物理实验六光栅的特性分析和应用
光栅实验的实验报告

光栅实验的实验报告光栅实验的实验报告一、实验目的二、实验原理1. 光栅的基本原理2. 光栅常见参数三、实验器材与装置四、实验步骤与记录1. 实验前准备2. 实验过程记录与数据处理五、实验结果分析与讨论1. 测量结果分析及误差控制讨论2. 光栅常见应用领域讨论六、结论七、参考文献一、实验目的本次光栅实验的主要目的是:1. 掌握光栅的基本原理和常见参数;2. 学习使用光栅仪器进行测量;3. 分析测量结果,并探讨光栅在现代科技中的应用。
二、实验原理1. 光栅的基本原理光栅是一种具有规则周期性结构的光学元件。
它由若干平行于同一平面并等间距排列的透明或不透明条纹组成,这些条纹被称为“刻线”,刻线之间形成了一系列平行于刻线方向且等间距排列的透明或不透明区域,这些区域被称为“槽”。
当平行入射的单色光通过光栅时,会发生衍射现象。
衍射光线的强度和方向都与光栅的刻线间距有关。
通常情况下,当刻线间距为d时,对于波长为λ的入射单色光,衍射最强的方向满足以下条件:sinθ = nλ/d其中,θ是衍射角度,n是整数。
2. 光栅常见参数(1)刻线密度:表示单位长度内刻线条数。
单位通常为/mm。
(2)刻线间距:表示相邻两条刻线之间的距离。
单位通常为nm或μm。
(3)分辨本领:表示能够分辨出两个相邻波长差异的最小值。
分辨本领与光栅的刻线密度和入射角有关。
三、实验器材与装置本次实验使用了以下仪器和设备:1. 光栅仪2. 单色光源3. 三角架4. 卡尺、千分尺等测量工具四、实验步骤与记录1. 实验前准备(1)将光栅仪放置在水平台面上,并将单色光源固定在三角架上。
(2)调整光栅仪的位置,使得单色光源的光线垂直于光栅平面。
(3)打开单色光源,调节其波长为λ。
2. 实验过程记录与数据处理(1)测量刻线密度:将千分尺放置在刻线之间,测量两个相邻刻线之间的距离。
重复多次测量,并计算出平均值。
(2)测量刻线间距:将千分尺放置在同一条刻线上,记录其位置。
光栅的应用原理和方法

光栅的应用原理和方法1. 什么是光栅光栅是一种能够将光分成不同波长的光谱的装置,主要由一系列互相平行并且等间距排列的凹槽或线条组成。
光栅可以通过光的波长和入射角度来确定不同光的传播方向和干涉模式,因此具有广泛的应用。
2. 光栅的原理光栅的原理基于衍射和干涉的现象。
当光通过光栅时,光栅上的凹槽或线条会使入射光发生衍射,形成一系列新的波源。
这些波源与原始波源相干相长,产生干涉现象。
干涉使得不同波长的光在不同角度上进行衍射,从而形成光栅衍射光谱。
3. 光栅的应用光栅具有许多应用,下面列举几种常见的应用:•光谱分析:光栅可以将光分解成不同波长的光谱,用于化学、物理、天文学等领域的光谱分析。
通过测量不同波长的光强度,可以获取样品的光谱信息,进而了解样品组成和性质。
•光学成像:光栅在光学成像中也有广泛应用。
例如,将光栅放置在相机的镜头前,可以产生条纹或色散效果,使得拍摄的照片或视频更加有趣和独特。
•光通信:光栅也被广泛应用于光通信领域。
光栅可以用于光纤光栅传感器、光纤互连等应用中,通过不同波长的光进行信号传输和调制。
•光栅衍射仪:光栅衍射仪是一种基于光栅原理的仪器,用于测量光的波长、波数和强度等参数。
它是化学、物理和天文学等领域常用的实验仪器之一。
•光栅显示器:光栅显示器是一种广泛应用于计算机显示器和投影仪等设备中的显示技术。
光栅结构可以将每个像素分解成红、绿、蓝三原色,并通过调整光栅的传播方向和强度来显示不同的颜色。
4. 光栅的制作方法光栅的制作方法有多种,下面列举几种常见的制作方法:•光刻技术:光刻技术是一种通过光敏胶层和光刻机制作光栅的方法。
首先,在基片上涂覆光敏胶层,然后通过光刻机将光栅的图案投影到胶层上,并用化学方法将光栅图案转移到基片上。
•电子束曝光:电子束曝光是一种高精度制作光栅的方法。
通过用电子束束缚进行准分子掩模曝光,然后通过化学法将光栅图案转移到基片上。
•激光刻蚀:激光刻蚀是一种利用激光将光栅图案刻蚀到基片上的方法。
测定光栅常数实验报告

测定光栅常数实验报告测定光栅常数实验报告引言:光栅是一种常用的光学元件,具有广泛的应用。
在本实验中,我们将通过测定光栅常数的实验,探究光栅的特性和应用。
本实验旨在通过实际操作和数据分析,加深对光栅常数的理解,并探索光栅在光学测量中的应用。
实验目的:1. 理解光栅的基本原理和结构;2. 学习使用仪器测量光栅常数;3. 探究光栅常数对光学测量的影响。
实验仪器和材料:1. 光源:一束连续可调谐的单色光;2. 光栅:具有已知刻线数的光栅;3. 光栅支架:用于固定光栅;4. 光栅转台:用于调整光栅的角度;5. 光栅常数测量装置:用于测量光栅常数;6. 光电二极管:用于接收光栅衍射的光信号;7. 电压源:用于给光电二极管提供工作电压;8. 示波器:用于显示光电二极管接收到的光信号。
实验步骤:1. 准备工作:a. 将光栅安装在光栅支架上,并固定好;b. 将光栅支架放置在光栅转台上,并调整好光栅的角度;c. 将光电二极管与示波器连接,并接收光栅衍射的光信号;d. 将电压源与光电二极管连接,并调整适当的工作电压。
2. 实验测量:a. 打开光源,调节至所需的单色光波长;b. 调节光栅转台,使光栅与入射光波垂直;c. 观察示波器上的光信号,并记录下光电二极管接收到的光强度;d. 逐渐改变光栅转台的角度,记录不同角度下的光强度。
3. 数据处理:a. 根据实验测量得到的光强度数据,绘制光强度-角度曲线;b. 在曲线中找到光强度最大值对应的两个角度,记为θ1和θ2;c. 根据θ1和θ2的差值,计算出光栅的角度差Δθ;d. 根据已知的入射光波长λ,使用光栅方程计算出光栅常数d。
实验结果与分析:通过实验测量得到的光强度-角度曲线如图所示。
在曲线中,我们可以清晰地观察到光强度的变化规律。
在光强度最大值对应的两个角度θ1和θ2处,光强度较高,而在其他角度处,光强度较低。
这是由于光栅的衍射效应导致的。
根据实验数据计算得到的光栅常数为d = λ / Δθ,其中λ为入射光波长,Δθ为光栅的角度差。
光栅物理实验报告

光栅物理实验报告第一篇:光栅物理实验报告题目:光栅作者:姓名:XX学号:1028XXXX班级:安全1001单位:北京交通大学计算机与信息技术学院摘要:光栅是一种非常重要的光学元件。
本论文主要讨论光栅的分类、原理、效果与鉴别。
关键词:光栅、原理、种类、效果、鉴别引言:光栅是结合数码科技与传统印刷的技术,能在特制的胶片上显现不同的特殊效果。
在平面上展示栩栩如生的立体世界,电影般的流畅动画片段,匪夷所思的幻变效果。
光栅是一张由条状透镜组成的薄片,当我们从镜头的一边看过去,将看到在薄片另一面上的一条很细的线条上的图像,而这条线的位置则由观察角度来决定。
如果我们将这数幅在不同线条上的图像,对应于每个透镜的宽度,分别按顺序分行排列印刷在光栅薄片的背面上,当我们从不同角度通过透镜观察,将看到不同的图像。
正文:光栅主要有狭缝光栅和柱镜光栅两类,狭缝光栅即线型光栅是最早较为成熟的光栅,其成像原理为针孔成像的原理。
因这种光栅比较容易制作,技术难度不大,所以在十几年前就有制作非常优美的大幅狭缝光栅立体灯箱广告出现。
现今一些立体制作公司仍乐于用狭缝光栅立体灯箱参与展览,效果是不错,但狭缝光栅立体灯箱有以下缺陷:透光率仅20-30%,不环保,不节能,照明灯多耗能大,发热大,室外亮度不够,仅适用于室内。
柱镜光栅种类繁多主要有板材和模材两大类,其成像原理为弧面透镜折射反射成像原理。
柱镜光栅潜力较大,室内外打不打灯都可使用,市场普及率正不断扩大。
光栅膜材曾一度因具有价格竞争力而风靡过一阵,但由于现在柱镜光栅板价格的逐步下降,以及膜材需要粘贴及技术还有待提高的原因使其竞争力未显突出。
其原理如下:光栅也称衍射光栅。
是利用多缝衍射原理使光发生色散(分解为光谱)的光学元件。
它是一块刻有大量平行等宽、等距狭缝(刻线)的平面玻璃或金属片。
光栅的狭缝数量很大,一般每毫米几十至几千条。
单色平行光通过光栅每个缝的衍射和各缝间的干涉,形成暗条纹很宽、明条纹很细的图样,这些锐细而明亮的条纹称作谱线。
光栅实验报告

光栅实验报告光栅实验是一种基本的物理实验,通过光栅的衍射现象探究光的性质和特征。
在实验中,我们使用了一条干净的光源,将光线照射到光栅上,探究光的折射、绕射和干涉等现象。
在实验过程中,我们还需要利用光学仪器测量和分析光的波长、能量等参数,以便更好地了解光的本质和光学原理。
实验仪器和条件在本次实验中,我们使用了一台JY-5600型光栅衍射仪、一条600线/mm的反射光栅和一个光源(高压汞灯),以及一些辅助仪器和工具。
实验条件包括光源的亮度、光栅的朝向和角度、光线的入射角度等。
我们需要根据实验要求进行调整和设置,以保证实验的准确性和可靠性。
实验步骤和结果在实验中,我们首先需要进行光源的调整和衍射图案的观察。
通过在光栅前放置一个白色纸片,我们可以清楚地看到光栅衍射出来的彩虹色条纹,并用笔标记出它们的位置和形状。
接下来,我们可以使用衍射仪上的尺子测量出光栅与光线的夹角,以及各条谱线的位置和角度。
通过这些数据,我们可以计算出光的波长和能量等参数,进一步分析光的特征和性质。
在实验中,我们还需要注意到光的偏振和颜色等方面的变化。
在不同的角度和位置下,我们可以观察到光线的颜色和强度有所不同,说明光的折射和绕射效应随着入射角度的变化而变化。
同样地,我们也可以通过改变光的偏振角度来研究偏振光的传播方式和特征。
这些分析可以帮助我们更好地理解光的本质和光学原理。
实验误差和改进在实际实验中,我们也会遇到一些误差和问题。
例如,光源的稳定性和光栅的质量会影响衍射效果和测量结果。
此外,光线的入射角度和路径也会受到环境和仪器条件的影响,需要进行精细的调整和测量。
为了减小这些误差,我们可以采取一些改进措施,例如使用更好的光源和光栅材料、优化仪器设计和测量方法等等。
我们还可以多次重复实验,取平均值和做数据处理,提高实验结果的可靠性。
总结光栅实验是一门精密而有趣的物理实验,它深化了我们对光学基本原理和光的特征的认识,提高了我们的实验能力和科学素养。
物理实验技术中的光栅测量与分析方法

物理实验技术中的光栅测量与分析方法引言:光栅作为一种常见的光学元件,广泛应用于物理实验中的测量与分析。
本文将探讨物理实验技术中的光栅测量与分析方法,包括光栅测量原理、实验步骤以及数据分析方法等。
通过深入了解这些方法,可以提高物理实验的精确度和可靠性,推动科学研究的进步。
一、光栅测量原理光栅是一种具有周期性结构的光学元件,通过光栅的衍射效应可以测量物体的性质和参数。
光栅测量原理基于光的干涉和衍射现象,利用入射光波与光栅的周期性结构相互作用,形成干涉条纹或衍射斑图,从而获得物体的相关信息。
光栅测量原理有多种方法,其中最常见的是利用光栅衍射测量物体的角度或长度。
当入射光通过光栅时,栅片上的每个刻线都会成为衍射源,产生一系列干涉条纹。
通过测量干涉条纹的位置和形态变化,可以计算出物体的角度或长度信息。
二、实验步骤进行光栅测量实验需要以下步骤:1. 准备实验材料和仪器:包括光源、光栅、光学元件(透镜等)、光电二极管等。
2. 调整实验装置:将光源和光栅装置固定好,并调整透镜和光电二极管的位置,使得光线能够准确射到光电二极管上。
3. 开始实验:打开光源,通过光栅衍射形成干涉条纹,将光电二极管调整到最大输出状态。
4. 记录数据:使用光电二极管输出的电流值来衡量干涉条纹的亮度,测量不同参数下的电流值。
5. 数据处理:将电流值与物体的参数进行关联,使用适当的公式和方法,计算出物体的角度或长度。
6. 分析结果:根据实验结果,绘制相关图表或进行数据分析,得出结论。
三、数据分析方法在光栅测量实验中,进行数据分析是十分重要的一步。
以下是常用的几种数据分析方法:1. 平均值计算:根据多次测量的结果,计算得到平均值,提高实验结果的准确度。
2. 误差分析:对实验数据进行误差分析,包括随机误差和系统误差,评估实验结果的可靠性。
3. 拟合与回归分析:利用拟合和回归分析等数学方法,将实验数据与理论模型进行比较和匹配,得到更准确的结果。
4. 数据可视化:使用图表或图像等方式将实验数据展示出来,更直观地观察和分析数据间的关系。
光栅实验报告

光栅实验报告引言:光学是一门研究光的传播、相互作用和控制的学科。
在现代光学中,光栅实验是一项重要的实验,通过光栅的特殊结构和光的干涉现象,可以研究光的波动性质和光的传播规律。
本文将介绍光栅实验的原理、装置和实验结果,并对实验现象进行分析和解释。
一、实验原理光栅是一种特殊的光学元件,它由一系列平行排列的透明条纹组成,每个透明条纹与相邻条纹之间有固定的空隙。
当入射到光栅上的平行光通过光栅时,会发生干涉现象。
1. 光栅的空隙以及光的干涉现象光栅的空隙是指相邻透明条纹之间的间距,通常用密度来表示,即单位长度上的空隙数目。
我们可以使用干涉条纹的形状和密度来确定光栅的空隙大小。
当入射光通过光栅时,会发生衍射和干涉。
在每个空隙的位置,来自不同透明条纹的光波在空隙中干涉,形成了干涉条纹。
这些干涉条纹的形状和密度与光栅的空隙密度有关,具体的干涉图样可以用复杂的数学函数来描述。
2. 光栅的衍射和光强分布除了干涉现象,光栅的衍射也是实验中需要关注的现象。
当入射光通过光栅时,会发生衍射现象,光栅上的每个透明条纹都成为一个次级光源,发出各自的次级波。
这些次级波相互干涉,形成了衍射图样。
在中心最亮的位置,我们可以观察到零级衍射光,即入射光直接通过光栅的正中央。
而在其他位置,我们可以看到一系列明暗相交的衍射光斑,它们的出现是由光栅条纹的空隙和光的波长决定的。
二、实验装置为了观察和研究光栅的干涉和衍射现象,我们需要搭建相应的实验装置。
实验装置包括以下几个部分:1. 光源:可以使用一束平行光或者单色激光。
2. 光栅:通常为光学玻璃制成,具有一定的空隙密度。
3. 透镜:用于调整入射光的方向和形状。
4. 探测器:用于记录干涉和衍射图样,可以是像底片、摄像机或光电探测器等。
在实验中,我们先调整光源和透镜的位置,使得入射光束平行并通过透镜。
然后将光栅放置在入射光束中,调整光栅的位置和角度,以获得清晰的干涉和衍射图样。
三、实验结果通过搭建光栅实验装置并进行实验观察,我们可以得到一系列干涉和衍射图样。
光栅实验报告实验分析

一、实验目的1. 理解光栅的衍射原理及其应用。
2. 掌握光栅常数和光波波长的测定方法。
3. 分析光栅光谱的特点及其与光栅常数的关系。
二、实验原理光栅是一种利用多缝衍射原理使光发生色散的光学元件。
它由一组数目极多、平行等距、紧密排列的等宽狭缝组成。
当一束单色光垂直照射在光栅上时,各狭缝的光线因衍射而向各方向传播,经透镜会聚相互产生干涉,并在透镜的焦平面上形成一系列明暗条纹。
光栅衍射条纹的特点是明暗条纹狭窄、细锐,分辨本领比棱镜高。
光栅常数(d)是指光栅上相邻两狭缝上相应两点之间的距离。
光栅衍射公式为:dsinθ = mλ,其中θ为衍射角,m为衍射级数,λ为光波波长。
三、实验仪器1. 分光计2. 平面透射光栅3. 低压汞灯(连镇流器)4. 望远镜5. 焦平面屏幕四、实验步骤1. 调整分光计,使其处于水平状态。
2. 将光栅放置在分光计的平台上,调整光栅与分光计光轴的垂直度。
3. 打开低压汞灯,调整望远镜,使其对准光栅。
4. 观察望远镜中的光栅光谱,记录不同衍射级数(m)下的衍射角(θ)。
5. 根据光栅衍射公式,计算光栅常数(d)和光波波长(λ)。
五、实验数据与分析1. 光栅常数(d)的测定通过实验,我们得到了不同衍射级数(m)下的衍射角(θ),根据光栅衍射公式,计算出光栅常数(d)如下:m = 1,θ = 15.0°,d = 2.23mmm = 2,θ = 8.00°,d = 2.87mmm = 3,θ = 5.50°,d = 3.72mm2. 光波波长(λ)的测定根据光栅常数(d)和衍射级数(m),计算出光波波长(λ)如下:m = 1,λ = 635.3nmm = 2,λ = 317.6nmm = 3,λ = 210.6nm3. 光栅光谱特点分析通过实验,我们观察到光栅光谱具有以下特点:(1)光栅常数(d)越小,色散率越大,即光栅光谱越窄。
(2)高级数的光谱比低级数的光谱有较大的色散率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验六 光栅的特性分析和应用
光栅是根据多缝衍射原理制成的一种重要的分光元件,入射光在光栅上发生衍射,不同波长的光被分开,同时它还具有较大的色散率和较高的分辨本领。
利用光栅分光制成的单色仪和光谱仪在研究谱线结构、谱线的波长和强度进而研究物质的结构、做定量分析等方面有着广泛的应用。
同样,它还广泛应用于计量、光通信、信息处理等问题之中。
【实验目的】
1.熟悉分光计的使用方法。
2.观察光线通过光栅后的衍射现象及特点。
3.用透射光栅测定光栅常量、光谱线的波长。
4.学会测定光栅的另外两个特征参数;色散率、分辨本领。
【实验仪器】
分光计、汞灯及光栅等。
【实验原理】
光栅在结构上有平面光栅、阶梯光栅和凹面光栅等几种,同时又分为透射式和反射式两类。
本实验选用透射式平面刻痕光栅。
透射光栅是在光学玻璃片上刻划大量相互平行、宽度和间距相等的刻痕而制成的。
当光照射在光栅面上时,刻痕处由于散射不易透光,光线只能在刻痕间的狭缝中通过。
因此光栅实际上是一排密集、均匀而又平行的狭缝。
若以单色平行光垂直照射在光栅面上,则透过各狭缝的光线因衍射将向各个方向传播,经透镜会聚后相互干涉,并在透镜焦平面上形成一系列被相当宽的暗区隔开的、间距不同的明条纹,因此光栅的衍射条纹是光的衍射和干涉的综合效果。
按照光栅衍射理论,衍射光谱中明条纹的位置由下式决定:
λϕK b a k ±=+sin )(
或
⋯
⋯=±=2,1,0,sin K K d k λϕ (1)
此式称为光栅方程,式中,d=a+b 称为光栅常数,λ为入射光波长,K 为明
条纹(光谱线)级数,k ϕ是K 级明条
纹的衍射角(参看图 1 )。
如果入射光不是单色光,则由式(1)可以看出,光的波长不同,其衍射角k ϕ也各不相同,
于是复色光将被分解,而在中央K=0、
k ϕ=0处,各色光仍重叠在一起,组成中央明条纹。
在中央明条纹两侧对称地分布着K=1、2……级光谱,各级光谱线都按波长大小的顺序依次排
列成一组彩色谱线,这样就把复色光分解为单色光(见图1)。
如果已知光栅常数d ,用分光计测出K 级光谱中某一明条纹的衍射角
k ϕ,按式(1
)即可算
图1 汞灯的光栅光谱示意图
出该明条纹所对应的单色光的波长λ。
反之,如果波长λ是已知的,则可求出光栅常数d 。
光栅是一种色散元件,其基本特征可用色散率D 和分辨本领R 来描述。
角色散率定义为同一级光谱中,单位波长间隔的两束光被分开的角度,即
D ϕ
λ∆=
∆ (2)
将(2)式微分即可得
cos d k
D d d ϕλϕ=
=
(3)
由此可知,光栅常数越小(即光栅各缝越紧密),其角色散率越大,即两波长差很小的光谱线被分开的角度越大。
实际上,是否能观察到两波长差的光谱线被分开,不仅取决于其角色散率,更重要的是其分辨率。
因为如果两谱线被分开得较大而每条谱线都很宽,则仍然不能分辨出是两条谱线。
光栅分辨率的定义是两条刚能被光栅分开的谱线的波长差去除以它们的平均波长,即
R λ
λ=
∆ (4)
由瑞利判据和光栅光强分布函数可以导出
R kN =
(5)
其中N 是被入射平行光照射的光栅光缝的总条数,由此可知,为了用光栅分开两条很靠近的谱线,则不仅要光栅缝很密(d 很小),而且要缝很多,并且入射光孔径很大,把这许多缝都照亮才行。
【实验内容与步骤】
1.按实验十四的方法,调整分光计: (1)使望远镜适合平行光。
(2)望远镜轴线与分光计中心轴线相垂直。
(3)准直管出射平行光,并使其光轴与望远镜的光轴重合。
狭逢宽度调至约1毫米,并使叉丝竖线与狭缝平行,叉丝交点恰好在狭缝象中点,再注意消除视差。
调好后固定望远镜。
2.调整光栅
(1)入射光垂直照射光栅表面。
(2) 平行光管狭缝与光栅刻痕相平行, 具体调节步骤为:
(a )将光栅按图(2)所示,放在载物台上。
使平行光管产生的平行光垂直照射到光栅平面上,且光栅的刻线与分光计主轴相平行,随后固定载物台。
(b )用汞灯照亮准直管的狭缝,转动望远镜,观察衍射光谱的分布情况,注意中央明条纹两侧的衍射光谱是否等高。
如果观察到左右两侧的光谱线相对于目
镜中叉丝的水平线高低不等时(如图3),说明狭缝与光栅 刻痕不平行。
此时可调节载物台的螺丝G2(见图2),直到中央明条纹两侧的衍射光谱线等高为止。
3.以汞灯光谱线中的绿色谱线(546.1nm λ=)为已知,利用分光计测出它的衍射角
k ϕ,
完成表1,按式(1)可求出光栅常数d 。
()()11111
4
ϕθθθθ-+-+''=-+-⎡⎤⎣⎦
,式中
1θ-、1θ-
'分
别为测量1k =-级各光谱线时分光计两游标窗口读数;1θ+、1θ+'
分别为测量1k =+级各光
谱线时分光计两游标窗口读数。
4.分别测出紫光与两黄光的衍射角
k ϕ,并根据测得的光栅常数计算相应的光波波长,完成
表2。
测量时,可将望远镜移至最左端,从-1级至+1级依次测量,以避免望远镜的转动带来的仪器误差。
5.分别计算两黄光的平均波长、波长差及衍射角差,由(2)式和(4)式分别计算光栅的角色散率和分辨本领,比较计算的结果并作分析和讨论。
【实验数据处理】
表1 光栅常数d 的测量(绿光546.1nm λ=) 分 光 计 读 数
11111
4
ϕθθθθ-+-+''=⎡-+-⎤⎣⎦
d mm
游标窗口
1k =-级
1k =+级
1θ-
1θ+
左窗
右窗
表2 汞光源1k =±级时各条光谱线波长的测量
光谱线
分 光 计 读 数
ϕ
mm λ
游标窗口
1k =-级
1k =+级
1
θ-
1
θ+
黄1光 左窗 右窗 黄2光
左窗
右窗
紫光
左窗
右窗
表3 光栅的角色散率和分辨本领的计算处理 光谱线 ϕ
mm λ
mm λ
mm λ∆ ϕ∆
D ϕλ∆=
∆ R λ
λ=∆
黄1光
黄2光
备注:若
12θθ-或
12
θθ''-大于180°,则应用(360°-
12
θθ-)或(360°-
12
θθ''-)
代入后,再计算衍射角ϕ。
【注意事项】
1.光栅是精密光学器件,严禁用手或其他物品触摸其表面刻痕(只能拿其支架),以免弄脏或损坏。
2.汞灯的紫外光很强,不可直视,以免灼伤眼睛。
【分析与讨论】
1.光栅光谱和棱镜光谱有哪些不同之处?
2.分析光栅面和入射平行光不严格垂直时对实验有何影响? 3.当狭缝太宽、太窄时将会出现什么现象?为什么?。