构成.跟踪演练1分别写出由下列命题构成的“p∨q”“p∧q”形式的命题:(1)p:梯形有一组对边平行,q:梯形有一组对边相等;(2)p:-1是方程x2+4x+3=0的解,q:-3是方程x2+4x+3=0的解.解(1)p∧q:梯形有一组对边平行且有一组对边相等.p∨q:梯形有一组对边平行或有一组对边相等.(2)p∧q:-1与-3是方程x2+4x+3=0的解.p∨q:-1或-3是方程x2+4x+3=0的解.要点二判断含逻辑联结词命题的真假例2指出下列命题的构成形式并判断命题的真假:(1)等腰三角形底边上的中线既垂直于底边,又平分顶角;(2)1是素数或是方程x2+3x-4=0的根.解(1)是p∧q形式,其中p:等腰三角形底边上的中线垂直于底边;q:等腰三角形底边上的中线平分顶角.因为p真,q真,所以p∧q真.所以该命题是真命题.(2)这是p∨q形式命题,其中p:1是素数;q:1是方程x2+3x-4=0的根,因为p假,q 真,所以p∨q真,故该命题是真命题.规律方法判断含逻辑联结词的命题的真假的步骤:(1)逐一判断命题p,q的真假.(2)根据“且”“或”的含义判断“p∧q”,“p∨q”的真假.p∧q为真⇔p和q同时为真,p∧q为假⇔p和q中至少一个为假;p∨q为真⇔p和q中至少一个为真,p∨q为假⇔p和q同时为假.跟踪演练2分别指出下列各组命题构成的“p∧q”和“p∨q”形式的命题的真假:(1)p:6<6,q:6=6;(2)p:梯形的对角线相等,q:梯形的对角线互相平分;(3)p:函数y=x2+x+2的图象与x轴没有公共点;q:不等式x2+x+2<0无解;(4)p:函数y=cos x是周期函数.q:函数y=cos x是奇函数.解(1)∵p为假命题,q为真命题.∴p∧q为假命题,p∨q为真命题.(2)∵p为假命题,q为假命题,∴p∧q为假命题,p∨q为假命题.(3)∵p为真命题,q为真命题,∴p∧q为真命题,p∨q为真命题.(4)∵p为真命题,q为假命题,∴p∧q为假命题,p∨q为真命题.要点三逻辑联结词的应用例3设有两个命题.命题p:不等式x2-(a+1)x+1≤0的解集是∅;命题q:函数f(x)=(a +1)x在定义域内是增函数.如果p∧q为假命题,p∨q为真命题,求a的取值范围.解对于p:因为不等式x2-(a+1)x+1≤0的解集是∅,所以Δ=[-(a +1)]2-4<0. 解这个不等式得:-3<a <1.对于q :f (x )=(a +1)x 在定义域内是增函数, 则有a +1>1,所以a >0.又p ∧q 为假命题,p ∨q 为真命题, 所以p 、q 必是一真一假.当p 真q 假时有-3<a ≤0,当p 假q 真时有a ≥1. 综上所述,a 的取值范围是(-3,0]∪[1,+∞).规律方法正确理解“且”“或”的含义是解此类题的关键,由p ∧q 为假知p ,q 中至少一假,由p ∨q 为真知p ,q 至少一真.跟踪演练3 已知命题p :方程x 2+2ax +1=0有两个大于-1的实数根,命题q :关于x 的不等式ax 2-ax +1>0的解集为R ,若q 为假命题,“p ∨q ”为真命题,求实数a 的取值范围.解 命题p :方程x 2+2ax +1=0有两个大于-1的实数根,等价于 ⎩⎪⎨⎪⎧Δ=4a 2-4≥0,x 1+x 2>-2,(x 1+1)(x 2+1)>0⇔⎩⎪⎨⎪⎧a 2-1≥0,-2a >-22-2a >0,,解得a ≤-1.命题q :关于x 的不等式ax 2-ax +1>0的解集为R ,等价于a =0或⎩⎪⎨⎪⎧a >0,Δ<0.由于⎩⎪⎨⎪⎧ a >0,Δ<0⇔⎩⎪⎨⎪⎧a >0,a 2-4a <0,解得0<a <4,∴0≤a <4.因为q 为假命题,“p ∨q ”为真命题,即p 真且q 假, 所以⎩⎪⎨⎪⎧a ≤-1,a <0或a ≥4,解得a ≤-1.故实数a 的取值范围是(-∞,-1].1.命题:“方程x 2-1=0的解是x =±1”,其使用逻辑联结词的情况是( ). A .使用了逻辑联结词“且” B .使用了逻辑联结词“或”C.没有使用逻辑联结词D.以上选项均不正确答案B解析“x=±1”可以写成“x=1或x=-1”,故选B.2.已知p:∅⊆{0},q:{1}∈{1,2}.在命题“p”,“q”,“p∧q”,和“p∨q”中,真命题有()A.1个B.2个C.3个D.0个答案B解析容易判断命题p:∅⊆{0}是真命题,命题q:{1}∈{1,2}是假命题,所以p∧q是假命题,p∨q真命题,故选B.3.给出下列命题:①2>1或1>3;②方程x2-2x-4=0的判别式大于或等于0;③25是6或5的倍数;④集合A∩B是A的子集,且是A∪B的子集.其中真命题的个数为()A.1B.2C.3D.4答案D解析①由于2>1是真命题,所以“2>1或1>3”是真命题;②由于方程x2-2x-4=0的Δ=4+16>0,所以“方程x2-2x-4=0的判别式大于或等于0”是真命题;③由于25是5的倍数,所以命题“25是6或5的倍数”是真命题;④由于A∩B⊆A,A∩B⊆A∪B,所以命题“集合A∩B是A的子集,且是A∪B的子集”是真命题.4.命题p:方向相同的两个向量共线,q:方向相反的两个向量共线,则命题“p∨q”为________.答案方向相同或相反的两个向量共线解析方向相同的两个向量共线或方向相反的两个向量共线,即“方向相同或相反的两个向量共线”.1.正确理解逻辑联结词是解题的关键,日常用语中的“或”是两个中任选一个,不能都选,而逻辑联结词中的“或”是两个中至少选一个.2.判断含逻辑联结词命题的真假时,先逐一判断命题p,q的真假;再根据“且”“或”的含义判断“p∧q”“p∨q”的真假.1.2.2“非”(否定)[学习目标] 1.理解逻辑联结词“非”的含义.2.掌握存在性命题和全称命题否定的格式,会对命题、存在性命题、全称命题进行否定.[知识链接]你能尝试写出下面含有一个量词的命题的否定吗?(1)所有矩形都是平行四边形;(2)每一个素数都是奇数;(3)∀x∈R,x2-2x+1≥0.答:(1)存在一个矩形不是平行四边形;(2)存在一个素数不是奇数;(3)∃x∈R,x2-2x+1<0.[预习导引]1.概念一般地,对命题p加以否定,就得到一个新的命题,记作綈p,读作“非p”或“p的否定”.由“非”的含义,可以用“非”来定义集合A在全集U中的补集∁U A={x∈U|綈(x∈A)}={x∈U|x∉A}.2.p与綈p真值表3.存在性命题的否定存在性命题p:∃x∈A,p(x),它的否定是綈p:∀x∈A,綈p(x).存在性命题的否定是全称命题.4.全称命题的否定全称命题q:∀x∈A,q(x),它的否定是綈q:∃x∈A,綈q(x).全称命题的否定是存在性命题.5.开句含有变量的语句,通常称为开句或条件命题.要点一全称命题的否定例1写出下列全称命题的否定:(1)任何一个平行四边形的对边都平行;(2)数列:1,2,3,4,5,中的每一项都是偶数;(3)∀a,b∈R,方程ax=b都有唯一解;(4)可以被5整除的整数,末位是0.解(1)其否定为:存在一个平行四边形的对边不都平行.(2)其否定:数列:1,2,3,4,5,中至少有一项不是偶数.(3)其否定:∃a,b∈R,使方程ax=b的解不唯一或不存在.(4)其否定:存在被5整除的整数,末位不是0.规律方法全称命题的否定是存在性命题,对省略全称量词的全称命题可补上量词后进行否定.跟踪演练1写出下列全称命题的否定:(1)p:所有能被3整除的整数都是奇数;(2)p:每一个四边形的四个顶点共圆;(3)p:对任意x∈Z,x2的个位数字不等于3.解(1) 綈p:存在一个能被3整除的整数不是奇数.(2) 綈p:存在一个四边形,它的四个顶点不共圆.(3) 綈p :∃x ∈Z ,x 2的个位数字等于3. 要点二 存在性命题的否定 例2 写出下列存在性命题的否定: (1)p :∃x ∈R ,x 2+x +3≤0; (2)q :有的三角形是等边三角形; (3)r :有一个质数含有三个正因数. 解 (1)綈p :∀x ∈R ,x 2+x +3>0. (2)綈q :所有的三角形都不是等边三角形. (3)綈r :每一个质数都不含三个正因数.规律方法存在性命题的否定是全称命题,即“∃x ∈A ,p (x )”的否定为“∀x ∈A ,綈p (x )”.由以上结论,可知写一个命题的否定时,首先判断该命题是“全称命题”还是“存在性命题”,要确定相应的量词,给出命题否定后,要判断与原命题是否相对应(全称命题↔存在性命题),进一步判断它们的真假是否对应. 跟踪演练2 写出下列存在性命题的否定: (1)p :有些实数的绝对值是正数; (2)p :某些平行四边形是菱形; (3)p :∃x ∈R ,x 3+1<0.解 (1)綈p :所有实数的绝对值都不是正数. (2)綈p :每一个平行四边形都不是菱形. (3)綈p :∀x ∈R ,x 3+1≥0.要点三 存在性命题、全称命题的综合应用例3 已知函数f (x )=4x 2-2(p -2)x -2p 2-p +1在区间[-1,1]上至少存在一个实数c ,使得f (c )>0.求实数p 的取值范围.解 在区间[-1,1]中至少存在一个实数c ,使得f (c )>0的否定是在[-1,1]上的所有实数x ,都有f (x )≤0恒成立.又由二次函数的图象特征可知,⎩⎪⎨⎪⎧ f (-1)≤0,f (1)≤0, 即⎩⎪⎨⎪⎧4+2(p -2)-2p 2-p +1≤0,4-2(p -2)-2p 2-p +1≤0,即⎩⎨⎧p ≥1或p ≤-12,p ≥32或p ≤-3.∴p ≥32或p ≤-3.故在区间[-1,1]上至少存在一个实数c 且使f (c )>0的实数p 的取值范围是⎝⎛⎭⎫-3,32. 规律方法 通常对于“至多”“至少”的命题,应采用逆向思维的方法处理,先考虑命题的否定,求出相应的集合,再求集合的补集,可避免繁杂的运算.跟踪演练3 若∀x ∈R ,f (x )=(a 2-1)x 是减函数,则a 的取值范围是________. 答案 (-2,-1)∪(1,2) 解析依题意有:0<a 2-1<1⇔⎩⎪⎨⎪⎧a 2-1>0,a 2-1<1⇔⎩⎨⎧a <-1或a >1,-2<a <2⇔-2<a <-1或1<a < 2.1.命题p :“存在实数m ,使方程x 2+mx +1=0有实数根”,则“綈p ”形式的命题是( ) A .存在实数m ,使方程x 2+mx +1=0无实根 B .不存在实数m ,使方程x 2+mx +1=0无实根 C .对任意的实数m ,方程x 2+mx +1=0无实根 D .至多有一个实数m ,使方程x 2+mx +1=0有实根 答案 C解析 命题p 是存在性命题,其否定形式为全称命题,即綈p :对任意的实数m ,方程x 2+mx +1=0无实根.2.对下列命题的否定说法错误的是( )A .p :能被2整除的数是偶数;綈p :存在一个能被2整除的数不是偶数B .p :有些矩形是正方形;綈p :所有的矩形都不是正方形C .p :有的三角形为正三角形;綈p :所有的三角形不都是正三角形D .p :∃n ∈N,2n ≤100;綈p :∀n ∈N,2n >100. 答案 C解析 “有的三角形为正三角形”为存在性命题,其否定为全称命题:“所有的三角形都不是正三角形”,故选项C 错误.3.下列命题中的假命题是()A.∀x∈R,2x-1>0B.∀x∈N*,(x-1)2>0C.∃x∈R,lg x<1D.∃x∈R,tan x=2答案B解析A中命题是全称命题,易知2x-1>0恒成立,故是真命题;B中命题是全称命题,当x =1时,(x-1)2=0,故是假命题;C中命题是存在性命题,当x=1时,lg x=0,故是真命题;D中命题是存在性命题,依据正切函数定义,可知是真命题.4.命题“零向量与任意向量共线”的否定为____________________________.答案有的向量与零向量不共线解析命题“零向量与任意向量共线”即“任意向量与零向量共线”,是全称命题,其否定为存在性命题:“有的向量与零向量不共线”.1.对含有一个量词的命题的否定要注意以下问题:(1)确定命题类型,是全称命题还是存在性命题,无量词的全称命题要先补回量词再否定.(2)改变量词:把全称量词改为恰当的存在量词;把存在量词改为恰当的全称量词.2.同一个全称命题、特称命题,由于自然语言的不同,可能有不同的表述方法,在实际应1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件[学习目标] 1.理解充分条件、必要条件、充要条件的意义.2.会求(判定)某些简单命题的条件关系.[知识链接]判断下列两个命题的真假,并思考命题中条件和结论之间的关系:(1)如果x>a2+b2,则x>2ab;(2)如果|x|=1,则x=1.答(1)为真命题,(2)为假命题.命题(1)中,有x>a2+b2,必有x>2ab,即x>a2+b2⇒x>2ab;但由x>2ab推不出x>a2+b2.命题(2)中,由|x|=1,可得x=1或-1.即由|x|=1推不出x=1;但由x=1能推出|x|=1.结论:一般地,“如果p,则q”为真命题,是指由p通过推理可以得出q.这时,我们就说,由p可推出q,记作p⇒q,并且说p是q的充分条件,q是p的必要条件.[预习导引]1.命题的结构在数学中,我们经常遇到“如果p,则(那么)q”的形式的命题,其中p称为命题的条件,q 称为命题的结论.2.充分条件与必要条件的定义当命题“如果p,则q”经过推理证明断定是真命题时,我们就说由p成立可以推出q成立,记作p⇒q,读作“p推出q”.如果p可推出q,则称p是q的充分条件;q是p的必要条件.3.p⇒q的等价命题在逻辑推理中,能表达成以下5种说法:①“如果p,则q”为真命题;②p是q的充分条件;③q是p的必要条件;④q的充分条件是p;⑤p的必要条件是q.4.充要条件的定义一般地,如果p⇒q,且q⇒p,则称p是q的充分且必要条件,简称p是q的充要条件,记作p ⇔q .p 是q 的充要条件,又常说成q 当且仅当p ,或p 与q 等价.要点一 充分条件、必要条件、充要条件的判断例1 指出下列各题中,p 是q 的什么条件(在“充分不必要条件”,“必要不充分条件”,“充要条件”,“既不充分又不必要条件”中选出一种作答): (1)在△ABC 中,p :∠A >∠B ,q :BC >AC ; (2)在△ABC 中,p :sin A >sin B ,q :tan A >tan B ; (3)已知x ,y ∈R ,p :(x -1)2+(y -2)2=0, q :(x -1)(y -2)=0.解 (1)在△ABC 中,显然有∠A >∠B ⇔BC >AC ,所以p 是q 的充要条件.(2)取A =120°,B =30°,p ⇒/ q ,又取A =30°,B =120°,q ⇒/p ,所以p 是q 的既不充分也不必要条件.(3)因为p :A ={(1,2)}, q :B ={(x ,y )|x =1或y =2}, A B ,所以p 是q 的充分不必要条件.规律方法(1)判断p 是q 的什么条件,主要判断p ⇒q 及q ⇒p 两命题的正确性,若p ⇒q 真,则p 是q 的充分条件,若q ⇒p 真,则p 是q 的必要条件.(2)关于充要条件的判断问题,当不易判断p ⇒q 真假时,也可从集合角度入手判断真假,结合集合关系理解,对解决与逻辑有关的问题是大有益处的.跟踪演练1 指出下列各组命题中,p 是q 的什么条件(在“充分不必要条件,必要不充分条件,充要条件,既不充分也不必要条件”中选一种作答)? (1)p :△ABC 中,b 2>a 2+c 2,q :△ABC 为钝角三角形; (2)p :△ABC 有两个角相等,q :△ABC 是正三角形; (3)若a ,b ∈R ,p :a 2+b 2=0,q :a =b =0. 解 (1)在△ABC 中,∵b 2>a 2+c 2,∴cos B =a 2+c 2-b 22ac<0,∴B 为钝角,即△ABC 为钝角三角形,反之若△ABC 为钝角三角形,B 可能为锐角,这时b 2<a 2+c 2.∴p ⇒q ,q p ,故p 是q 的充分不必要条件.(2)有两个角相等不一定是等边三角形,反之一定成立, ∴pq ,q ⇒p ,故p 是q 的必要不充分条件.(3)若a 2+b 2=0,则a =b =0,故p ⇒q ; 若a =b =0,则a 2+b 2=0,即q ⇒p , 所以p 是q 的充要条件. 要点二 充要条件的证明例2 求证:关于x 的方程x 2+mx +1=0有两个负实根的充要条件是m ≥2.证明 (1)充分性:因为m ≥2,所以Δ=m 2-4≥0,所以方程x 2+mx +1=0有实根,设两根为x 1,x 2,由根与系数的关系知,x 1·x 2=1>0,所以x 1,x 2同号. 又x 1+x 2=-m ≤-2<0,所以x 1,x 2同为负数. 即m ≥2是x 2+mx +1=0有两个负实根的充分条件.(2)必要性:因为x 2+mx +1=0有两个负实根,设其为x 1,x 2,且x 1x 2=1,所以⎩⎪⎨⎪⎧Δ=m 2-4≥0,x 1+x 2=-m <0,即⎩⎪⎨⎪⎧m ≥2或m ≤-2,m >0, 所以m ≥2,即m ≥2是x 2+mx +1=0有两个负实根的必要条件. 综上可知,m ≥2是x 2+mx +1=0有两个负实根的充要条件.规律方法充要条件的证明,关键是确定哪是条件,哪是结论,并明确充分性是由条件推结论,必要性是由结论推条件,也可以理解为证明充分性就是证原命题成立,证必要性就是证原命题的逆命题成立.跟踪演练2 求证:方程x 2+(2k -1)x +k 2=0的两个根均大于1的充要条件是k <-2. 证明 必要性:若方程x 2+(2k -1)x +k 2=0有两个大于1的根,不妨设两个根为x 1,x 2,则⎩⎪⎨⎪⎧Δ=(2k -1)2-4k 2≥0,(x 1-1)+(x 2-1)>0,(x 1-1)(x 2-1)>0.⇒⎩⎪⎨⎪⎧k ≤14,(x 1+x 2)-2>0,x 1x 2-(x 1+x 2)+1>0.。
2017-2018学年高中数学 第三章 导数及其应用 3.1 导数同步导学案 新人教B版选修1-1

3.1.3导数的几何意义学习目标:1通过函数图象直观地理解导数的几何意义2 会利用导数求切线的方程德育目标:通过学生的主动参与,师生、生生的合作交流,提高学生的学习兴趣,激发其求知欲,培养探索精神重点:理解函数()x f y =在点(00,y x )处的导数与函数()x f y =图象在点(00,y x )处的切线的斜率间的关系,掌握导数的几何意义难点:已知函数解析式,会求函数在点(00,y x )处切线的斜率,能求过点(00,y x )的切线方程活动一:自主预习,知识梳理一.曲线割线的斜率已知函数()x f y =图象上两点A ()()x x f x x B x f x ∆+∆+0000,(),,(,过A,B 两点割线的斜率是 ,即曲线割线的斜率就是二、函数()x f y =在点0x 处的导数的几何意义曲线()x f y =在点()),(00x f x 处的导数)(0/x f 的几何意义为活动二:问题探究1. 是否任何曲线割线均有斜率?2.与曲线只有一个公共点的直线一定式曲线的切线吗?3.曲线的切线与曲线只有一个交点吗?活动三:要点导学,合作探究要点一:求曲线的切线方程例1: 求抛物线2x y =在点(1,1)切线的斜率例2:求双曲线x y 1=在点(2,21)的切线方程练习:(1)曲线2212-=x y 在点⎪⎭⎫⎝⎛-23,1处的切线方程为(2)已知曲线331x y =上一点P )38,2(求:1.点P 处的切线的斜率2.点P 处的切线方程练习:求曲线2x y =过P )0,1(的切线方程要点二:求切点坐标例4:曲线2x y =的切线分别满足下列条件,求出切点的坐标 (1) 平行于直线54-=x y(2) 垂直于直线0562=+-y x(3)与x 轴成 135的倾斜角作业:P85习题A,B小结:1.求切线方程的步骤 2.求切点坐标的步骤反思。
2017-2018学年人教B版高中数学选修1-1第三章导数及其

3.2 导数的运算课堂导学三点剖析一、求函数的导数【例1】 求下列函数的导数.(1)y =(2x 2+3)(3x -1);(2)y =(x -2)2;(3)y =x -s in 2x ·cos 2x ;(4)y =3x 2+x cos x ;(5)y =tan x ;(6)y =e x ·ln x ;(7)y =lg x -21x. 解析:(1)方法一:y ′=(2x 2+3)′(3x -1)+(2x 2+3)(3x -1)′=4x (3x -1)+3(2x 2+3)=18x 2-4x +9. 方法二:∵y =(2x 2+3)(3x -1)=6x 3-2x 2+9x -3,∴y ′=(6x 3-2x 2+9x -3)′=18x 2-4x +9.(2)∵y =(x -2)2=x -4x +4,∴y ′=x ′-(4x )′+4′=1-4×2121-x =1-221-x . (3)∵y =x -s in2x cos 2x =x -21s in x , ∴y ′=x ′-(21s in x )′=1-21cos x . (4)y ′=(3x 2+x cos x )′=6x +cos x -xs in x ; (5)y ′=(x x cos sin )′=;cos 1cos sin cos 2222xx x x =+ (6)y ′=xe x+e x ·ln x ; (7)y ′=.210ln 13xx + 二、求直线方程 【例2】 2004全国高考卷Ⅳ,文19 已知直线l 1为曲线y =x 2+x -2在P (1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2.(Ⅰ)求直线l 2的方程;(Ⅱ)求由直线l 1、l 2和x 轴所围成的三角形的面积.解:(Ⅰ)y ′=2x +1.直线l 1的方程为:y =3x -3.设直线l 2过曲线y =x 2+x -2上的点B (b ,b 2+b -2),则l 2的方程为y =(2b +1)x -b 2-2. 因为l 1⊥l 2,则有2b +1=-31,b =-32. 所以直线l 2的方程为y =-31x -922. (Ⅱ)解方程组⎪⎪⎩⎪⎪⎨⎧-==⎪⎩⎪⎨⎧--=-=.25,61.92231,33y x x y x y 得 所以直线l 1和l 2的交点坐标为(25,61-) l 1、l 2与x 轴交点的坐标分别为(1,0)、(322-,0). 所以所求三角形的面积S =.12125|25|32521=-⨯⨯ 温馨提示要求与切线垂直的直线方程,关键是确定切线的斜率,从已知条件分析,求切线的斜率是可行的途径,可先通过求导确定曲线在点P 处切线的斜率,再根据点斜式求出与切线垂直的直线方程.三、利用导数求函数解析式【例3】 已知抛物线y =ax 2+bx +c 通过点P (1,1),且在点Q (2,-1)处与直线y =x -3相切,求实数a 、b 、c 的值.思路分析:解决问题的关键在于理解题意,转化、沟通条件与结论,将二者统一起来.题中涉及三个未知数,题设中有三个独立条件,因此,通过解方程组来确定参数a 、b 、c 的值是可行的途径.解:∵曲线y =ax 2+bx +c 过P (1,1)点,∴a +b +c =1.①∵y ′=2ax +b ,∴y ′|x =2=4a +b .∴4a +b =1.②又曲线过Q (2,-1)点,∴4a +2b +c =-1.③联立①②③解得a =3,b =-11,c =9.温馨提示用导数求曲线的切线方程或求曲线方程,常依据的条件是(1)切点既在切线上,又在曲线上;(2)过曲线上某点的切线的斜率,等于曲线的函数解析式在该点的导数.各个击破类题演练1求下列函数的导数(1)y =x 6 (2)y =431x (3)y =21x (4)y =x 解:(1)y ′=(x 6)′=6x 6-1=6x 5;(2)y ′=;4343)()1(471434343----=-='='x x x x (3)y ′=(x -2)′=-2x -3; (4)y ′=(x )′=(21x )′=.2121121xx =-变式提升1求下列函数的导数:(1)y =(x +1)(x +2)(x +3) (2)y =11+-x x 解:(1)解法一:y ′=[(x +1)(x +2)]′(x +3)+(x +1)(x +2)(x +3)′=[(x +1)′(x +2)+(x +1)(x +2)′](x +3)+(x +1)(x +2)=(x +2+x +1)(x +3)+(x +1)(x +2)=(2x +3)(x +3)+(x +1)(x +2)=3x 2+12x +11解法二:y =x 3+6x 2+11x +6,∴y ′=3x 2+12x +11.(2)解法一:y ′=)11('+-x x .)1(2)1()1()1()1()1)(1()1()1(222+=+--+=+'+--+'-=x x x x x x x x x解法二:y =1-12+x , y ′=(1-12+x )′=(-12+x )′ 2)1()1(2)1()2(+'+-+'-=x x x 2)1(2+=x 类题演练2求过曲线y =cos x 上点P (3π,21)且与过这点的切线垂直的直线方程. 解:∵y =cos x ,∴y ′=-sin x .曲线在点P (3π,21)处的切线斜率是.233πsin |3π-=='=x y ∴过点P 且与切线垂直的直线的斜率为32. ∴所求的直线方程为y -21=)3π(32-x , 即2x -3y -.02332π=+变式提升2 求曲线y =2x 2-1的斜率等于4的切线方程.解:设切点为P (x 0,y 0),则 y ′=(2x 2-1)′=4x ,∴0|x x y ='=4,即4x 0=4,∴x 0=1当x 0=1时,y 0=1,故切点P 的坐标为(1,1)∴所求切线方程为y -1=4(x -1)即4x -y -3=0.类题演练3已知y =f (x )是一个一元三次函数,若f (-3)=2,f (3)=6且f ′(-3)=f ′(3)=0,求此函数的解析式.解:设f (x )=ax 3+bx 2+cx +d ,则f ′(x )=3ax 2+2bx +c ,依题意有: ⎪⎩⎪⎨⎧===-=⇒⎪⎪⎩⎪⎪⎨⎧=++=+-=+++=+-+-⇒⎪⎪⎩⎪⎪⎨⎧='=-'==-.4,1,0,271.0627,027,63927,23927.0)3(.0)3(,6)3(,2)3(d c b a c b a c bb a d c b a d c b a f f f f 即f (x )=-271x 3+x +4.变式提升3已知函数f (x )=2x 3+ax 与g(x )=bx 2+c 的图象都过点P (2,0),且在点P 处有公共切线,求f (x ),g(x )的表达式:解析:由已知⎪⎩⎪⎨⎧=+⨯=⨯+⨯02022223c b a 即⎩⎨⎧=-=②+①04 8c b a 又∵f ′(x )=6x 2+a ,g′(x )=2bx 且f ′(2)=g′(2)∴6×22+a =2×b ×2 ③ 由①②③的⎪⎩⎪⎨⎧-==-=1648c b a∴f (x )=2x 3-8xg(x )=4x 2-16。
2017-2018学年高一数学选修1-1全册同步导学案含答案【人教B版】

提示:常见的全称量词除“所有”外,还有“一切”“每一个”“任一个”等.
特别提醒全称命题实际上是陈述某集合中所有元素都具有某种性质的命题.有时省去全称量词,但仍为全称命题.如“正方形都是平行四边形”,省去了全称量词“所有”.
3.存在量词与存在性命题
思考3如何判断一个命题是全称命题还是存在性命题?
3.3.2利用导数研究函数的极值
3.3导数的应用3.3.3导数的实际应用
1.1命题与量词
预习导航
课程目标
学习脉络
1.了解命题的定义.
2.理解全称量词与存在量词的意义.
3.会判断全称命题与存在性命题的真假.
1.命题
思考1数学中的定义、公理、定理与命题的关系是怎样的?
提示:数学中的定义、公理、定理都是命题,但命题与定理是有区别的:
(1)命题有真假之分,而定理都是真的;
(2)命题一定有逆命题,而定理不一定有逆定理.
名师点拨(1)并不是任何语句都是命题,只有能够判断真假的语句才是命题.一般地,祈使句、感叹句、疑问句都不是命题.
(2)有些语句尽管现在不能确定其真假,但随着时间的推移,总能判断其真假,这样的语句也是命题.
2.全称量词与全称命题
判断下列命题的真假:
(1)对角线互相垂直的四边形是菱形
(2)0是最小的自然数
(3)0既不是奇数,也不是偶数
(4)空集是任何非空集合的真子集
答案:(1)假(2)真(3)假(4)真
类题演练3
(2)疑问句,没有对垂直于同一条直线的两条直线是否平行作出判断,不是命题.
(3)是假命题,数0既不是正数也不是负数.
(4)是假命题,没有考虑到“在两个三角形中,其他两边对应相等”的情况.
高二数学(人教B版)选修1-1全册课件1、3-3-2利用导数研究函数的极值

人 教 B 版 数 学
第三章 导数及其应用
(选修1-1)
a 3 (2010· 北京文,18)设函数 f(x)=3x +bx2+cx+d(a>0), 且方程 f′(x)-9x=0 的两个根分别为 1,4. (1)当 a=3 且曲线 y=f′(x)过原点时,求 f(x)的解析式; (2)若 f(x)在(-∞,+∞)内无极值点,求 a 的取值范围.
人 教 B 版 数 学
f(x0)是极小值.
第三章 导数及其应用
(选修1-1)
求函数f(x)=x3-3x2-9x+5的极值. [解析] f′(x)=3x2-6x-9. 解方程3x2-6x-9=0,得x1=-1,x2=3. 当x变化时,f′(x)与f(x)的变化情况如下表:
x f′(x) f(x) (-∞,-1) + 单调递增 -1 0 10 (-1,3) - 单调递减 3 0 -22 (3,+∞) + 单调递增
人 教 B 版 数 学
(2)由(1)可知,f(x)=2x3-9x2+12x+8c, f′(x)=6x2-18x+12=6(x-1)(x-2). 当 x∈(0,1)时,f′(x)>0; 当 x∈(1,2)时,f′(x)<0;
第三章 导数及其应用
(选修1-1)
当x∈(2,3)时,f′(x)>0.
所以当x=1时,f(x)取得极大值f(1)=5+8c, 又f(0)=8c,f(3)=9+8c. 则当x∈[0,3]时,f(x)的最大值为f(3)=9+8c, 因为对于任意的x∈[0,3],有f(x)<c2恒成立,
人 教 B 版 数 学
得.
第三章 导数及其应用
(选修1-1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.3.2利用导数研究函数的极值
编制人:刘莹 校对:刘莹 2015.12.22
学习目标:1理解函数极值与极值点的概念
2 掌握求极值与最值得方法与步骤
3 能利用极值与最值求解参数
德育目标:通过学生的主动参与,师生、生生的合作交流,提高学生的学习兴趣,激发其求知
欲,培养探索精神
重点:1. 理解函数极值与极值点的概念
2. 掌握求极值与最值得方法与步骤
难点:能利用极值与最值求解参数
活动一:自主预习,知识梳理
一、极值的概念
已知函数()x f y =及其定义域内一点0x ,对于存在一个包含0x 的开区间内的所有点x ,如果
都有
,则称函数()x f 在 处取极大值,记作)(0x f y =极大值,并把 称为函数()x f 的一个极大值点;如果都有 ,则称函数()x f 在 处取极
小值,记作)(0x f y =极小值,并把 称为函数()x f 的一个极小值点。
与 统称为极值。
与 统称为极值点
二、求可导函数()x f y =极值的步骤
1.求 ;
2.求方程 的所有实数根;
3.对每个实数根进行检验,判断在每个根的左右侧, 的符号如何变化。
如
果()x f /的符号 ,则()0x f 是极大值;如果()x f /的符号 ,则
()0x f 是极小值;如果在
()0/=x f 的根0x x =的左右侧符号不变,则()0x f 不是极值
三、求可导函数()x f y =在[]b a ,的最大(小)值的步骤
1.求()x f 在开区间),(b a 内的
2.计算函数()x f 在 和 的函数值,其中最大一个为最大值,最小的一个为最小值
活动二:问题探究
1. 同一函数的极大值一定大于它的极小值吗?
2. 导数为零的点一定是极值点吗?
3. 在区间[]b a ,上函数()x f y =的图象是一条连续不断的曲线,在[]b a ,上一定存在最值和极
值吗?
活动三:要点导学,合作探究
要点一:求函数的极值,最值
例1:已知函数()443
13+-=
x x x f (1) 求函数的极值
(2) 求函数在区间[]4,3-上的最大值和最小值
练习:P99练习B-1
要点二:极值的综合应用
例2:已知a 为实数,函数()a x x x f ++-=33 (1) 求函数()x f 的极值,并画出其图象(草图)
(2) 当a 为何值时,方程()0=x f 恰好有两个实数根
练习:已知()223+++=cx bx x x f ,(1)若()x f 在1=x 时有极值-1,求c b ,的值
(2)在(1)的条件下,若函数()x f y =的图象与函数k y =的图象恰有三个不同交点,求k 的取值范围
作业:P98练习A,B
小结:。