不定积分的基本概念与性质
不定积分的概念与性质

式
任 意 常 数
例1 求 3x2dx 解: ( x3 ) 3x2 3x2dx x3 C
例2 求 cos xdx
解: (sin x) cos x cos xdx sin x C
例3
求
1dx x
解:
ln x 1
x
1dx x
ln
dx sin 2
x
csc2
xdx
cot
x
C
(10) sec x tan xdx sec x C (11) csc x cot xdx csc x C (12) e xdx e x C (13) a xdx a x C
ln a
例5
求
1 x4
结论:微分运算与求不定积分的运算是互逆的。
3. 设 k1 , k2 为非零常数
k1 f1( x) k2 f2( x)dx k1 f1( x)dx k2 f2( x)dx
三、基本积分表1
(1) kdx kx C(k是常数)
(2) xdx x1 C( 1)
第四节 不定积分的概念与性质
一 不定积分的概念 二 不定积分的性质 三 基本积分表
一、不定积分的概念
定义 在区间 I 内,函数f ( x)的带有任意常
数项的原函数,称为 f ( x)在区间I 内
的不定积分,记为 f ( x)dx
f ( x)dx F( x) C
积 分 号
被积 积分 表变 达量
例9 解:
求
2x2 1 dx x2( x2 1)
x22 (xx2211)dx
不定积分的概念与性质ppt课件

例4 求 tan2 xdx
例6 求
1 sin2 x cos2 x dx
22
小结
一、不定积分的概念
(原函数、不定积分的定义及几何意义)
二、不定积分的性质
(互逆性质、线性性质)
三、直接积分法
可导函数F(x),使对任一 x I 都有F ( x) f ( x)
➢唯一性
(F(x)) f (x) (F(x) C) f (x)
若函数f(x)在区间I上存在原函数,则原函数不唯一
➢结构
F(x)的一个原函数
{f (x)的原函数} {F(x)+C} 设( x)是f (x)的另一个原函数任,则意常数( x) F( x) C
三、直接积分法举例
(8)
dx cos 2
x
sec2
xdx
tan x C
(9)
d sin
x
2
x
csc2
xdx
cot x C
(10) sec x tan xdx sec x C (11) csc x cot xdx csc x C (12) ex dx ex C (13) a xdx a x C
( k 为常数)
(2)
x dx
1
1
x
1
C
( 1)
(3)
dx x
ln
x
C
(4)
1
dx x
2
arctan
x
C
或 arc cot x C
(5)
dx arcsin x C 1 x2
或 arc cos x C
(6) cos xdx sin x C (7) sin xdx cos x C
ln a
不定积分

的原函数, 且 求
解: 由题设 F ( x) f ( x) , 则 F ( x) F ( x) sin 2 2 x , 故 即
1 cos 4 x F ( x) F ( x)d x sin 2 xd x 2 d x
2
F 2 ( x) x 1 sin 4 x C 4
2a
1 (a 2t 2 1) 2
3 2
d(a 2t 2 1)
(a t 1) C 2 3a
2 2
当 x < 0 时, 类似可得同样结果 .
4. 分部积分法:
udv uv vdu
(1) 使用原则 : v 易求出, u v dx 易积分
(2) 题目类型 : •直接用公式: 选择u的一般次序—反对幂三指 •循环解出:分部产生循环式 , 由此解出积分式 ;
R( x , n ax b , m ax b ) dx ,
令 t p a x b , p 为m , n 的最小公倍数 .
例. 求
1 1 x x x dx .
1 x ,则 解: 令 t x
2t dt 原式 (t 1) t 2 2 (t 1)
2
t 1 2 2 dt 2 t ln C t 1 t 1
原式 =
1 sin 2 x 2 sin 2 x
d (1 sin 2 x)
令 t 1 sin 2 x
2t 2 d t 2 (1 1 2 ) d t 1 t 1 t2
2t 2arctan t C
2 1 sin 2 x arctan 1 sin 2 x C
2. 第一换元法:
拆、拼、凑 g ( x)dx f ( ( x)) ' ( x)dx = f (u)du 基本积分表 F (u ) C F ( ( x)) C
不定积分的概念与性质

定义: 如果在区间I 内, 可导函数F ( x ) 的
导函数为 f ( x ) , x I ,都有 F ( x ) f ( x ) 即
或dF ( x ) f ( x )dx ,那么函数 F ( x ) 就称为 f ( x )
I 或 f ( x )dx 在区间 内原函数.
2
xdx .
5 2
x 2 xdx x dx
根据积分公式(2) x dx
7 x 2 2 C x C. 5 7 1 2
x
1
1
C
5 1 2
例2. e x 3 x dx (3e) x dx
1 (3e) C ln 3e 1 x x 3 e C ln 3 1
简言之:连续函数一定有原函数. 问题:(1) 原函数是否唯一? (2) 若不唯一它们之间有什么联系? 例
sin x cos x
sin x C cos x
(C 为任意常数)
关于原函数的说明:
(1)若 F ( x ) f ( x ) ,则对于任意常数 C ,
F ( x ) C 都是 f ( x ) 的原函数.
6 x x 5 5 解 x , x dx C. 6 6
5
6
1 例2 求 dx. 2 1 x 解 arctan x
1 , 2 1 x
1 dx arctan x C . 2 1 x
例3 设曲线通过点(1,2),且其上任一点处的 切线斜率等于这点横坐标的两倍,求此曲线方程.
不定积分的定义:
在区间I 内, 函数 f ( x ) 的带有任意
不定积分的定义和性质

F ( x) G( x) C(C为任意常数)
不定积分的定义:
在区间 I 内,函数 f ( x ) 的带有任意常数项的原函数 称为 f ( x )在区间 I 内的不定积分,记为
f ( x)dx 。
即:
积分号
f ( x)dx F ( x) C
积分常数
被积 函数 积分 变量
求不定积分的中心问题是 寻求被积函数f ( x ) 的一个 原函数。
(1)积分曲线族中任意一条曲线,可由其中某一条,例如, 曲线 y F ( x) 沿y轴平行移 C 位而得到。当 C 0 时向上移动; 当 C时,向下移动。 0 y f ( x) (2)由于 [ F ( x) C ]' F ' ( x) f ( x) ,即横坐标相同点x处, o x f (x) 每条积分曲线上相应点的切线斜率相等,都等于 ,从而 使相应点的切线平行。
现证(1) f ( x)dx g ( x)dx f ( x)dx g ( x)dx f ( x) g ( x).
等式成立.
(此性质可推广到有限多个函数之和的情况)
例5
求积分 (
3
2
3
2
1 x 2
x x
(6)
cos xdx sin x C; sin xdx cos x C;
cos
sin
dx
2 2
(12)
(7)
(13)
a dx
x
a
x
C;
ln a
(8)
x
sec xdx tan x C ;
csc xdx cot x C;
不定积分的概念与性质及基本积分公式

不定积分的概念与性质及基本积分公式不定积分是微积分中的重要概念,它是定积分的逆运算。
不定积分表示函数的原函数,也就是通过积分求导得到原函数。
在具体计算不定积分时,需要使用一些基本积分公式和性质。
一、不定积分的概念:不定积分是解决反向运动问题的方法,也就是求导的逆运算。
给定一个函数f(x),它的不定积分表示为∫f(x)dx,其中f(x)称为被积函数,x为积分变量,∫表示不定积分。
二、不定积分的性质:1. 常数性质:∫kdx = kx + C,其中k为常数,C为任意常数。
2. 线性性质:∫(u+v)dx = ∫udx + ∫vdx,其中u、v为可导函数。
3. 反向性质:如果F(x)是f(x)的一个原函数,则有∫f(x)dx = F(x) + C,其中C为任意常数。
三、基本积分公式:1.幂函数积分公式:a. ∫x^n dx = (x^(n+1))/(n+1) + C,其中n≠-1b. ∫1/x dx = ln,x, + C。
c. ∫(1+x^2) dx = x + (1/3)x^3 + C。
d. ∫(1-x^2) dx = x - (1/3)x^3 + C。
e. ∫(1+x^2)^(-1/2) dx = arcsin(x) + C。
2.指数函数与对数函数积分公式:a. ∫e^x dx = e^x + C。
b. ∫a^x dx = (a^x)/(lna) + C,其中a>0且a≠1c. ∫(1+x)^n dx = (1/(n+1))*(1+x)^(n+1) + C,其中n≠-1d. ∫(lnx) dx = xlnx - x + C。
3.三角函数积分公式:a. ∫sin(x) dx = -cos(x) + C。
b. ∫cos(x) dx = sin(x) + C。
c. ∫tan(x) dx = -ln,cos(x), + C。
d. ∫cot(x) dx = ln,sin(x), + C。
e. ∫sec(x) dx = ln,sec(x) + tan(x), + C。
4.1 不定积分的概念与性质

11
නcsc cot d = − csc + ;
(12)
13
第一节 不定积分的概念与性质
第一节 不定积分的概念与性质
නe d = e + ;
+ ;
න d =
ln
(14)
නsinh d = cosh + ;
(15)
නcosh d = sinh + .
= ln | | +
第一节
第一节 不定积分的概念与性质
不定积分的概念与性质
第四章
第四章 不定积分
不定积分
(4)
(5)
1
න
d = arctan + ;
2
1+
1
න
d = arcsin + ;
1 − 2
(6)
නcos d = sin + ;
(7)
නsin d = − cos + ;
第一节 不定积分的概念与性质
′ = 2的积分曲线族
第四章 不定积分
例4 质点在距地面0 处以初速0 铅直上抛, 不计阻力, 求其运动规律.
解
取质点运动轨迹为坐标轴, 原点在地面, 指向朝上,
质点抛出时刻为 = 0, 此时质点位置为0 , 初速为0 .
设时刻质点所在位置为 = (), 则
不定积分.
′ () = ()
න()d = () +
积 被
分 积
号 函
数
第一节 不定积分的概念与性质
被
积
表
达
式
积
分
变
量
不定积分的概念及性质

2 1
x
(2)
x
xdx
3
x 2 dx
2
5
x2
C
.
5
(3)
dx 2gx
1 2g
dx x
例5
1
1
1 1
x 2 C
2g 1 1
2
求下列不定积分:
2gx C . g
(1)
x 1 x
1
x
dx;(2)
x x
2 2
1 1
dx
则称F(x)为 f (x)的一个原函数.
例 因为(ln x) 1 ,故ln x 是 1 的一个原函数;
x
x
因为(x2) 2x,所以 x2 是2x 的一个原函数,但
(x2 1) (x2 2) (x2 3) 2x ,所以 2x 的原函 数不是惟一的.
原函数说明: 第一,原函数的存在问题:如果 f (x)在某区间连续, 那么它的原函数一定存在(将在下章加以说明).
.
解(1)
x 1 x
1 x
dx Nhomakorabeax
x x 1
1 x
dx
x
xdx xdx 1dx
1 dx x
2
5
x2
1
x2
x
1
2x2
C.
52
(2)
x2 x2
1dx 1
x
2 x2
1 1
2
dx
1
做被积表达式,C 叫做积分常数,“ ”叫做积分号.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不定积分的基本概念与性质不定积分是微积分中的重要概念之一,它具有广泛的应用领域。
本文将介绍不定积分的基本概念与性质,帮助读者更好地理解和应用不定积分。
一、不定积分的基本概念
不定积分,也称为算术积分,是微积分的基本概念之一。
它是函数求导的逆运算。
给定一个函数f(x),如果存在函数F(x),使得F'(x) = f(x),那么F(x)就是f(x)的一个不定积分,记作∫f(x)dx。
二、不定积分的性质
1. 线性性质:若f(x)和g(x)的不定积分都存在,那么它们的线性组合af(x) + bg(x)的不定积分也存在,并且是af(x)和bg(x)的不定积分的线性组合。
2. 积分的换元法:不定积分具有换元法。
即通过变量代换,将一个复杂的函数替换为另一个变量,使得不定积分的求解变得简单。
3. 积分的分部积分法:不定积分具有分部积分法。
通过对积分式中的一部分进行求导,另一部分进行不定积分,从而将一个复杂的积分式转化为一个简单的积分式。
4. 基本积分公式:不定积分的基本公式是通过观察求导与不定积分的关系得到的。
常见的基本不定积分公式包括幂函数的积分、指数函数的积分、三角函数的积分等。
5. 牛顿-莱布尼茨公式:牛顿-莱布尼茨公式是不定积分与定积分之
间的重要联系。
根据该公式,若F(x)是f(x)的一个不定积分,那么定积分∫[a,b]f(x)dx = F(b) - F(a)。
三、不定积分的应用
不定积分在多个学科领域有广泛的应用,以下介绍其中的几个方面。
1. 几何应用:不定积分可用于计算曲线的弧长、曲线与坐标轴所围
成的面积以及曲线的质心等。
2. 物理应用:不定积分可用于物理学中的速度、加速度以及质量等
的求解。
例如,通过计算速度函数的不定积分即可求得位移函数。
3. 统计学应用:不定积分可用于统计学中概率密度函数的求解,从
而计算随机变量落在某个区间内的概率。
4. 经济学应用:不定积分在经济学中有着广泛的应用,特别是在计
算边际效用、生产函数以及准线性需求曲线等方面。
综上所述,不定积分作为微积分的核心概念之一,具有重要的应用
价值。
通过理解其基本概念和性质,以及灵活运用其应用,可以更好
地解决实际问题,进一步探索微积分的应用领域。