16.1二次根式教案
16.1《二次根式》教案

16.1《二次根式》教案
二、核心素养目标
1.培养学生的逻辑推理能力,通过二次根式的性质探究,提升数学抽象思维。
2.培养学生的数学运算能力,熟练掌握二次根式的运算规则,并能应用于实际问题。
3.培养学生的数学建模能力,运用二次根式解决实际生活中的数学问题,如几何图形的面积计算等。
4.培养学生的直观想象能力,通过二次根式的图形表示,理解其与平面几何图形的关系。
引导学生总结本节课的学习内容,分享学习心得。
四、课后作业
1.请学生完成课后练习题,巩固二次根式的知识。
2.结合实际生活,运用二次根式解决一个实际问题。
五、教学评价
1.课堂问答,了解学生对二次根式概念和性质的理解。
2.课后作业,评估学生对二次根式运算规则的掌握程度。
3.学生分享实际问题解决方案,评价其数学建模能力。
三、教学过程
1.导入新课
利用
2.知识讲解
①二次根式的定义和性质
②二次根式的简化
③二次根式的乘除法运算规则
④最简二次根式
3.案例分析
通过具体例题,让学生掌握二次根式的运算和应用。
4.练习巩固
设计不同难度的练习题,让学生巩固所学知识。
5.总结反思
16.1《二次根式》教案
一、教学内容
16.1《二次根式》教案
1.理解二次根式的定义,掌握二次根式的性质与运算规则。
2.能够对形如√a(b±c)的二次根式进行简化。
3.掌握二次根式的乘除法运算,并熟练运用运算法则。
4.理解最简二次根式的概念,并能够将二次根式化为最简形式。
5.应用二次根式解决实际问题,如平面几何中的面积计算等。
六、教学资源
1.教材:《数学》八年级下册
人教版数学八年级下册16.1第1课时《 二次根式的概念》教学设计

人教版数学八年级下册16.1第1课时《二次根式的概念》教学设计一. 教材分析人教版数学八年级下册16.1第1课时《二次根式的概念》是初中数学的重要内容,主要让学生了解二次根式的概念,理解二次根式与有理数、实数之间的关系,为后续学习二次根式的运算和应用打下基础。
本节课的内容包括二次根式的定义、性质和运算方法,通过学习,让学生能够熟练掌握二次根式的相关知识,提高他们的数学素养。
二. 学情分析学生在学习本节课之前,已经掌握了实数、有理数等相关知识,具备一定的逻辑思维能力和运算能力。
但二次根式作为新的数学概念,对于部分学生来说可能较为抽象,难以理解。
因此,在教学过程中,要注重引导学生从实际问题中抽象出二次根式的概念,帮助他们建立直观的认识,从而更好地理解和掌握二次根式的相关知识。
三. 教学目标1.让学生了解二次根式的定义、性质和运算方法。
2.培养学生从实际问题中抽象出二次根式的能力。
3.提高学生的数学素养,培养他们的逻辑思维能力和运算能力。
四. 教学重难点1.二次根式的定义和性质。
2.二次根式的运算方法。
3.引导学生从实际问题中抽象出二次根式。
五. 教学方法1.情境教学法:通过创设实际问题情境,引导学生从实际问题中抽象出二次根式。
2.讲授法:讲解二次根式的定义、性质和运算方法。
3.实践操作法:让学生通过实际操作,掌握二次根式的运算方法。
4.小组讨论法:分组讨论,共同解决问题,提高学生的合作能力。
六. 教学准备1.教学课件:制作精美的课件,辅助讲解和展示二次根式的相关知识。
2.实际问题:准备一些与生活实际相关的问题,用于引导学生从实际问题中抽象出二次根式。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用实际问题情境,引导学生从实际问题中抽象出二次根式。
例如,讲解一个物体从地面上升到最高点再下降到地面的过程,上升和下降的距离分别是3米和4米,求物体的最大高度。
2.呈现(10分钟)讲解二次根式的定义、性质和运算方法。
人教版八年级数学下册16.1二次根式(教案)

一、教学内容
本节课选自人教版八年级数学下册第16.1节,主题为“二次根式”。教学内容主要包括以下两个方面:
1.二次根式的概念与性质:理解二次根式的定义,掌握二次根式的性质,如乘除法则、平方差公式等。
2.二次根式的化简与运算:学会化简二次根式,掌握二次根式的加减乘除运算方法,并能解决实际问题。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次根式的概念。二次根式是形如$\sqrt{a}$的表达式,其中$a$为非负实数。它是解决非整数平方问题的重要工具,广泛应用于数学和实际生活。
2.案例分析:接下来,我们来看一个具体的案例。例如,计算矩形的对角线长度,通过二次根式的应用,我们可以轻松解决这一问题。
(5)实际应用:运用二次根式解决实际问题,如计算面积、体积等。
2.教学难点
(1)理解二次根式的定义:部分学生可能对根号下的数必须为非负实数这一点理解不透彻,需要通过实例进行解释。
(2)掌握二次根式的性质:乘除法则、平方差公式等性质的理解和运用是难点,如$\sqrt{a^2}=|a|$,学生容易忽略绝对值符号。
(4)二次根式的化简方法,如:$\sqrt{18}=\sqrt{9}\cdot\sqrt{2}=3\sqrt{2}$;
(5)二次根式的加减运算,如:$\sqrt{3}+\sqrt{5}$,$\sqrt{3}-\sqrt{5}$等;
(6)运用二次根式解决实际问题。
二、核心素养目标
1.培养学生的数学抽象能力:通过二次根式的学习,使学生能够从具体问题中抽象出数学表达式,理解数学符号的含义,提高数学表达与交流能力。
3.重点难点解析:在讲授过程中,我会特别强调二次根式的定义和性质这两个重点。对于难点部分,如二次根式的化简和运算,我会通过举例和比较来帮助大家理解。
二次根式教案3全

16.1二次根式【教学目标】1.根据算术平方根的意义了解二次根式的概念;知道被开方数必须是非负数的理由;2.能用二次根式表示实际问题中的数量和数量关系.【教学重点】从算术平方根的意义出发理解二次根式的概念.【教学过程】一.创设情境提出问题1.电视塔越高,从塔顶发射的电磁波传得越远,从而能收看到电视节目的区域越广,电视塔高h(单位:km)与电视节目信号的传播半径r(单位:km)之间存在近似关系r=,其中地球半径R≈6 400 km.如果两个电视塔的高分别是h1 km、h2 km,你能化简这个式子吗?式子表示什么?公式中r=中的表示什么意义?2.问题:(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______.(1)中式子你是怎么得到?得到的两个式子有什么不同?(2)一个长方形围栏,长是宽的2 倍,面积为130m 2,则它的宽为______m .(2)中得到的式子有什么意义?(3)一个物体从高处自由落下,落到地面所用的时间 t (单位:s )与开始落下的高度h (单位:m )满足关系 h =5t 2,如果用含有h 的式子表示 t ,则 _____ (3)中当h 的值分别为0,10,15,20,25时,得到的结果分别是什么?表示的数怎样变化?二.合作探究 形成知识上面问题中,得到的结果分别是: (1)这些式子分别表示什么意义? (2)这些式子有什么共同特征?分别表示3,S ,65,5h的算术平方根这些式子的共同特征是:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.(3)根据你的理解,请写出二次根式的定义.把形如 用来表示一个非负数的算术平方根的式子,叫做二次根式.我们把形如a≥0)•的式子叫做二次根式,称为二次根号.三.初步应用巩固知识练习2二次根式和算术平方根有什么关系?二次根式都是非负数的算术平方根;带有根号的算术平方根是二次根式.例2当x 是怎样的实数时,2x在实数范围内有意义?3x 呢?答案:(1)a为任何实数;(2) a =1.总结:被开方数不小于零.四.比较辨别探索性质五.综合应用深化提高六.课堂小结七.回顾总结反思提升我们以前学习过的整式、分式都能像数一样进行运算,你认为对于二次根式应该进一步研究哪些问题?四.作业:教科书第5页第1,3,5,6,7,10题.五.教后反思16.2二次根式的乘除法二次根式的乘法一、学习目标1、掌握二次根式的乘法法则和积的算术平方根的性质。
《16.1 二次根式(第1课时)》教学设计

《16.1 二次根式(第1课时)》教学设计一、内容和内容解析1.内容二次根式的概念.2.内容解析本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念.它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础.教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义. 再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解.本节课的教学重点是:了解二次根式的概念;二、目标和目标解析1.教学目标(1)体会研究二次根式是实际的需要.(2)了解二次根式的概念.2. 教学目标解析(1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性.(2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围.三、教学问题诊断分析对于二次根式的定义,应侧重让学生理解“的双重非负性,”即被开方数≥0是非负数,的算术平方根≥0也是非负数.教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断.本节课的教学难点为:理解二次根式的双重非负性.四、教学过程设计1.创设情境,提出问题问题1你能用带有根号的的式子填空吗?(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______.(2)一个长方形围栏,长是宽的2 倍,面积为130m?,则它的宽为______m.(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:m)满足关系h=5t?,如果用含有h的式子表示t,则t= _____.师生活动:学生独立完成上述问题,用算术平方根表示结果,教师进行适当引导和评价.【设计意图】让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性.问题2 上面得到的式子,,分别表示什么意义?它们有什么共同特征?师生活动:教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.【设计意图】为概括二次根式的概念作铺垫.2.抽象概括,形成概念问题3你能用一个式子表示一个非负数的算术平方根吗?师生活动:学生小组讨论,全班交流.教师由此给出二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.【设计意图】让学生体会由特殊到一般的过程,培养学生的概括能力.追问:在二次根式的概念中,为什么要强调“a≥0”?师生活动:教师引导学生讨论,知道二次根式被开方数必须是非负数的理由.【设计意图】进一步加深学生对二次根式被开方数必须是非负数的理解.3.辨析概念,应用巩固例1当时怎样的实数时,在实数范围内有意义?师生活动:引导学生从概念出发进行思考,巩固学生对二次根式的被开方数为非负数的理解.例2当是怎样的实数时,在实数范围内有意义?呢?师生活动:先让学生独立思考,再追问.【设计意图】在辨析中,加深学生对二次根式被开方数为非负数的理解.问题4 你能比较与0的大小吗?师生活动:通过分和这两种情况的讨论,比较与0的大小,引导学生得出≥0的结论,强化学生对二次根式本身为非负数的理解,【设计意图】通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生分类讨论和归纳概括的能力.4.综合运用,巩固提高练习1 完成教科书第3页的练习.练习2 当x是什么实数时,下列各式有意义.(1);(2);(3);(4).【设计意图】辨析二次根式的概念,确定二次根式有意义的条件.【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,开阔学生的视野,训练学生的思维.5.总结反思教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题.(1)本节课你学到了哪一类新的式子?(2)二次根式有意义的条件是什么?二次根式的值的范围是什么?(3)二次根式与算术平方根有什么关系?师生活动:教师引导,学生小结.【设计意图】:学生共同总结,互相取长补短,再一次突出本节课的学习重点,掌握解题方法.6.布置作业:教科书习题16.1第1,3,5,7,10题.五、目标检测设计1.下列各式中,一定是二次根式的是()A.B.C.D.【设计意图】考查对二次根式概念的了解,要特别注意被开方数为非负数.2.当时,二次根式无意义.【设计意图】考查二次根式无意义的条件,即被开方数小于0,要注意审题.3.当时,二次根式有最小值,其最小值是.【设计意图】本题主要考查二次根式被开方数是非负数的灵活运用.4.对于,小红根据被开方数是非负数,得出的取值范围是≥.小慧认为还应考虑分母不为0的情况.你认为小慧的想法正确吗?试求出的取值范围.【设计意图】考查二次根式的被开方数为非负数和一个式子的分母不能为0,解题时需要综合考虑.。
16.1二次根式第一课时教案

使学生进一步掌握二次根式取值范围的习题.
对第四小题试着讨论.
1、2两小题检查中等及以下学生对基础知识的掌握情况。
3题检查中等以上学生是否对二次根式的取值范围有更深刻的理解。
活动三。总结收获
1。二次根式的定义及被开方数的取值范围;
2。被开方数的取值范围在计算中经常作为隐含条件给出,注意合理应用.
学生总结有何收获和经验教训,教师补充。
有助于培养学生的总结能力,并让学生总结经验教训有助于学生大胆的说出自己的错误避免今后再出现同样的失误.
布置作业:
A类:教材P5-—-习题16.1第一题
B类:
1、当是怎样的实数时,下列各式在实数范围内有意义?
(1) ;(2) ;(3) .
分层作业
课堂检测
1、下列式子中,是二次根式的是( )A.—B.C.D.x
活动二接触新知
1.二次根式的定义:一般
的,我们把形如(≥0)的式子叫做二次根式,“ ” 称为二次根号。
2。例题与练习
例1.下列各式是否为二次根式?
(1) ;(2) ;
(3) ;(4) ;
(5) .
解:(1)∵m2≥0, ∴m2+1>0
∴ 是二次根式.
(2)∵2≥0,
∴ 是二次根式;
(3)∵n2≥0,∴—n2≤0,
活动一回顾与思考
1、思考:用带根号的式子填空,看看写出的结果有什么特点:
(1)面积为S的正方形的边长为;
(2)要修建一个面积为6.28cm2的圆形喷水池,他的半径为m(∏取3.14)
(3)物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落时
16.1二次根式-教学设计

16.1 二次根式 教学设计【教学目标】1.结合具体情境,了解二次根式的概念,理解a (a ≥0)的意义,会确定二次根式有意义的条件.2.能利用等式2=a (a ≥0)计算二次根式的平方.3.a (a ≥0),理解积与商的算术平方根的性质的推导过程.4.了解最简二次根式的概念,会识别最简二次根式,会把二次根式化成最简二次根式.5.在学习中进一步养成独立自主、合作分享、倾听质疑等学习品质和人格素养.【教学重难点】 重点:二次根式的概念,a (a ≥0)的意义,二次根式有意义的条件.难点:最简二次根式的概念及化简.【课时安排】3课时第一课时【教学目标】1.了解二次根式的概念,理解a (a ≥0)的意义,会确定二次根式有意义的条件.2.能利用等式2=a (a ≥0)计算二次根式的平方.3.在学习中进一步养成独立自主、合作分享、倾听质疑等学习品质和人格素养. 【教学重难点】 重点:二次根式的概念,a (a ≥0)的意义,二次根式有意义的条件. 难点:二次根式有意义的条件.【教学过程】一、导入环节(一)导入新课,板书课题导入语:同学们,前面我们学习了算术平方根,接下来的一周,我们要学习与算术平方根关系比较密切的第九章:二次根式.一共3大节.这节课我们学习第一节:二次根式和它的性质的第一课时,请看学习目标.(二)出示学习目标课件展示学习目标,同学们读学习目标.过渡语:让我们带着目标、带着问题先进行自主学习.二、先学环节(一)出示自学指导学生看书,进行自学,教师观察课堂,保证课堂安静有序,学生坐姿端正. 时间:7分钟.1.阅读“交流与发现”.(1)通过观察、比较概括出(4)中的6个式子都带有什么符号?根号下的数和式的值都是怎样的?(2)总结二次根式a 有意义的条件是什么?2.阅读例1到例2,思考:(1)a (a ≥0)的意义是什么?(2)二次根式的2个性质: ①二次根式a 中有哪两个非负数?_________、_________.②等式2=a (a ≥0)中,有哪三个非负数?_________、_________、_________.利用这个等式,可以计算二次根式的平方.过渡语:通过自学,你有什么收获与大家一起分享?(二)自学检测过渡语:看来同学们的收获都很多,是不是真的学会了呢?来,合上课本,检查一下.请同学们完成自学检测题目.请同学结合自学情况,完成以下题目,书写认真、规范,不能乱勾乱画.要求:书写认真、步骤规范,不乱勾乱画. 时间:7分钟.1.2a 中,二次根式有 .2.要使二次根式63-x 有意义,则列式为______________,结果是___________.3.计算:(1)2)10( (2)2)25.0(-(3)2)32(- (4)2)24(-三、后教环节过渡语:针对自学中存在的问题,将你的疑惑提出来,小组同学一起解决吧!同学们交流疑惑.2题,同学们有错的吗?(没有.)看来同学们学得非常好,那老师把它稍作同学们还能做得那么顺利吗?下面请同学们完成合作探究内容.第一,生生合作,互相纠错.组内交流环节一中的问题(时间:3分钟),组长掌握组内的情况,记录没能解决的问题.第二,展示交流统一答案.重点讨论探究题的方法,用到的知识点等.展示要求:根据小组交流情况,教师确定人员展示.第三,教师点拨,解疑答难,拓展延伸.时间:12分钟.探究:二次根式有意义的条件.要求:先独立思考3分钟,然后组内讨论.重点讨论解题方法和知识点.x 取什么实数时,下列各式在实数范围内有意义?(1(2(3)(4)点拨语:探究题中,求使代数式有意义的字母的取值范围,分为三类:(1)对于单个的二次根式,只需满足被开方式为非负数,即a ≥0;4x -(2)对于还含有分式的,还要满足分母不等于零.(3)对于已经隐藏着被开方式为非负数的,则字母取任意实数.随着我们的学习内容难度的加大,还会遇到含有多个二次根式的,则必须满足多个被开方式同时为非负数.四、训练环节过渡语:现在请同学们完成当堂训练题目.认真规范完成训练题目,书写认真,步骤规范,成绩计入小组量化.时间:15分钟.1.下列是二次根式的是( )a 1-(a ﹤0)2. 计算:(1)2 (2)2)41(-(3)2)53( (4)2(- 3.当x 分别取什么实数时,下列各式有意义? (1)(2)(3)12+x (4【板书设计】 16.1二次根式和它的性质1.概念:形如a (a ≥0)的式子.2.a 有意义的条件:3.性质:(1)a ≥0(a ≥0)(2)2=a (a ≥0) 【教学反思】。
二次根式的概念、性质(第1、2课时 教案)

第十六章二次根式16.1二次根式第1课时二次根式的概念【知识与技能】是一个非负数.【过程与方法】通过新旧知识的联系,培养学生观察、演绎能力,发展学生的归纳概括能力.【情感态度】通过观察一些特殊的情形,获得一般结论,使学生感受归纳的思想方法,进而体验成功的喜悦,并通过合作学习增进终身学习的信念.≥0的基本性质【教学难点】经历知识产生的过程,探索新知识.一、情境导入,初步认识问题(1)一个长方形的围栏,长是宽的3倍,面积为39m2,则它的宽为_______m;(2)面积为S的正方形的边长为_______;(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:m)满足关系h=5t2,如果用含h的式子表示t,则t=.______【教学说明】设置上述问题的目的是让学生感受到研究二次根式是实际的需要,二次根式与实际生活联系紧密.教师提出问题后,让学生独立思考,然后相互交流,获得对二次根式的感性认识.二、思考探究,获取新知思考的式子,这些式子有什么特点?【教学说明】教师提出问题,同学生一道分析,体会这些式子的特征,从而引出二次根式的定义.a≥0)形式的式子称.针对上述定义,教师可强调以下几点:(1中,a必须是大于等于0的数或式子,否则它就没有意义了;(2=2,是一个整数,但4仍应称为一个二次根式;(3)当a≥0表示a的算术平方根,而一个非负数的算术平方根必≥0(a≥0)三、典例精析,掌握新知例1下列各式中,一定是二次根式的有_______分析:判断二次根式应关注两点:(1;(2)被开方数必须是非负数.因而在所给出四个式子中,只有②③中的式子同时符合两个要求,故应填②③.例2当x为何值时,下列各式在实数范围内有意义.解:(1)中,由x-2≥0,得x≥2;(2)中,由得2≤x≤3;(3)中,由2x-1>0,得x>1/2.【教学说明】对于例3,教师应引导学生分析题目特征,抓住解决问题的突a中a≥0及a≥0的双重非负性特征.四、运用新知,深化理解1.填空题:(1)形如_______的式子叫二次根式;(2)负数算术平方根________(填“有”或者“没有”)2.当a是怎样的实数时,下列各式在实数范围内有意义:【教学说明】学生自主探究,教师巡视,了解学生对本节课知识的掌握情况,及时予以指导,帮助学生巩固新知.五、师生互动,课堂小结通过这节课的学习,你掌握了哪些新知识,你获得哪些解决二次根式问题的方法?你还有哪些问题?请与同伴交流.【教学说明】学生相互交流,回顾知识,反思问题,共同发展提高.1.布置作业:从教材“习题16.1”中选取.2.完成练习册中本课时练习.1.教师创设情境,给出实例.学生积极主动探索,教师引导与启发,师生互动.体现教师的组织者、引导者与合作者地位.2.注意知识之间的衔接,在温故知新的过程中引导出新知,讲练结合旨在巩固学生对新知的理解.第十六章二次根式16.1二次根式第2课时二次根式的性质【知识与技能】理解并掌握二次根式的性质,正确区分=a(a≥0)与2a=a(a ≥0),并利用它们进行化简和计算.【过程与方法】在探索二次根式性质的学习活动中,进一步增强学生的参与意识,培养学生的计算能力和解决问题的能力.【情感态度】通过创设问题情境,激发学生学习兴趣,培养学生主动探究意识和创新精神,形成良好的心理品质,促进身心健康发展.【教学重点】2a=a(a≥0)2a(a≥0)及其应用.【教学难点】用探究的方法探索2a=a(a≥02a(a≥0)的结论.一、情境导入,初步认识试一试:请根据算术平方根填空,.猜一猜:通过对上述问题的思考,你能猜想出2a(a≥0)的结论是什么?说说你的理由.【教学说明】让学生通过具体实例所展示的特征,猜想出结果,然后再利用算术平方根的意义对所猜测结论进行分析,由感性认识到理性思考,培养学生利用代数语言进行推理的能力.二、思考探究,获取新知在学生相互交流的基础上可归纳出:2=a(a≥0).探究(1)填空:(2)通过(1)的思考,你能确定a≥0)的化简结果吗?说说你的理由.【教学说明】教师应尽力引导学生积极主动进行探究思考,让学生经历知识的发现与完善的过程,深化对所学知识的理解和记忆,最后师生共同完成对知识的归纳总结.(a≥0).最后,教师给出代数式的概念.代数式:用运算符号(加、减、乘、除、乘方和开方)把数和表示数的字母连接起来的式子称为代数式.(代数式的定义只要求学生了解就行,不必深究.)三、典例精析,掌握新知例1计算:(1))2;(2)(2【教学说明】以上例1、例2可由学生自主完成,教师巡视,对有困难的学生及时予以指导,让每个学生都能得到发展.例3教师引导学生看懂数轴,结合数轴确定a、b的符号.四、运用新知,深化理解【教学说明】以上1~3题可试着让学生自主完成,第4题稍有难度,教师适时点拨.(22a进行化简.然后再根据x>2的这个范围,来判断x-2与1-2x的正负,最后化简掉绝对值符号.∵x>2,∴x-2>0,1-2x<0.3.(1)原式=5-5+1=1(2)原式=7+49×2/7=7+14=21(2)首先利用a2=|a|化简掉二次根号,再根据x的取值范围来判断绝对值中的代数式的正负,化掉绝对值的符号.五、师生互动,课堂小结1.本节知识可这样归纳:2.通过这节课的学习,你有哪些收获和体会?与同伴交流.1.布置作业:从教材“习题16.1”中选取.2.完成练习册中本课时练习.1.注意前后知识的联系,在复习旧知的过程中导入本节课的数学内容,按照由特殊到一般的规律,降低学生理解的难度.2.在总结二次根式的性质过程中,由学生经过观察、分析的过程,让学生在交流中体会成功.3.几个例题,旨在帮助学生对二次根式的性质的理解,在练习和作业中都增加了难度,主要给能力较好的学生提供更大的发展空间.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.1二次根式教案
篇一:16.1(1)二次根式教案
16.1(1)二次根式
教学目标
1.知道二次根式与数的开平方运算之间的联系,体会二次根式是数、代数式及其运算的发展;
2.理解a有意义的条件,理解a?a;
3.会根据二次根式有意义的条件确定二次根式里被开方数中字母的取值范围.
教学重点和难点理解a有意义的条件,掌握a?a.
教学流程设计22
教学过程设计:
一、新课引入:
1.上学期学习了开平方运算,正数a的平方根可表示为?
练习:当a?0时,化简a2和(a)2
二、学习新课:
1、观察思考:a
a(a?0)是一个代数式,叫做二次根式,a是被开方数.
举例说明:2、2、a2?1、b2?4ac(b2?4ac?0)等都是二次根式.在实数范围内,负数3
没有平方根,所以象?2,(b?0)这样的式子没有意义,二次根式有意义的条件是被开方数是非负数.
二次根式的两个性质:1)a2?a(a?0);2)(a)2?a(a?0)
通过填表,由学生归纳出当a为任意实数时,a2与a的关系.?a(a?0)?2即a?a??0(a?0)
??a(a?0)?
2、例题分析:
例1:设x是实数,当x满足什么条件时,下列各式有意义?
1)2x?1;
2)2?x;
3)1;x
4)?x2
例2:求下列二次根式的值:
21)(3??)
2)x2?2x?1,其中x??.
22例3:设a、b、c分别是三角形三边的长,化简:(a?b?c)?(b?c?a)
三、课堂小结:
1.要使二次根式有意义,被开方数必须为非负数,同时还要特别注意当分母含有字母时分母要不等于0.
2.能根据a2与a的关系求出被开方数是完全平方数的二次根式的值,在计算时可先将其整理,尤其注意符号.
四、作业布置:
练习册习题16.1(1)
教学设计说明:
1.本节课是在学生学习了数的开方后的延续,因此在教学设计中,重点放在认识二次根式和二次根式有意义所必须满足的条件上,采取启发式的教学方法,引导学生积极思考问题,从中培养学生的严谨的思维品质.
2.本节课还要求学生掌握二次根式的性质,特别是掌握a2与a的关系,并能够在计算时熟练运用,这是本节课的重点也是难点,在教学设计中安排了形式多样的课堂练习,例2和例3的讲解可以在老师的引导下,师生共同分析和解答,使学生当堂能够掌握运用二次根式的性质进行解题.
教学反思:掌握a2与a的关系是本堂课的重点及难点,不仅是二次根式的一个重要性质,同时也渗透了分类思想;另外,要使二次根式有意义,不仅要满足被开方数为非负数,还要注意分母不能为0
篇二:16.1二次根式教学设计教案
教学准备
1.教学目标
理解二次根式的概念,并利用(a≥0)的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题.2.教学重点/难点1.重点:形如(a≥0)的式子叫做二次根式的概念;2.难点与关键:利用“(a≥0)”解决具体问题.3.教学用具
4.标签
一、复习引入
(学生活动)请同学们独立完成下列三个课本P2的三个思考题:二、探索新知
课堂小结
课后习题1.教材P51,2,3,42.选用课时作业设计.
篇三:16.1二次根式教学设计教案
教学准备
1.教学目标
1、知识与技能:
(1)理解二次根式的概念,
(2)利用公式的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题.
2、过程与方法:
通过自主合作学习,和教师合作精讲,掌握学习目标。
3、感态度与价值观:
培养学生辩证唯物主义观点。
2.教学重点/难点
二次根式中被开方数的取值范围。
3.教学用具
多媒体,白板。
4.标签
1、引入新课
【师】同学们好(学生活动)请同学们独立完成下列三个问题:
问题1:面积为3的正方形的边长为___面积为S的正方形的边长.问题2:一个长方形的围栏,长是宽的2倍,面积为130则他的宽为__________.问题3:一个物体从高处自由落下,落到地面所用的时间t与开始落下时离地面的高度h满足关系h=5t2用含h的式子表示t,那么t为_________.
答案:
【板书】
第十六章二次根式
2、新知介绍
【师】很明显都是一些正数的算术平方
根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如\(a≥0)的式子叫做二次根式,“
思考:
(学生活动)议一议:
1)-1有算术平方根吗?(没有)
2)0的算术平方根是多少?(0)
3)当a例1.下列式子,哪些是二次根式,哪些不是二次根式:
”称为二次根号.
分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开
方数是正数或0.
解:二次根式有:
不是二次根式的有:
【板演/PPT】
【师】大家刚才都完成了任务,接下来我们一起学习二次根式性质:我们学过,,a≥0的式子叫二次根式,我们知道a≥0那么呢?因是a 的算术平方根所以≥0.下面我们根据二次根式的非负性解决实际问题。
例2:当x是多少时,在实数范围内有意义?
分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,
才能有意义.
解:由3x-1≥0,得:x≥1/3
当x≥1/3时,在实数范围内有意义.
3、巩固训练(生演板)
1、当a是怎样的实数时,下列各式在实数范围内有意义?
答案:(1)a≥1(2)(3)a≤0(4)a≤5师点评:针对学生演板情况点评调。
思考:
4、巩固训练(生做)
1、求下列各式有意义的x的取值范围。
学生互评,教师实时点评
答案(1)x>1(2)x≥0且x≠1(3)x≥0
5、应用拓展例4.
6、能力提升训练
篇四:16.1二次根式教学设计
16.1二次根式
第一课时吕彦启20XX、2、7
教学目标:1、了解二次根式的意义.
2、掌握二次根式的基本性质。
3、会用二次根式的性质进行简单的二次根式的化简。
4、会判断二次根式,能求简单的二次根式中的字母的取值范围。
5、经历二次根式的基本性质、运算法则的探究过程,培养学生从具体到抽象的概括能力
6、经历观察、比较、总结和应用数学等活动,感受数学活动充满了探索性与创造性。
体现发现的快乐,并提高应用的意识。
教学重难点
重点:二次根式的概念及意义
难点:二次根式的判断与字母取值的确定
教与学的互动设计
一、创设情境、导入新课
复习⑴什么叫做一个数的平方根?如何表示?
⑵什么是一个数的算术平方根?如何表示?
1、平方根的性质:
正数有两个平方根且互为相反数;
0有一个平方根就是0;负数没有平方根。
1、16的平方根是什么?算术平方根是什么?
2、0
3、-7有没有平方根?有没有算术?
你认为所得的各代数式有哪些共同特点?
s?
表示一些正数的算术平方根.
二次根式的概念:
a(a?0)的式子叫做二次根式.
请你凭着自己已有的知识,说说对二次根式a的认识!
a?0)的式子叫做二次根式.
1.表示a的算术平方根
2.a可以是数,也可以是式.
3.形式上含有二次根号
4.a≥0,a≥0(双重非负性)
(1),(2)6,(3)5.既可表示开方运算,也可表示运算的结果.下列各式是二次根式吗??12,
-m,(m≤0(5)xy(x,y异号)
(6)a2?1,(7)3?11、判断下列代数式中哪些是二次根式?22a?2a?2m?3x?0求下列二次根式中字母的取值范围:12?3a?3?2a?11?2a
求二次根式中字母的取值范围的基本依据:①被开方数不小于零;②分母中有字母时,要保证分母不为零。
1、x取何值时,下列二次根式有意义?
1(1)x?1x?1(2)?3xx?0x?0(3)4x2x为全体实数(4)x1)x3(a?0)(5(6)x?02x 当x为
当x为
当x为怎样的实数时,下列各式有意义?
x?3?6?x12?x?x?13x2?2x?14
x?1?y?3?0时,1
(),y?()x?
22、已x?5?6?3y??z?2??0
求xyz的值。
已知a?b?6与a?b?8互为相反数,?x?????
求:a,b的值。
检测:略
归纳一般地,(a)2?a(a≥0)
例题讲解
22(2)(25)(.5)1)(?(?)2?(?33)2计算:
一般地,根据算术平方根的意义
a2?a?
例题讲解
2(2)(?5)(1)
22??2???3???3??
计算:
2??
(
a)2a2有区别吗?
1:从运算顺序来看,
2.从取值范围来看,
3.从运算结果来看:
归纳
s2形如5,a,a?b,ab,,x,3,a(a)≥0t的式子,它们都是用本基运算符号(基本运算包括加、减、乘除、、乘方和开方)把数和表示数的字母接连起来的式子,
代数式我们称这样的式子为. 22(1)(32)?(2)8?2???3??2?23???xxy??2(?5)2?3
(2)(?5)2?(5)2
(3)m2?16m?64(m?8)
(4)a2b2(a?0,b?0)
总结:1)二次根式的概念
(2)根号内字母的取值范围
(3)二次根式的性质作业:
篇五:16.1《二次根式》(第1-3课时)教案新人教版
16.1二次根式教案
第一课时二次根式的概念。