【复习专题】中考数学复习:角与角平分线,平行线
专题16 相交线与平行线-2021年中考数学一轮复习精讲+热考题型(专题测试)(解析版)

专题专题16 相交线与平行线(满分:100分时间:90分钟)班级_________ 姓名_________ 学号_________ 分数_________ 一、单选题(共10小题,每小题3分,共计30分)1.(2020·四川广元市·中考真题)如图,a∥b,M、N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=().A.180°B.360°C.270°D.540°【答案】B【分析】首先作出PA∥a,根据平行线性质,两直线平行同旁内角互补,可以得出∠1+∠2+∠3的值.【详解】解:过点P作PA∥a,∵a∥b,PA∥a,∴a∥b∥PA,∴∠1+∠MPA=180°,∠3+∠APN=180°,∴∠1+∠MPA+∠3+∠APN=180°+180°=360°,∴∠1+∠2+∠3=360°.故选B.2.(2020·河北中考真题)如图,在平面内作已知直线m的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条【答案】D在同一平面内,过已知直线上的一点有且只有一条直线垂直于已知直线;但画已知直线的垂线,可以画无数条.【详解】在同一平面内,画已知直线的垂线,可以画无数条;故选:D .3.(2020·山东枣庄市·中考真题)一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30°【答案】B【分析】 直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【详解】由题意可得:∠EDF=45°,∠ABC=30°,∵AB ∥CF ,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选B.4.(2020·山东威海市·中考真题)如图,矩形ABCD 的四个顶点分别在直线3l ,4l ,2l ,1l 上.若直线1234//////l l l l 且间距相等,4AB =,3BC =,则tan α的值为( )A .38 B .34 C D .15【分析】根据题意,可以得到BG的长,再根据∠ABG=90°,AB=4,可以得到∠BAG的正切值,再根据平行线的性质,可以得到∠BAG=∠α,从而可以得到tanα的值.【详解】解:作CF⊥l4于点F,交l3于点E,设CB交l3于点G,由已知可得GE∥BF,CE=EF,∴△CEG∽△CFB,∴CE CG CF CB=,∵12 CECF=,∴12 CGCB=,∵BC=3,∴GB=32,∵l3∥l4,∴∠α=∠GAB,∵四边形ABCD是矩形,AB=4,∴∠ABG=90°,∴tan∠BAG=BGAB=324=38,∴tanα的值为38,故选:A.5.(2020·贵州遵义市·中考真题)一副直角三角板如图放置,使两三角板的斜边互相平行,每块三角板的直角顶点都在另一三角板的斜边上,则∠1的度数为()A.30°B.45°C.55°D.60°【答案】B【分析】根据平行线的性质即可得到结论.【详解】解:如图∵AB∥CD,∴∠1=∠D=45°,故选:B.6.(2020·山东济南市·中考真题)如图,AB//CD,AD⊥AC,∠BAD=35°,则∠ACD=()A.35°B.45°C.55°D.70°【答案】C【分析】由平行线的性质可得∠ADC=∠BAD=35°,再由垂线的定义可得△ACD是直角三角形,进而根据直角三角形两锐角互余的性质即可得出∠ACD的度数.【详解】∵AB∥CD,∠BAD=35°,∴∠ADC=∠BAD=35°,∵AD ⊥AC ,∴∠ADC+∠ACD =90°,∴∠ACD =90°﹣35°=55°,故选:C .7.(2020·甘肃金昌市·中考真题)如图所示的木制活动衣帽架是由三个全等的菱形构成,根据实际需要可以调节AE 间的距离,若AE 间的距离调节到60cm ,菱形的边长20AB cm =,则DAB ∠的度数是( )A .90︒B .100︒C .120︒D .150︒【答案】C【分析】 如图(见解析),先根据菱形的性质可得,//AB BC AD BC =,再根据全等的性质可得1203AC AE cm ==,然后根据等边三角形的判定与性质可得60B ∠=︒,最后根据平行线的性质即可得. 【详解】如图,连接AC四边形ABCD 是菱形20,//AB BC cm AD BC ∴==如图所示的木制活动衣帽架是由三个全等的菱形构成,60AE cm =1203AC AE cm ∴== AB BC AC ∴==ABC ∴是等边三角形60B ∴∠=︒//AD BC180********DAB B ∴∠=︒=∠=︒-︒-︒故选:C .8.(2020·河南中考真题)如图,1234//,//l l l l ,若170∠=︒,则2∠的度数为( )A .100︒B .110︒C .120︒D .130︒【答案】B【分析】利用平行线的性质即可求解.【详解】如图,∵34//l l ,∴∠1+∠3=180º,∵∠1=70º,∴∴∠3=180º-70º=110º,∵12l l //,∴∠2=∠3=110º,故选:B .9.(2020·海南中考真题)如图,已知//,AB CD 直线AC 和BD 相交于点,E 若70,40ABE ACD ∠=︒∠=︒,则AEB ∠等于( )A .50︒B .60︒C .70︒D .80︒【答案】C【分析】 先根据//AB CD 得到70CDE ABE ∠=∠=︒,再运用三角形内角和定理求出AEB ∠的度数即可.【详解】∵//AB CD ,∴CDE ABE ∠=∠,∵70ABE ∠=︒,∴70CDE ∠=︒∵180ECD CDE DEC ∠+∠+∠=︒,且40ACD ∠=︒,∴180180704070DEC ECD CDE ∠=︒-∠-∠=︒-︒-︒=︒,故选:C .10.(2020·山东淄博市中考真题)如图,在四边形ABCD 中,CD ∥AB ,AC ⊥BC ,若∠B =50°,则∠DCA 等于( )A .30°B .35°C .40°D .45°【答案】C【详解】 由AC ⊥BC 可得∠ACB =90°,又∠B =50°,根据直角三角形两个锐角互余可得∠CAB =40°,再根据平行线的性质可得∠DCA =∠CAB =40°.【解答】解:∵AC ⊥BC ,∴∠ACB =90°,又∵∠B =50°,∴∠CAB =90°﹣∠B =40°,∵CD ∥AB ,∴∠DCA =∠CAB =40°.故选:C .二、填空题(共5小题,每小题4分,共计20分)11.(2020·浙江杭州市·中考真题)如图,AB ∥CD ,EF 分别与AB ,CD 交于点B ,F .若∠E =30°,∠EFC =130°,则∠A =_____.【答案】20°【分析】直接利用平行线的性质得出∠ABF =50°,进而利用三角形外角的性质得出答案.【详解】∵AB ∥CD ,∴∠ABF +∠EFC =180°,∵∠EFC =130°,∴∠ABF =50°,∵∠A +∠E =∠ABF =50°,∠E =30°,∴∠A =20°.故答案为:20°.12.(2020·湖南湘潭市·中考真题)如图,点P 是AOC ∠的角平分线上一点,PD OA ⊥,垂足为点D ,且3PD =,点M 是射线OC 上一动点,则PM 的最小值为________.【答案】3【分析】根据垂线段最短可知当PM ⊥OC 时,PM 最小,再根据角的平分线的性质,即可得出答案.【详解】解:根据垂线段最短可知:当PM ⊥OC 时,PM 最小,当PM ⊥OC 时,又∵OP 平分∠AOC ,PD OA ⊥,3PD =,∴PM=PD=3故答案为:313.(2020·新疆中考真题)如图,若AB ∥CD ,∠A =110°,则∠1=_____°.【答案】70【分析】先根据平行线的性质求出∠2=∠A =110°,再由平角的定义求出∠1的度数即可.【详解】如图,∵AB ∥CD ,∴∠2=∠A =110°.又∵∠1+∠2=180°,∴∠1=180°﹣∠2=180°﹣110°=70°.故答案为:70.14.(2020·湖北黄冈市·中考真题)已知:如图,//,75,135AB EF ABC CDF ︒︒∠=∠=,则BCD ∠=_____________度.【答案】30【分析】本题可利用两直线平行,同位角相等求解∠EGC ,继而根据邻补角定义求解∠CDE ,最后根据外角定义求解∠BCD .【详解】令BC 与EF 相交于G 点,如下图所示:∵//,75,135AB EF ABC CDF ︒︒∠=∠=,∴∠EGC=∠ABC=75°,∠EDC=180°-∠CDF=180°-135°=45°,又∵∠EGC=∠BCD+∠EDC ,∴∠BCD=75°-45°=30°,故答案:30.15.(2020·山东日照市·中考真题)如图,有一个含有30°角的直角三角板,一顶点放在直尺的一条边上,若∠2=65°,则∠1的度数是_____.【答案】25°【分析】延长EF 交BC 于点G ,根据题意及直角三角形的性质可直接进行求解.【详解】解:如图,延长EF 交BC 于点G ,∵直尺,∴AD ∥BC ,∴∠2=∠3=65°,又∵30°角的直角三角板,∴∠1=90°﹣65°=25°.故答案为:25°.三、解答题(共5小题,每小题10分,共计50分)16.(2020·江苏镇江市·中考真题)如图,AC 是四边形ABCD 的对角线,∠1=∠B ,点E 、F 分别在AB 、BC 上,BE =CD ,BF =CA ,连接EF .(1)求证:∠D =∠2;(2)若EF ∥AC ,∠D =78°,求∠BAC 的度数.【答案】(1)证明见解析;(2)78°.【分析】(1)由“SAS ”可证△BEF ≌△CDA ,可得∠D =∠2;(2)由(1)可得∠D =∠2=78°,由平行线的性质可得∠2=∠BAC =78°.【详解】证明:(1)在△BEF 和△CDA 中,1BE CD B BF CA =⎧⎪∠=∠⎨⎪=⎩,∴△BEF ≌△CDA (SAS ),∴∠D =∠2;(2)∵∠D =∠2,∠D =78°,∴∠D =∠2=78°,∵EF ∥AC ,∴∠2=∠BAC =78°.17.(2020·湖北黄石市·中考真题)如图,,//,70,40AB AE AB DE DAB E =∠=︒∠=︒.(1)求DAE ∠的度数;(2)若30B ∠=︒,求证:AD BC =.【答案】(1)∠DAE=30°;(2)见详解.【分析】(1)根据AB ∥DE ,得出∠E=∠CAB=40°,再根据∠DAB=70°,即可求出∠DAE ;(2)证明△DAE ≌△CBA ,即可证明AD=BC .【详解】(1)∵AB ∥DE ,∴∠E=∠CAB=40°,∵∠DAB=70°,∴∠DAE=∠DAB-∠CAB=30°;(2)由(1)可得∠DAE=∠B=30°,又∵AE=AB ,∠E=∠CAB=40°,∴△DAE ≌△CBA (ASA ),∴AD=BC .18.(2020·湖北荆州市·中考真题)如图,将ABC 绕点B 顺时针旋转60度得到DBE ∆,点C 的对应点E 恰好落在AB 的延长线上,连接AD .(1)求证://BC AD ;(2)若AB=4,BC=1,求A ,C 两点旋转所经过的路径长之和.【答案】(1)见解析;(2)53π 【分析】 (1)先利用旋转的性质证明△ABD 为等边三角形,则可证60DAB ︒∠=,即,CBE DAB ∠=∠再根据平行线的判定证明即可.(2)利用弧长公式分别计算路径,相加即可求解.【详解】(1)证明:由旋转性质得:,60ABC DBE ABD CBE ︒∆≅∆∠=∠= ,AB BD ABD ∴=∴∆是等边三角形所以60DAB ︒∠=,CBE DAB ∴∠=∠∴//BC AD ;(2)依题意得:AB=BD=4,BC=BE=1,所以A ,C 两点经过的路径长之和为60460151801803πππ⨯⨯+=. 19.(2020·山东东营市·中考真题)如图,C 处是一钻井平台,位于东营港口A 的北偏东60方向上,与港口A 相距海里,一艘摩托艇从A 出发,自西向东航行至B 时,改变航向以每小时50海里的速度沿BC 方向行进,此时C 位于B 的北偏西45方向,则从B 到达C 需要多少小时?【答案】从B 到达C 需要1.2小时.【分析】过点C 作CD AB ⊥于点D ,在Rt ACD △与Rt CDB 中,利用锐角三角函数的定义求出CD 与BC 的长,进而求解.【详解】解:如图,过点C 作CD AB ⊥于点D ,由题意得://AE CD ,//BF CD ,60ACD CAE ∴∠=∠=,45BCD CBF ∠=∠=︒,在Rt ACD △中,AC =,12CD AC ∴==,在Rt CDB 中,CD =,60BC ∴==,60 1.250∴=(小时), ∴从B 到达C 需要1.2小时.20.(2020·山西中考真题)阅读与思考下面是小宇同学的数学日记,请仔细阅读并完成相应的任务.×年×月×日 星期日没有直角尺也能作出直角 今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线AB ,现根据木板的情况,要过AB 上的一点C ,作出AB 的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?办法一:如图①,可利用一把有刻度的直尺在AB 上量出30CD cm =,然后分别以D ,C 为圆心,以50cm 与40cm 为半径画圆弧,两弧相交于点E ,作直线CE ,则DCE ∠必为90︒.办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出M ,N 两点,然后把木棒斜放在木板上,使点M 与点C 重合,用铅笔在木板上将点N 对应的位置标记为点Q ,保持点N 不动,将木棒绕点N 旋转,使点M 落在AB 上,在木板上将点M 对应的位置标记为点R .然后将RQ 延长,在延长线上截取线段QS MN =,得到点S ,作直线SC ,则90RCS ∠=︒.我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢?……任务:(1)填空;“办法一”依据的一个数学定理是_____________________________________;(2)根据“办法二”的操作过程,证明90RCS ∠=︒;(3)①尺规作图:请在图③的木板上,过点C 作出AB 的垂线(在木板上保留作图痕迹,不写作法); ②说明你的作法依据的数学定理或基本事实(写出一个即可)【答案】(1)勾股定理的逆定理;(2)详见解析;(3)①详见解析;②答案不唯一,详见解析【分析】(1)利用2223040=50+说明△DCE 是直角三角形,说明=90DCE ∠︒,进而得出利用的原理是勾股定理逆定理即可;(2)由作图的方法可以得出:QR QC =,QS QC =,得出QCR QRC ∠=∠,QCS QSC ∠=∠,利用三角形内角和得出90QCR QCS ∠+∠=︒,即90RCS ∠=︒,说明垂直即可;(3)①以点C 为圆心,任意长为半径画弧,与AB 有两个交点,分别以这两个交点为圆心,以大于这两个交点之间的距离的一半为半径画弧,这两段弧交于一点P ,连接PC 即可;②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上,即可说明垂直.【详解】(1)勾股定理的逆定理(或如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形);(2)证明:由作图方法可知:QR QC =,QS QC =,QCR QRC ∴∠=∠,QCS QSC ∠=∠.又180SRC RCS RSC ∠+∠+∠=︒,180QCR QCS QRC QSC ∴∠+∠+∠+∠=︒.2()180QCR QCS ∴∠+∠=︒.90QCR QCS ∴∠+∠=︒即90RCS ∠=︒.(3)解:①如图,直线CP 即为所求;图③②答案不唯一,如:三边分别相等的两个三角形全等(或SSS);等腰三角形顶角的平分线、底边上的高、底边上的中线重合(或等腰三角形“三线合一”);到一条线段两个端点距离相等的点,在这条线段的垂直平分线上等.【点睛】本题主要考查了垂直的判定,熟练掌握说明垂直的方法是解决本题的关键.。
中考数学复习----《相交线与平行线之平行线》知识点总结与专项练习题(含答案解析)

中考数学复习----《相交线与平行线之平行线》知识点总结与专项练习题(含答案解析)知识点总结1. 三线八角:同位角,内错角,同旁内角。
2. 平行线定义:两条永不相交的直线的位置关系是平行线。
3. 平行线性质:①两直线平行,同位角相等。
②两直线平行,内错角相等。
③两直线平行,同旁内角互补。
④同一平面内,过直线外一点有且只有一条直线与已知直线平行。
⑤平行于同一直线的两直线平行。
即c b b a ∥,∥,则c a ∥。
4. 平行线的判定:①同位角相等,两直线平行。
②内错角相等,两直线平行。
③同旁内角相等,两直线平行。
④垂直于同一直线的两直线平行。
即若c a b a ⊥⊥,,则c a ∥。
⑤平行于同一直线的两直线平行。
即若c b b a ∥,∥,则c a ∥。
5. 平行线间的距离:平行线间的距离处处相等。
练习题9.(2022•青海)数学课上老师用双手形象的表示了“三线八角”图形,如图所示(两大拇指代表被截直线,食指代表截线).从左至右依次表示()A.同旁内角、同位角、内错角B.同位角、内错角、对顶角C.对顶角、同位角、同旁内角D.同位角、内错角、同旁内角【分析】两条线a、b被第三条直线c所截,在截线的同旁,被截两直线的同一方,把这种位置关系的角称为同位角;两个角分别在截线的异侧,且夹在两条被截线之间,具有这样位置关系的一对角互为内错角;两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角.据此作答即可.【解答】解:根据同位角、内错角、同旁内角的概念,可知第一个图是同位角,第二个图是内错角,第三个图是同旁内角.故选:D.10.(2022•贺州)如图,直线a,b被直线c所截,下列各组角是同位角的是()A.∠1与∠2 B.∠1与∠3 C.∠2与∠3 D.∠3与∠4【分析】同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角.【解答】解:根据同位角、邻补角、对顶角的定义进行判断,A、∠1和∠2是对顶角,故A错误;B、∠1和∠3是同位角,故B正确;C、∠2和∠3是内错角,故C错误;D、∠3和∠4是邻补角,故D错误.故选:B.11.(2022•东营)如图,直线a∥b,一个三角板的直角顶点在直线a上,两直角边均与直线b相交,∠1=40°,则∠2=()A.40°B.50°C.60°D.65°【分析】先由已知直角三角板得∠4=90°,然后由∠1+∠3+∠4=180°,求出∠3的度数,再由直线a∥b,根据平行线的性质,得出∠2=∠3=50°.【解答】解:如图:∵∠4=90°,∠1=40°,∠1+∠3+∠4=180°,∴∠3=180°﹣90°﹣40°=50°,∵直线a∥b,∴∠2=∠3=50°.故选:B.12.(2022•资阳)将直尺和三角板按如图所示的位置放置.若∠1=40°,则∠2度数是()A.60°B.50°C.40°D.30°【分析】如图,易知三角板的∠A为直角,直尺的两条边平行,则可得∠1的对顶角和∠2的同位角互为余角,即可求解.【解答】解:如图,根据题意可知∠A为直角,直尺的两条边平行,∴∠2=∠ACB,∵∠ACB+∠ABC=90°,∠ABC=∠1,∴∠2=90°﹣∠1=90°﹣40°=50°,故选:B.13.(2022•襄阳)已知直线m∥n,将一块含30°角的直角三角板ABC(∠ABC=30°,∠BAC=60°)按如图方式放置,点A,B分别落在直线m,n上.若∠1=70°.则∠2的度数为()A.30°B.40°C.60°D.70°【分析】根据平行线的性质求得∠ABD,再根据角的和差关系求得结果.【解答】解:∵m∥n,∠1=70°,∴∠1=∠ABD=70°,∵∠ABC=30°,∴∠2=∠ABD﹣∠ABC=40°,故选:B.14.(2022•锦州)如图,直线a∥b,将含30°角的直角三角板ABC(∠ABC=30°)按图中位置摆放,若∠1=110°,则∠2的度数为()A.30°B.36°C.40°D.50°【分析】根据平行线的性质可得∠3=∠1=110°,则有∠4=70°,然后根据三角形外角的性质可求解.【解答】解:如图,∵a∥b,∠1=110°,∴∠3=∠1=110°,∴∠4=180°﹣∠3=70°,∵∠B=30°∴∠2=∠4﹣∠B=40°;故选:C.15.(2022•六盘水)如图,a∥b,∠1=43°,则∠2的度数是()A.137°B.53°C.47°D.43°【分析】根据平行线的性质,得∠2=∠1=43°.【解答】解:∵a∥b,∠1=43°,∴∠2=∠1=43°.故选:D.16.(2022•济南)如图,AB∥CD,点E在AB上,EC平分∠AED,若∠1=65°,则∠2的度数为()A.45°B.50°C.57.5°D.65°【分析】根据平行线的性质,由AB∥CD,得∠AEC=∠1=65°.根据角平分线的定义,得EC平分∠AED,那么∠AED=2∠AEC=130°,进而求得∠2=180°﹣∠AED=50°.【解答】解:∵AB∥CD,∴∠AEC=∠1=65°.∵EC平分∠AED,∴∠AED=2∠AEC=130°.∴∠2=180°﹣∠AED=50°.故选:B.17.(2022•丹东)如图,直线l1∥l2,直线l3与l1,l2分别交于A,B两点,过点A作AC ⊥l2,垂足为C,若∠1=52°,则∠2的度数是()A.32°B.38°C.48°D.52°【分析】根据平行线的性质求出∠ABC,根据三角形内角和定理求出即可.【解答】解:∵直线l1∥l2,∠1=52°,∴∠ABC=∠1=52°,∵AC⊥l2,∴∠ACB=90°,∴∠2=180°﹣∠ABC﹣∠ACB=180°﹣52°﹣90°=38°,故选:B.18.(2022•南通)如图,a∥b,∠3=80°,∠1﹣∠2=20°,则∠1的度数是()A.30°B.40°C.50°D.80°【分析】根据平行线的性质可得∠1=∠4,然后根据三角形的外角可得∠3=∠4+∠2,从而可得∠1+∠2=80°,最后进行计算即可解答.【解答】解:如图:∵a∥b,∴∠1=∠4,∵∠3是△ABC的一个外角,∴∠3=∠4+∠2,∵∠3=80°,∴∠1+∠2=80°,∵∠1﹣∠2=20°,∴2∠1+∠2﹣∠2=100°,∴∠1=50°,故选:C.19.(2022•西藏)如图,l1∥l2,∠1=38°,∠2=46°,则∠3的度数为()A.46°B.90°C.96°D.134°【分析】根据平行线的性质定理求解即可.【解答】解:∵l1∥l2,∴∠1+∠3+∠2=180°,∵∠1=38°,∠2=46°,∴∠3=96°,故选:C.20.(2022•兰州)如图,直线a∥b,直线c与直线a,b分别相交于点A,B,AC⊥b,垂足为C.若∠1=52°,则∠2=()A.52°B.45°C.38°D.26°【分析】根据平行线的性质可得∠ABC=52°,根据垂直定义可得∠ACB=90°,然后利用直角三角形的两个锐角互余,进行计算即可解答.【解答】解:∵a∥b,∴∠1=∠ABC=52°,∵AC⊥b,∴∠ACB=90°,∴∠2=90°﹣∠ABC=38°,故选:C.21.(2022•通辽)如图,一束光线AB先后经平面镜OM,ON反射后,反射光线CD与AB平行,当∠ABM=35°时,∠DCN的度数为()A.55°B.70°C.60°D.35°【分析】根据“两直线平行,同旁内角互补”解答即可.【解答】解:∵∠ABM=35°,∠ABM=∠OBC,∴∠OBC=35°,∴∠ABC=180°﹣∠ABM﹣∠OBC=180°﹣35°﹣35°=110°,∵CD∥AB,∴∠ABC+∠BCD=180°,∴∠BCD=180°﹣∠ABC=70°,∵∠BCO=∠DCN,∠BCO+∠BCD+∠DCN=180°,∴∠DCN=(180°﹣∠BCD)=55°,故选:A.22.(2022•潍坊)如图是小亮绘制的潜望镜原理示意图,两个平面镜的镜面AB与CD平行,入射光线l与出射光线m平行.若入射光线l与镜面AB的夹角∠1=40°10',则∠6的度数为()A.100°40' B.99°80' C.99°40' D.99°20'【分析】先根据反射角等于入射角求出∠2的度数,再求出∠5的度数,最后根据平行线的性质得出即可.【解答】解:∵入射角等于反射角,∠1=40°10',∴∠2=∠1=40°10',∵∠1+∠2+∠5=180°,∴∠5=180°﹣40°10'﹣40°10'=99°40',∵入射光线l与出射光线m平行,∴∠6=∠5=99°40'.故选:C.23.(2022•新疆)如图,AB与CD相交于点O,若∠A=∠B=30°,∠C=50°,则∠D=()A.20°B.30°C.40°D.50°【分析】根据∠A=∠B=30°,得出AC∥DB,即可得出∠D=∠C=50°.【解答】解:∵∠A=∠B=30°,∴AC∥DB,又∵∠C=50°,∴∠D=∠C=50°,故选:D.24.(2022•柳州)如图,直线a,b被直线c所截,若a∥b,∠1=70°,则∠2的度数是()A.50°B.60°C.70°D.110°【分析】由两直线平行,同位角相等可知∠2=∠1.【解答】解:∵a∥b,∴∠2=∠1=70°.故选:C.25.(2022•雅安)如图,已知直线a∥b,直线c与a,b分别交于点A,B,若∠1=120°,则∠2=()A.60°B.120°C.30°D.15°【分析】本题要注意到∠1的对顶角与∠2同旁内角,并且两边互相平行,可以考虑平行线的性质及对顶角相等.【解答】解:∵∠1=120°,∴它的对顶角是120°,∵a∥b,∴∠2=60°.故选:A.26.(2022•宿迁)如图,AB∥ED,若∠1=70°,则∠2的度数是()A.70°B.80°C.100°D.110°【分析】根据两直线平行,同旁内角互补和对顶角相等解答.【解答】解:∵∠1=70°,∴∠3=70°,∵AB∥ED,∴∠2=180°﹣∠3=180°﹣70°=110°,故选:D.27.(2022•陕西)如图,AB∥CD,BC∥EF.若∠1=58°,则∠2的大小为()A.120°B.122°C.132°D.148°【分析】根据两直线平行,内错角相等分别求出∠C、∠CGF,再根据平角的概念计算即可.【解答】解:∵AB∥CD,∠1=58°,∴∠C=∠1=58°,∵BC∥EF,∴∠CGF=∠C=58°,∴∠2=180°﹣∠CGF=180°﹣58°=122°,故选:B.28.(2022•吉林)如图,如果∠1=∠2,那么AB∥CD,其依据可以简单说成()A.两直线平行,内错角相等B.内错角相等,两直线平行C.两直线平行,同位角相等D.同位角相等,两直线平行【分析】由平行的判定求解.【解答】解:∵∠1=∠2,∴AB∥CD(同位角相等,两直线平行),故选:D.29.(2022•台州)如图,已知∠1=90°,为保证两条铁轨平行,添加的下列条件中,正确的是()A.∠2=90°B.∠3=90°C.∠4=90°D.∠5=90°【分析】根据平行线的判定逐项分析即可得到结论.【解答】解:A.由∠2=90°不能判定两条铁轨平行,故该选项不符合题意;B.由∠3=90°=∠1,可判定两枕木平行,故该选项不符合题意;C.∵∠1=90°,∠4=90°,∴∠1=∠4,∴两条铁轨平行,故该选项符合题意;D.由∠5=90°不能判定两条铁轨平行,故该选项不符合题意;故选:C.30.(2022•郴州)如图,直线a∥b,且直线a,b被直线c,d所截,则下列条件不能判定直线c∥d的是()A.∠3=∠4 B.∠1+∠5=180°C.∠1=∠2 D.∠1=∠4【分析】根据平行线的判定定理进行一一分析.【解答】解:A、若∠3=∠4时,由“内错角相等,两直线平行”可以判定c∥d,不符合题意;B、若∠1+∠5=180°时,由“同旁内角互补,两直线平行”可以判定c∥d,不符合题意;C、若∠1=∠2时,由“内错角相等,两直线平行”可以判定a∥b,不能判定c∥d,符合题意;D、由a∥b推知∠4+∠5=180°.若∠1=∠4时,则∠1+∠5=180°,由“同旁内角互补,两直线平行”可以判定c∥d,不符合题意.故选:C.。
山东省2023年中考备考数学一轮复习 相交线与平行线 练习题(含解析)

山东省2023年中考备考数学一轮复习 相交线与平行线 练习题一、单选题1.(2022·山东临沂·统考二模)如图,直线AB CD 、相交于点O ,射线OM 平分BOD ∠,若160AOM ∠=︒,则AOC ∠等于 ( )A .20°B .40°C .45°D .50°2.(2022·山东东营·校考一模)下列说法中正确的是( )A .不相交的两条直线叫平行线B .从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离C .平面内两条直线的位置关系有相交、平行和垂直D .同一平面内,过直线外一点有且只有一条直线与已知直线垂直3.(2022·山东济南·统考一模)下列各图中,已知∠1=∠2,不能证明AB ∠CD 的是( )A .B .C .D .4.(2022·山东·统考一模)下列关于过直线l 外一点P 作直线l 的平行线的尺规作图错误的是() A . B .C .D .5.(2022·山东淄博·统考二模)下列图形中,由12∠=∠能得到AB CD ∥的是( )A .B .C .D .6.(2022·山东潍坊·中考真题)如图是小亮绘制的潜望镜原理示意图,两个平面镜的镜面AB 与CD 平行,入射光线l 与出射光线m 平行.若入射光线l 与镜面AB 的夹角14010'∠=︒,则6∠的度数为( )A .10040'︒B .9980'︒C .9940'︒D .9920'︒7.(2022·山东滨州·统考中考真题)如图,在弯形管道ABCD 中,若AB CD ∥,拐角122ABC ∠=︒,则BCD ∠的大小为( )A .58︒B .68︒C .78︒D .122︒8.(2022·山东日照·统考一模)如图,在∠ABC 中,∠A =70°,∠C =30°,BD 平分∠ABC 交AC 于点D ,DE ∠AB ,交BC 于点E ,则∠BDE 的度数是( )A .30°B .40°C .50°D .60°9.(2022·山东淄博·统考一模)如图,直线//a b ,点,M N 分别在直线,a b 上,P 为两平行线间一点,那么123∠+∠+∠等于( )A .360︒B .300︒C .270︒D .180︒10.(2022·山东济南·统考中考真题)如图,//AB CD ,点E 在AB 上,EC 平分∠AED ,若∠1=65°,则∠2的度数为( )A .45°B .50°C .57.5°D .65°11.(2022·山东东营·统考中考真题)如图,直线a b ∥,一个三角板的直角顶点在直线a 上,两直角边均与直线b 相交,140∠=︒,则2∠=( )A .40︒B .50︒C .60︒D .65︒12.(2022·山东东营·统考三模)如图,直线//a b ,将一个含30︒角的三角尺按如图所示的位置放置,若∠的度数为()124=,则2∠︒A.120︒B.136︒C.144︒D.156︒13.(2022·山东枣庄·统考模拟预测)如图,将直尺与含30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是()A.40°B.60°C.70°D.80°14.(2022·山东济南·统考一模)如图所示,已知//C∠=︒,43AC ED,20∠的度数是()CBE∠=︒,BEDA.63︒B.83︒C.73︒D.53︒15.(2022·山东烟台·统考一模)在下列命题中,为真命题的是()A.相等的角是对顶角B.平行于同一条直线的两条直线互相平行C.同旁内角互补D.垂直于同一条直线的两条直线互相平行16.(2022·山东东营·统考一模)数学课上,老师要求同学们利用三角板画两条平行线.小明的画法如下:∠将含30︒角的三角尺的最长边与直线a重合,另一块三角尺最长边与含30︒角的三角尺的最短边紧贴;∠将含30︒角的三角尺沿贴合边平移一段距离,画出最长边所在直线b,则a∠b,小明这样画图的依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等17.(2022·山东济宁·统考中考真题)如图,直线l1,l2,l3被直线l4所截,若l1∥l2,l2∥l3,∠1=126°32',则∠2的度数是___________.18.(2022·山东枣庄·统考中考真题)光线在不同介质中传播速度不同,从一种介质射向另一种介质时会发生折射.如图,水面AB与水杯下沿CD平行,光线变成FH,点G在射线EF上,45,20∠=︒∠=,FED HFB ∠=__°.则GFH19.(2022·山东烟台·统考一模)设AB,CD,EF是同一平面内三条互相平行的直线,已知AB与CD的距离是12cm,EF与CD的距离是5cm,则AB与EF的距离等于_____cm.20.(2022·山东德州·德州市同济中学校考模拟预测)如图,将边长为6cm的正方形ABCD先向下平移2cm,再向左平移1cm,得到正方形A'B'C'D',则这两个正方形重叠部分的面积为______cm2.21.(2022·山东枣庄·统考模拟预测)如图,将周长为10的∠ABC沿BC方向平移2个单位长度得到△DEF,则四边形ABFD的周长为________.22.(2022·山东东营·校考一模)如图,直线AB∠CD,∠C=44°,∠E为直角,求∠1的度数.参考答案:1.B【分析】根据邻补角的定义求出∠BOM ,再根据角平分线的定义求出∠BOD ,然后根据对顶角相等求解即可. 【详解】160AOM ∠=︒,18020BOM AOM ∴∠=︒-∠=︒,OM 平分BOD ∠,240BOD BOM ∴∠=∠=︒40AOC BOD ∴∠=∠=︒故选B【点睛】本题考查了本题考查了邻补角的定义,对顶角相等,角平分线的定义,掌握以上知识是解题的关键.2.D【分析】根据平行线的判定、点到直线的距离、平面内两直线的位置关系等求解判断即可.【详解】解:A :在同一平面内,不相交的两条直线叫平行线,故A 说法不符合题意;B :从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离,故B 说法不符合题意;C :平面内两条直线的位置关系有相交和平行,故C 说法不符合题意;D :同一平面内,过直线外一点有且只有一条直线与已知直线垂直,故D 说法符合题意;故选:D .【点睛】此题考查了平行线的判定,熟记平行线的判定定理、点到直线的距离的概念、平面内两直线的位置关系等是解题的关键.3.B【分析】根据平行线的判定定理即可判断求解.【详解】:A 、∠∠1=∠2,∠AB ∠CD ,该选项不符合题意;B 、由∠1=∠2,不能判断AB ∠CD ,该选项符合题意;C 、∠∠1=∠2,∠3=∠2,∠∠1=∠3,∠AB ∠CD ,该选项不符合题意;D 、∠∠1=∠2,∠AB ∠CD ,该选项不符合题意;故选:B .【点睛】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.4.C【分析】根据选项图像逐个分析,判断能否平行即可.【详解】A .本选项作了角平分线与等腰三角形,能得到一组内错角相等,从而可证两直线平行,故本选项不符合题意;B .本选项作了一个角等于已知角,根据同位角相等两直线平行,从而可证两直线平行,故本选项不符合题意;C .本选项只截取了两条线段相等,无法保证两直线平行的位置关系,故本选项符合题意;D .本选项作了一个角与已知角相等,根据内错角相等两直线平行,从而可证两直线平行,故本选项不符合题意;故选:C .【点睛】本题考查了尺规作图和平行线的判定定理,熟练掌握尺规作图的操作是解题的关键.5.B【分析】根据平行线的判定定理逐项分析即可.【详解】A.∠1=∠2,不能判断//AB CD ,故A 不符合题意;B.∠∠1=∠2,∠AB CD ∥(内错角相等,两直线平行),故B 符合题意;C.12∠=∠,//AC BD ∴,故C 不符合题意;D.∠1=∠2,不能判断//AB CD ,故D 不符合题意.故选:B .【点睛】本题主要考查了平行线的判定,熟练掌握内错角相等,两直线平行,是解题的关键.6.C【分析】由入射光线与镜面的夹角等于反射光线与镜面的夹角,可得∠1=∠2,可求出∠5,由l //m 可得∠6=∠5【详解】解:由入射光线与镜面的夹角等于反射光线与镜面的夹角,可得∠1=∠2,∠14010'∠=︒∠24010'∠=︒∠518012180401040109940'''∠=︒-∠-∠=︒-︒-︒=︒∠l //m∠659940'∠=∠=︒故选:C【点睛】本题主要考查了平行线的性质,熟记两直线平行,内错角相等是解答本题的关键.7.A【分析】根据两直线平行,同旁内角互补得到180∠+∠=︒,进而计算即可.ABC BCD∥,【详解】AB CD∴∠+∠=︒,180ABC BCDABC∠=︒,122∴∠=︒-∠=︒-︒=︒,BCD ABC180********故选:A.【点睛】本题考查了平行线的性质,即两直线平行,同旁内角互补,熟练掌握知识点是解题的关键.8.B【分析】由三角形的内角和可求∠ABC,根据角平分线可以求得∠ABD,由DE//AB,可得∠BDE=∠ABD即可.【详解】解:∠∠A+∠C=100°∠∠ABC=80°,∠BD平分∠BAC,∠∠ABD=40°,∠DE∠AB,∠∠BDE=∠ABD=40°,故答案为B.【点睛】本题考查三角形的内角和定理、角平分线的意义、平行线的性质,灵活应用所学知识是解答本题的关键.9.A【分析】过点P作PE∠a.则可得出PE∠a∠b,结合“两直线平行,内错角相等”可得出∠2=∠AMP+∠BNP,再结合邻补角的即可得出结论.【详解】解:过点P作PE∠a,如图所示.∠PE∠a,a∠b,∠PE∠a∠b,∠∠AMP=∠MPE,∠BNP=∠NPE,∠∠2=∠MPE+∠NPE=∠AMP+∠BNP.∠∠1+∠AMP=180°,∠3+∠BNP=180°,∠∠1+∠2+∠3=180°+180°=360°.故选:A.【点睛】本题考查了平行线的性质以及角的计算,解题的关键是找出∠2=∠AMP+∠BNP.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键.10.B【分析】根据平行线及角平分线的性质即可求解.AB CD,【详解】解:∠//∠∠AEC=∠1(两直线平行,内错角相等),∠EC平分∠AED,∠∠A EC=∠CED=∠1,∠∠1=65°,∠∠CED =∠1=65°,∠∠2=180°-∠CED-∠1=180°-65°-65°=50°.故选:B.【点睛】本题考查了平行线的性质,解题关键根据直线平行和角平分线的性质得出角度之间的关系即可得出答案.11.B【分析】先根据平角的定义求出∠3的度数,再根据平行线的性质即可求出∠2的度数.【详解】解:由题意得∠ABC=90°,∠∠1=40°,∠∠3=180°-∠1-∠ABC=50°,∥,∠a b∠∠2=∠3=50°,故选B.【点睛】本题主要考查了几何图形中角度的计算,平行线的性质,三角板中角度的计算,熟知平行线的性质是解题的关键.12.C【分析】根据平行线的性质求解,找出图中1424∠=∠=︒,进而求出∠3,再根据平行线性质求出∠2即可.c a,【详解】解:如图,作//三角尺是含30︒角的三角尺,3460∴∠+∠=︒,a c,//∴∠=∠=︒,14243602436∴∠=︒-︒=︒,a b,//a c,//b c∴,//∴∠=︒-︒=︒,218036144故选:C.【点睛】此题考查平行线的性质,利用平行线性质求角,涉及到直角三角形两个余角的关系.13.D【分析】根据平行线的性质即可解答.【详解】如图,由已知得∠3=60°,∥,因为AB CD所以∠2+∠1+∠3=180°,∠2=180°-(40°+60°)=80°;故选D.【点睛】本题考查了平行线的性质,解题关键是熟练运用平行线的性质进行推理解题.14.A【分析】过点B 作BM ∠AC ,求出∠EBM 即可.【详解】过点B 作BM ∠AC ,∠//AC ED ,∠////AC ED BM ,∠20CBM C ∠=∠=︒,EBM E ∠=∠,∠43CBE ∠=︒,∠63EBM CBE CBM ∠=∠+∠=︒,∠63E EBM ∠=∠=︒.故选:A .【点睛】本题考查了平行线的判定与性质,解题关键是熟练添加辅助线,利用平行线的性质求角.15.B【分析】根据对顶角、平行公理的推论、平行线的判定、同旁内角逐项判断即可得.【详解】A 、相等的角不一定是对顶角,此项是假命题;B 、平行于同一条直线的两条直线互相平行,此项是真命题;C 、两直线平行,同旁内角互补,此项是假命题;D 、在同一平面内,垂直于同一条直线的两条直线互相平行,此项是假命题;故选:B .【点睛】本题考查了命题与定理、平行线的判定与性质等知识点,熟练掌握平行线的判定与性质是解题关键.16.A【分析】先利用平移的性质得到∠1=∠2=60°,然后根据同位角线段两直线平行可判断a ∠b .【详解】利用平移的性质得到∠1=∠2=60°,所以a ∠b .故选:A .【点睛】此题考查作图-平移变换,平行线的判定,解题关键在于确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.17.5328'︒【分析】根据平行线的性质得23,34∠=∠∠=∠,根据等量等量代换得34∠∠=,进而根据邻补角性质即可求解.【详解】解:如图l1∥l 2,l 2∥l 3,23∴∠=∠,34∠∠=,24∴∠=∠,∠1=12632'︒,2418012632∴∠=∠=-︒'︒17960126325328'''=︒-︒=︒,故答案为:5328'︒.【点睛】本题考查了邻补角,平行线的性质,掌握平行线的性质是解题的关键.18.25【分析】根据平行线的性质知45GFB FED ∠=∠=︒,结合图形求得GFH ∠的度数.【详解】解:∠//AB CD ,∠45GFB FED ∠=∠=︒.∠20HFB ∠=︒,∠452025GFH GFB HFB ∠=∠-∠=︒-︒=︒.故答案为:25.【点睛】本题考查了平行线的性质,属于基础题,熟练掌握平行线的性质是解决本类题的关键. 19.7或17.【分析】分两种情况讨论,EF 在AB ,CD 之间或EF 在AB ,CD 同侧,进而得出结论.【详解】解:分两种情况:∠当EF 在AB ,CD 之间时,如图:∠AB 与CD 的距离是12cm ,EF 与CD 的距离是5cm ,∠EF 与AB 的距离为12﹣5=7(cm ).∠当EF 在AB ,CD 同侧时,如图:∠AB 与CD 的距离是12cm ,EF 与CD 的距离是5cm ,∠EF 与AB 的距离为12+5=17(cm ).综上所述,EF 与AB 的距离为7cm 或17cm .故答案为:7或17.【点睛】此题主要考查线段之间的距离,解题的关键是根据题意分情况作图进行求解.20.20【分析】如图,向下平移2cm ,即AE=2,再向左平移1cm ,即CF=1,由重叠部分为矩形的面积为DE•DF ,即可求两个正方形重叠部分的面积【详解】解:如图,向下平移2cm,即AE=2,则DE=AD-AE=6-2=4cm向左平移1cm,即CF=1,则DF=DC-CF=6-1=5cm则S矩形DEB'F=DE•DF=4×5=20cm2故答案为20【点睛】此题主要考查正方形的性质,平移的性质,关键在理解平移后,图形的位置变化.21.14【分析】利用平移的性质求解即可.【详解】∠△ABC沿BC方向平移2个单位得到△DEF,∠AD=CF=2,∠四边形ABFD的周长=AB+BC+DF+CF+AD=△ABC的周长+AD+CF=10+2+2=14.故答案为:14.【点睛】本题考查了平移的性质,抓住平移后对应线段相等是解题的关键.22.134°.【分析】过E作EF∠AB,可得AB∠CD∠EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.【详解】过E作EF∠AB,∠AB∠CD,∠AB∠CD∠EF,(平行于同一直线的两直线平行)∠∠C=∠FEC,∠BAE=∠FEA,(两直线平行,内错角相等)∠∠C=44°,∠AEC为直角,∠∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∠∠1=180°﹣∠BAE=180°﹣46°=134°.【点睛】本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.。
2023年中考数学一轮复习课件:线段、角、相交线与平行线(含命题)

个命题的结论是另一个命题的题设,那么这两个命题叫做互逆命题
随堂练习
1. 如图,A,B两点之间的距离为8,①,②,③,④分别代表从点A到
点B的不同路线,点C是线段AB的中点,点D在AB上,且AD=3.(1)从点
A到点B的4条不同路线中,最短的是________;②(2)BD=______,CD=
______. 5
1
第1题图
2.点C是线段AB的中点,点D是线段AC的三等分点.若线段AB=12 cm,
则线段BD的长为( C )A. 10 cm
B. 8 cmC. 10 cm或8 cm
D. 2 cm或4 cm
3. 如图,O是直线AB上一点,OD平分∠AOC,点E是OD上一点,过点
E作EF⊥AB于点F.(1)若∠AOD=28°30′,则∠AOD的余角为________,
平行
【知识拓展】平行线求角度的辅助线作法:情形一: ∠ABE+∠DCE=∠BEC
情形二: ∠ABE+∠DCE+∠BEC=360°
情形三: ∠ABE-∠DCE=∠BEC
考点5 命题
命题 判断一件事情的语句,叫做命题,命题有题设和结论两部分 真命题 如果题设成立,那么结论一定成立,这样的命题叫做真命题 假命题 如果题设成立时,不能保证结论一定成立,这样的命题叫做假命题
同位角 ∠1与___∠__5___,∠2与∠6,∠4与_∠__8___,∠3与___∠__7___ 内错角 ∠2与__∠__8____,∠3与∠5 同旁内角 ∠2与∠5,∠3与__∠__8____
2. 垂线及性质 垂线段
过直线外一点,作已知直线的垂线, 该点与垂足之间的线段
最新中考数学尺规作图专题复习(含答案)教学文稿

中考尺规作图专题复习(含答案)尺规作图定义:用无刻度的直尺和圆规画图,中考中常见画的图是线段的垂线,垂直平分线,角平分线、画等长的线段,画等角。
1.直线垂线的画法:【分析】:以点C为圆心,任意长为半径画弧交直线与A,B两点,再分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线l两侧于点M,N,连接MN,则MN即为所求的垂线2.线段垂直平分线的画法【分析】:作法如下:分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线AB两侧于点C,D,连接CD,则CD即为所求的线段AB的垂直平分线.3.角平分线的画法【分析】1.选角顶点O为圆心,任意长为半径画圆,分别交角两边A,B点,再分别以A,B为圆心,大于12AB的长为半径画圆弧,交H点,连接OH,并延长,则射线OH即为所求的角平分线.4.等长的线段的画法直接用圆规量取即可。
5.等角的画法【分析】以O为圆心,任意长为半径画圆,交原角的两边为A,B两点,连接AB;画一条射线l,以上面的那个半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB 为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求.备注:1.尺规作图时,直尺主要用作画直线,射线,圆规主要用作截取相等线段和画弧;2.求作一个三角形,其实质是依据三角形全等的基本事实或判定定理来进行的;3.当作图要满足多个要求时,应逐个满足,取公共部分.例题讲解例题1.已知线段a,求作△ABC,使AB=BC=AC=a.解:作法如下:①作线段BC=a;(先作射线BD,BD截取BC=a).②分别以B、C为圆心,以a半径画弧,两弧交于点A;③连接AB、AC.则△ABC 要求作三角形.例2.已知线段a 和∠α,求作△ABC ,使AB=AC=a ,∠A=∠α.解:作法如下:①作∠MAN=∠α;②以点A 为圆心,a 为半径画弧,分别交射线AM ,AN 于点B ,C. ③连接B ,C.△ABC 即为所求作三角形.例3.(深圳中考)如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA +PC =BC ,则下列选项中,正确的是(D )【解析】由题意知,做出AB 的垂直平分线和BC 的交点即可。
中考数学复习之线与角、平行线的性质及判定,考点过关与基础练习题

第二部分图形与几何19.线段、角、相交线与平行线知识过关1.直线、射线、线段(1)直线上一点和它____的部分叫做射线;直线上两点和它们____的部分叫做线段,这两点叫做线段的_______.(2)两点_____一条直线,两点之间线段最短,两点之间_____的长度,叫做两点间的距离.(3)线段的中点把线段_______等分.2.角(1)角:有_____端点的两条射线组成的图形叫做角,角也可以看作由一条_____绕着它的端点旋转而形成的图形.(2)余角:如果两个角的和等于_____,那么就说这两个角互为余角._____或等角的余角相等.(3)补角:如果两个角的和等于_____,那么就说这两个角互为补角._____或等角的补角相等.(4)一条射线把一个角分成两个______的角,这条射线叫做这个角的平分线.3.相交线(1)对顶角:如果一个角的两边分别是另一个角的两边的_____延长线,则称这两个角是对顶角,对顶角______.(2)垂直:在同一平面内,两条直线相交成90,叫做两条直线相互垂直,其中一条叫做另一条的垂线.(3)垂直的性质:同一平面内,过一点_____一条直线与已知直线垂直,直线外一点和直线上所有点的连接中,_______最短.(4)点到直线的距离:从直线外一点到这条直线的_____的长度,叫做点到直线的距离.4.平行线(1)平行线:平面内,_______的两条直线叫做平行线.(2)平面内两条直线的位置关系:_________和_________.(3)平行公理:过直线外一点,有且______一条直线与已知直线平行.如果两条直线都与第三条直线平行,那么这两条直线也互相______.(4)平行线的性质:如果两条直线平行,那么同位角相等,_____相等,同旁内角_______.(5)平行线的判定:如果同位角相等,或______或______互补,那么两直线平行.5.命题的概念(1)命题:______的语句叫做命题.(2)命题的组成:命题由______和______两部分组成.(3)命题的形成:命题可以写成“如果.......,那么.......”的形式,以如果开头的部分是_____,以那么开头的部分是________.(4)命题的真假:_______的命题叫做真命题,______的命题叫做假命题.6.尺规作图(1)在几何里,把用没有刻度的____和____这两种工具作几何图形的方法称为尺规作图.(2)常见的五种基本作图:①作一条线段等于已知线段;①作一个角等于已知角;①作一个角的平分线;①过一个点作已知直线的垂线;①作线段的垂直平分线.➢考点过关考点1 线段长度的有关计算例1已知线段AB=10cm,点D是线段AB的中点,直线AB上有一点C,并且BC=2cm,则线段DC=.考点2对顶角、邻补角的相关计算如图,点O为直线AB上一点,OC平分∠AOD,∠BOD=3∠BOE,若∠AOC=α,则∠COE 的度数为()A.3αB.120°−43αC.90°D.120°−13α考点3平行线的性质例3如图,AC∥BD,AE平分∠BAC交BD于点E,若∠1=54°,则∠2等于()A.108°B.117°C.126°D.54°考点4平行线的判定与性质综合例4如图1,直线HD∥GE,点A是直线HD上一点,点C是直线GE上一点,点B是直线HD、GE之间的一点.(1)过点B作BF∥GE,试说明:∠ABC=∠HAB+∠BCG;(2)如图2,RC平分∠BCG,BM∥CR,BN平分∠ABC,当∠HAB=40°时,点C在直线AB右侧运动的过程中,∠NBM的度数是否不变,若是,求出该度数;若不是,请说明理由.考点5命题的真假例5下列结论中,正确的有①对顶角相等;②两直线平行,同旁内角相等;③面积相等的两个三角形全等;④有两边和一个角分别对应相等的两个三角形全等;⑤钝角三角形三条高所在的直线交于一点,且这点在钝角三角形外部.()A.2个B.3个C.4个D.5个考点6尺规作图例6如图,在Rt△ABC中,∠C=90°,∠B=30°,AC=4,观察图中尺规作图的痕迹,则AD的长是.➢真题演练1.如图,OC在∠AOB外部,OM,ON分别是∠AOC,∠BOC的平分线.∠AOB=110°,∠BOC=60°,则∠MON的度数为()A.50°B.75°C.60°D.55°2.如图,OC、OD为∠AOB内的两条射线,OC平分∠AOB,∠BOD=3∠COD,若∠COD =10°,则∠AOB的度数是()A.30°B.40°C.60°D.80°3.如图,已知ON,OM分别平分∠AOC和∠BON.若∠MON=20°,∠AOM=35°,则∠AOB的度数为()A.15°B.35°C.40°D.55°4.如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于线段OC 的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中不正确的是()A.∠CEO=∠DEO B.CM=MDC.∠OCD=∠ECD D.S四边形OCED=12CD•OE5.下列说法正确的是()A.如果两个角相等,那么这两个角是对顶角B.内错角相等C.过直线外一点有且只有一条直线与已知直线平行D.一个角的补角一定是钝角6.下列说法错误的是()A.在同一平面内,没有公共点的两条直线是平行线B.如果两条直线都与第三条直线平行,那么这两条直线也互相平行C.经过直线外一点有且只有一条直线与该直线平行D.在同一平面内,不相交的两条线段是平行线7.如图所示,C为线段AB的中点,D在线段CB上,DA=6cm,DB=4cm,则CD的长度为______cm.8.如图,在Rt△ABC中,∠C=90°,∠B=30°,AC=4,观察图中尺规作图的痕迹,则AD的长是.9.如图,C是线段AB上一点,D,E分别是线段AC,BC的中点,若AB=10,则DE=.10.如图,C,D为线段AB上两点,AB=7cm,AD=1.5cm,D为线段AC的中点,则线段CB=cm.11.(1)已知:如图1,AB∥CD,求证:∠B+∠D=∠BED;(2)已知:如图2,AB∥CD,试探求∠B、∠D与∠E之间的数量关系,并说明理由.拓展提升:如图3,已知AB∥DE,BF,EF分别平分∠ABC与∠CED,若∠BCE=140°,求∠BFE的度数.12.如图,AB∥CD,点P为平面内一点.(1)如图①,当点P在AB与CD之间时,若∠A=20°,∠C=45°,则∠P=°;(2)如图②,当点P在点B右上方时,∠ABP、∠CDP、∠BPD之间存在怎样的数量关系?请给出证明;(不需要写出推理依据)(3)如图③,EB平分∠PEG,FP平分∠GFD,若∠PFD=40°,则∠G+∠P=°.➢课后练习1.如图,已知AB∥DF,DE和AC分别平分∠CDF和∠BAE,若∠DEA=46°,∠ACD=56°,则∠CDF的度数为()A.22°B.33°C.44°D.55°2.如图,直线CE∥DF,∠CAB=135°,∠ABD=85°,则∠1+∠2=()A.30°B.35°C.36°D.40°3.如图,已知a∥b,则∠ACD的度数是()A.45°B.60°C.73°D.90°4.如图所示,直线a∥b,∠2=31°,∠A=28°,则∠1=()A.61°B.60°C.59°D.58°5.下列说法正确的是()A.延长射线AB到CB.若AM=BM,则M是线段AB的中点C .两点确定一条直线D .过一点有且只有一条直线与已知直线平行6.下列说法正确的是( )A .垂直于同一条直线的两直线互相垂直B .经过一点有且只有一条直线与已知直线平行C .如果两条直线被第三条直线所截,那么同位角相等D .从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离7.下列说法中错误的是( )A .过一点有且只有一条直线与已知直线平行B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .两条直线相交,有且只有一个交点D .若两条直线相交成直角,则这两条直线互相垂直8.下列说法正确的是( )A .过直线上一点有且只有一条直线与已知直线平行B .不相交的两条直线叫做平行线C .直线外一点到该直线的所有线段中垂线最短D .过直线外一点有且只有一条直线与已知直线平行9.如图,在△ABC 中,分别以点A 和点B 为圆心,以相同的长(大于12AB )为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD .若△CDB 的面积为12,△ADE 的面积为9,则四边形EDBC 的面积为( )A .15B .16C .18D .2010.如图是用直尺和圆规作已知角的平分线的示意图,则说明∠CAD =∠DAB 的依据是( )A .SASB .ASAC .AASD .SSS11.如图,点A 、B 、C 在同一条直线上,点D 为BC 的中点,点P 为AC 延长线上一动点(AD ≠DP ),点E 为AP 的中点,则AC−BP DE 的值是 .12.如图,点D是线段AB上一点,点C是线段BD的中点,AB=8,CD=3,则线段AD长为.13.如图1,已知∠BOC=40°,OE平分∠AOC,OF平分∠BOC.(1)若AO⊥BO,则∠EOF是多少度?(2)如图2,若角平分线OE的位置在射线OB和射线OF之间(包括重合),请说明∠AOC的度数应控制在什么范围.14.如图,已知∠1=∠2,∠C=∠D.(1)求证:AC∥DF;(2)如果∠DEC=105°,求∠C的度数.15.如图,已知BC⊥AE,DE⊥AE,∠2+∠3=180°.(1)请你判断CF与BD的位置关系,并证明你的结论;(2)若∠1=70°,BC平分∠ABD,试求∠ACF的度数.➢冲击A+在半径为5的⊙O中,AB是直径,点C是直径AB上方半圆上一动点,连接AC、BC.(1)如图1,则△ABC面积的最大值是;(2)如图2,如果AC=8,①则BC=;②作∠ACB的平分线CP交⊙O于点P,求长CP的长.(3)如图3,连接AP并保持CP平分∠ACB,D为线段BC的中点,过点D作DH⊥AP,在C点运动过程中,请直接写出DH长的最大值.。
初中数学复习几何模型专题讲解29--- 平行线中和角平分线有关的图形

初中数学复习几何模型专题讲解专题29 平行线中和角平分线有关的图形一、单选题1.在钝角△ABC中,延长BA到D,AE是∠DAC的平分线,AE//BC,则与∠B相等的角有()A.1个B.2个C.3个D.4个【答案】C【分析】依据角平分线的性质和平行线的性质即可求解.【详解】解析:依据角平分线的性质和平行线的性质,可知∠B =∠DAE=∠CAE=∠C故选C.【点睛】此题主要考查角平分线的性质与平行线的性质,解题的关键是熟知角平分线的性质.2.如图,点A、C为∠FBE边上的两点,AD∥BE,AC平分∠BAD,若∠F AD=45°,则∠ACE=()A.45°B.67.5°C.112.5°D.135°【答案】C【分析】先根据平角的定义求出∠BAD,根据角平分线的性质求出∠DAC,再利用平行线的性质,得到∠ACB的度数.最后通过平角求出∠ACE.【详解】解:∵∠F AD=45°,∴∠BAD=180°-45°=135°.∵AC平分∠BAD,∴∠DAC=12BAD∠=67.5°.∵AD∥BE,∴∠ACB=∠DAC=67.5°.∴∠ACE=180°-67.5°=112.5°.故选:C.【点睛】本题考查平行的性质和角平分线的性质,解题关键是运用题目中的条件去求解角的度数,能够从角平分线和平行这两个条件想到图中存在等腰三角形.3.如图,已知BM平分∠ABC,且BM//AD,若∠ABC=70°,则∠A的度数是()A.30°B.35°C.40°D.70°【答案】B【分析】先根据角平分线的性质,求出∠ABC的度数,再由平行线的性质得到∠A的度数.【详解】解:∵BM平分∠ABC,∴∠MBA=12∠ABC=35°.∵BM∥AD,∴∠A=∠MBA=35°.故选:B.【点睛】本题考查的是角平分线的性质,平行线的性质,掌握以上知识是解题的关键.二、解答题4.如图所示,直线AB∥CD,直线EF分别交AB、CD于E、F两点,∠BEF、∠DFE 的平分线相交于点K.(1)求∠EKF的度数;(2)如图(2)所示,作∠BEK、∠DFK的平分线相交于点K1,问∠K1与∠K的度数是否存在某种特定的等量关系?写出结论并证明.(3)在图(2)中作∠BEK1、∠DFK1的平分线相交于点K2,作∠BEK2、∠DFK2的平分线相交于点K3,依此类推,……,请直接写出∠K4的度数.【答案】(1)∠EKF=90°;(2)∠K=2∠K1,证明见解析;(3)∠K4=5.625°.【分析】(1)过K作KG∥AB,交EF于G,根据平行于同一条直线的两直线平行可得AB∥KG∥CD,从而得出∠BEK=∠EKG,∠GKF=∠KFD,∠BEK+∠FEK+∠EFK+∠DFK=180°,然后根据角平分线的定义即可求出∠BEK+∠DFK=90°,从而得出结论;(2)根据角平分线的定义可得∠BEK1=∠KEK1,∠KFK1=∠DFK1,结合(1)的结论可得∠BEK1+∠DFK1=45°,从而求出∠K1,即可得出结论;(3)根据(2)中的规律即可得出结论.【详解】(1)如图(1),过K作KG∥AB,交EF于G,∵AB∥CD,∴AB∥KG∥CD,∴∠BEK=∠EKG,∠GKF=∠KFD,∠BEK+∠FEK+∠EFK+∠DFK=180°,∵EK、FK分别为∠BEF与∠EFD的平分线,∴∠BEK=∠FEK,∠EFK=∠DFK,∴2(∠BEK+∠DFK)=180°,∴∠BEK+∠DFK=90°,则∠EKF=∠EKG+∠GKF=90°;(2)∠K=2∠K1,理由为:∵∠BEK、∠DFK的平分线相交于点K1,∴∠BEK1=∠KEK1,∠KFK1=∠DFK1,∵∠BEK+∠FEK+∠EFK+∠DFK=180°,即2(∠BEK+∠KFD)=180°,∴∠BEK+∠KFD=90°,即∠BEK1+∠DFK1=45°,同(1)得∠K1=∠BEK1+∠DFK1=45°,则∠K=2∠K1;(3)如图(3),根据(2)中的规律和推导方法可得:∠K2=12∠K1=22.5°,∠K3=12∠K2=11.25°,∠K4=12∠K3=5.625°.【点睛】此题考查的是平行线的性质及判定,掌握平行线的各个性质定理是解题关键.5.如图,已知AM∥BN,∠A=64°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)①∠ABN的度数是;②∵AM∥BN,∴∠ACB=∠;(2)求∠CBD的度数;(3)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律;(4)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是.【答案】(1)①116,︒②CBN;(2)58︒;(3)不变,:2:1APB ADB∠∠=,理由见解析;(4)29.︒【分析】(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的定义可以证明∠CBD=12∠ABN,即可求出结果;(3)不变,∠APB:∠ADB=2:1,证∠APB=∠PBN,∠PBN=2∠DBN,即可推出结论;(4)可先证明∠ABC=∠DBN,由(1)∠ABN=116°,可推出∠CBD=58°,所以∠ABC+∠DBN=58°,则可求出∠ABC的度数.【详解】解:(1)①∵AM//BN,∠A=64°,∴∠ABN=180°﹣∠A=116°,故答案为:116°;②∵AM//BN,∴∠ACB=∠CBN,故答案为:CBN;(2)∵AM//BN,∴∠ABN+∠A=180°,∴∠ABN=180°﹣64°=116°,∴∠ABP+∠PBN=116°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=116°,∴∠CBD=∠CBP+∠DBP=58°;(3)不变,∠APB:∠ADB=2:1,∵AM//BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1;(4)∵AM//BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD =∠CBD+∠DBN∴∠ABC =∠DBN ,由(1)∠ABN =116°,∴∠CBD =58°,∴∠ABC+∠DBN =58°,∴∠ABC =29°,故答案为:29°.【点睛】本题考查了角平分线的定义,平行线的性质等,解题关键是能熟练运用平行线的性质并能灵活运用角平分线的定义等.6.如图1,在平面直角坐标系中,(,0),(,2)A a C b ,且满足2(2)20a b ++-=,过C 作CB x ⊥轴于B .(1)求ABC ∆的面积.(2)若过B 作//BD AC 交y 轴于D ,且,AE DE 分别平分,CAB ODB ∠∠,如图2,求AED ∠的度数.(3)在y 轴上存在点P 使得ABC ∆和ACP ∆的面积相等,请直接写出P 点坐标.【答案】(1)4;(2)45︒;(2)(0,3)P 或(0,1)-.【分析】(1)根据非负数的性质易得2a =-,2b =,然后根据三角形面积公式计算; (2)过E 作//EF AC ,根据平行线性质得////BD AC EF ,且1312CAB ∠=∠=∠,1422ODB ∠=∠=∠,所以112()2AED CAB ODB ∠=∠+∠=∠+∠;然后把90CAB ODB ∠+∠=︒ 代入计算即可;(3)分类讨论:设(0,)P t ,当P 在y 轴正半轴上时,过P 作//MN x 轴,//AN y 轴,//BM y 轴,利用4APC ANP CMP MNAC S S S S ∆∆∆=--=梯形可得到关于t 的方程,再解方程求出t ; 当P 在y 轴负半轴上时,运用同样方法可计算出t .【详解】解:(1)2(2)20a b ++-=,20a ∴+=,20b -=,2a ∴=-,2b =,CB AB ⊥(2,0)A ∴-,(2,0)B ,(2,2)C ,ABC ∆∴的面积12442=⨯⨯=; (2)解://CB y 轴,//BD AC ,5CAB ∴∠=∠,又∵590ODB ∠+∠=︒,∴90CAB ODB ∠+∠=︒,过E 作//EF AC ,如图①,//BD AC , ////BD AC EF ∴, 31∴∠=∠,42∠=∠ AE ∵,DE 分别平分CAB ∠,ODB ∠,即:132CAB ∠=∠,142ODB ∠=∠, 112()452AED CAB ODB ∴∠=∠+∠=∠+∠=︒;(3)(0,1)P -或(0,3). 解:①当P 在y 轴正半轴上时,如图②,设(0,)P t , 过P 作//MN x 轴,//AN y 轴,//BM y 轴,4APC ANP CMP MNAC S S S S ∆∆∆=--=梯形, ∴4(2)(2)42t t t t -+---=,解得3t =, ②当P 在y 轴负半轴上时,如图③4APC ANP CMP MNAC S S S S ∆∆∆=--=梯形 ∴4(2)(2)42t t t t -+-+--=,解得1t =-,综上所述:(0,3)P 或(0,1)-.【点睛】本题考查了平行线的判定与性质:两直线平行,内错角相等.也考查了非负数的性质、坐标与图形性质以及三角形面积公式.构造矩形求三角形面积是解题关键.7.阅读下面材料:彤彤遇到这样一个问题:已知:如图甲,AB //CD ,E 为AB ,CD 之间一点,连接BE ,DE ,得到∠BED . 求证:∠BED =∠B +∠D .彤彤是这样做的:过点E 作EF //AB ,则有∠BEF =∠B .∵AB //CD ,∴EF//CD.∴∠FED=∠D.∴∠BEF+∠FED=∠B+∠D.即∠BED=∠B+∠D.请你参考彤彤思考问题的方法,解决问题:如图乙.已知:直线a//b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.(1)如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;(2)如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,直接写出∠BED的度数(用含有α,β的式子表示).【答案】(1)65°;(2)11 18022αβ︒-+【分析】(1)如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,∠ADC=70°,参考彤彤思考问题的方法即可求∠BED的度数;(2)如图2,过点E作EF∥AB,当点B在点A的右侧时,∠ABC=α,∠ADC=β,参考彤彤思考问题的方法即可求出∠BED的度数.【详解】(1)如图1,过点E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED=∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=12∠ABC=30°,∠EDC=12∠ADC=35°,∴∠BED=∠EBA+∠EDC=65°.答:∠BED的度数为65°;(2)如图2,过点E作EF∥AB,有∠BEF+∠EBA=180°.∴∠BEF=180°﹣∠EBA,∵AB∥CD,∴EF∥CD,∴∠FED=∠EDC.∴∠BEF+∠FED=180°﹣∠EBA+∠EDC.即∠BED=180°﹣∠EBA+∠EDC,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =12α,∠EDC =12∠ADC =12β, ∴∠BED =180°﹣∠EBA +∠EDC =180°﹣12α +12β. 答:∠BED 的度数为180°﹣12α +12β. 【点睛】本题考查了平行线的判定与性质以及角平分线的定义,解决本题的关键是熟练掌握平行线的判定与性质.8.如图,已知//AM BN ,60A ∠=︒,点P 是射线AM 上一动点(与点A 不重合),BC ,BD 分别平分ABP ∠和PBN ∠,分别交射线AM 于点C ,D .(1)求CBD ∠的度数(2)当点P 运动时,:APB ADB ∠∠的比值是否随之变化?若不变,请求出这个比值;若变化,请找出变化规律;(3)当点P 运动到某处时,ACB ABD =∠∠,求此时ABC ∠的度数.【答案】(1)60°;(2)不变,∠APB :∠ADB=2:1;(3)30°【分析】(1)根据角平分线的定义只要证明∠CBD=12∠ABN 即可; (2)不变.可以证明∠APB=∠PBN ,∠ADB=∠DBN=12∠PBN . (3)想办法证明∠ABC=∠CBP=∠DBP=∠DBN 即可解决问题;【详解】解:(1)∵AM∥BN,∴∠ABN=180°-∠A=120°,又∵BC,BD分别平分∠ABP和∠PBN,∴∠CBD=∠CBP+∠DBP=12(∠ABP+∠PBN)=12∠ABN=60°,(2)不变.理由如下:∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,又∵BD平分∠PBN,∴∠ADB=∠DBN=12∠PBN=12∠APB,∴∠APB:∠ADB=2:1.(3)∵AM∥BN,∴∠ACB=∠CBN,又∵∠ACB=∠ABD,∴∠CBN=∠ABD,∴∠ABC=∠ABD-∠CBD=∠CBN-∠CBD=∠DBN,∴∠ABC=∠CBP=∠DBP=∠DBN,∴∠ABC=14∠ABN=30°,【点睛】本题考查平行线的性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.如图,已知AB∥CD,BE平分∠ABC,交CD于点D,∠CDE=160°,求∠C的度数【答案】140°【分析】先根据邻补角的定义求出∠CDB的度数,再根据平行线的性质及角平分线的定义得出∠ADB及∠ABC的度数,由平行线的性质可得出∠C的度数.【详解】解:∵∠CDE=160°,∴∠CDB=180°-∠CDE=180°-160°=20°,∵AB∥CD,∴∠ABD=∠CDB=20°,∵BE平分∠ABC,∴∠ABC=2∠ABD=2×20°=40°,∴∠C=180°-∠ABC=180°-40°=140°.【点睛】本题考查的是平行线的性质、角平分线的定义及邻补角的性质,熟知平行线的性质是解答此题的关键.10.如图,已知:AD⊥BC于D,EG⊥BC于G,AD平分∠BAC,求证:∠1=∠E.下面是部分推理过程,请你填空或填写理由证明:∵AD⊥BC,EG⊥BC (已知),∴∠ADC=∠EGC=90∘(),∴AD∥EG(),∴∠2=______,( )∠3=______(两直线平行,同位角相等) .又∵AD平分∠BAC(),∴∠2=∠3(),∴∠1=∠E()【答案】垂直的定义;同位角相等,两直线平行;∠1;两直线平行,内错角相等;∠E;已知;角平分线的定义;等量代换【分析】根据平行线的性质和判定以及角平分线的定义证明即可.【详解】证明:∵AD⊥BC,EG⊥BC (已知),∴∠ADC=∠EGC=90°(垂直的定义),∴AD//EG(同位角相等,两直线平行),∴∠2=1,(两直线平行,内错角相等)∠3=∠E(两直线平行,同位角相等) .又∵AD平分∠BAC(已知),∴∠2=∠3(角平分线的定义),∴∠1=∠E(等量代换).【点睛】本题主要考查平行线的性质及判定,角平分线的定义,掌握平行线的性质及判定是解题的关键.AB CD,直线EF分别交AB、CD于点A、C,CM是∠ACD的平分线,11.已知直线//CM交AB于点H,过点A作AG⊥AC交CM于点G.(1)如图1,点G在CH的延长线上时,若∠GAB =36°,求∠MCD的度数;(2)如图2,点G在CH上时,试说明:2∠MCD+∠GAB=90°.【答案】(1)63°;(2)见解析【分析】(1)依据AG⊥AC,∠GAB=36°,可得∠CAH的度数,依据角平分线的定义以及平行线的性质,即可得到∠MCD的度数;(2)结合(1)得ACD+∠CAH=180°,再依据角平分线的定义,即可得2∠MCD+∠GAB=90°.【详解】(1)∵AG⊥AC,∠GAB=36°,∴∠CAH=90°-36°=54°,∵AB∥CD,∴∠ACD+∠CAH=180°,∴∠ACD=126°,∵CM是∠ACD的平分线,∴∠ACH=∠DCM=63°;(2)∵∠ACH=∠DCM,∴∠ACD=2∠MCD,由(1)得ACD+∠CAH=180°,∵AG⊥AC,∴∠CAG=90°,∴2∠MCD+90°+∠GAB=180°,∴2∠MCD+∠GAB=90°.【点睛】本题主要考查了平行线的性质,垂直的定义,角平分线的定义,利用两直线平行,同旁内角互补是解决问题的关键.12.阅读理解:我们知道“三角形三个内角的和为180°”,在学习平行线的性质之后,可以对这一结论进行推理论证.请阅读下面的推理过程:如图①,过点A作DE//BC∴∠B=∠EAB,∠C=∠DAC又∵∠EAB+∠BAC+∠DAC=180°∴∠B+∠BAC+∠C=180°即:三角形三个内角的和为180°.阅读反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC、∠B、∠C“凑”在一起,得出角之间的关系.方法运用:如图②,已知AB//DE,求∠B+∠BCD+∠D的度数.(提示:过点C作CF//AB)深化拓展:如图③,已知AB//CD,点C在点D的右侧,∠ADC=70°,点B在点A的左侧,∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE、DE所在的直线交于点E,且点E在AB与CD两条平行线之间,求∠BED的度数.【答案】方法运用:360°;深度拓展:65°【分析】方法运用:过C作CF∥AB,根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;深化拓展:过点E作EF∥AB,然后根据两直线平行内错角相等,再利用角平分线的定义和等量代换即可求∠BED的度数.【详解】方法运用:解:过点C作CF∥AB∴∠B=∠BCF∵CF∥AB且AB∥DE∴CF∥DE∴∠D=∠DCF∵∠BCD+∠BCF+∠DCF=360°∴∠B+∠BCD+∠D=360°深化拓展:过点E作EF∥AB∴∠BEF=∠ABE又∵BE平分∠ABC,∠ABC=60°∴∠BEF=∠ABE=12∠ABC=30°∵EF∥AB,AB∥CD∴EF∥CD∴∠DEF=∠EDC又∵DE平分∠ADC,∠ADC=70°∴∠DEF=∠EDC=12∠ADC=35°∴∠BED=∠BEF+∠DEF=30°+35°=65°【点睛】本题主要考查平行线的性质和角平分线的定义,能够作出平行线是解题的关键.13.在综合与实践课上,老师让同学们以“三条平行线m,n,l(即始终满足m∥n∥l)和一副直角三角尺ABC,DEF(∠BAC=∠EDF=90°,∠FED=60°,∠DFE=30°,∠ABC=∠ACB=45°)”为主题开展数学活动.操作发现(1)如图1,展翅组把三角尺ABC的边BC放在l上,三角尺DEF的顶点F与顶点B 重合,边EF经过AB,顶点E恰好落在m上,顶点D恰好落在n上,边ED与n相交所成的一个角记为∠1,求∠1的度数;(2)如图2,受到展翅组的启发,高远组把直线m向下平移后使得两个三角尺的两个直角顶点A、D分别落在m和l上,顶点C恰好落在n上,边AC与l相交所成的一个角记为∠2,边DF与m相交所成的一个角记为∠3,请你说明∠2﹣∠3=15°;结论应用(3)老师在点评高远组的探究操作时提出,在(2)的条件下,若点N是直线n上一点,CN恰好平分∠ACB时,∠2与∠3之间存在一个特殊的倍数关系,请你直接写出它们之间的倍数关系,不需要说明理由.【答案】(1)75°;(2)见解析;(3)∠2=3∠3【分析】(1)利用三角板的度数,求出∠DBC的度数,再利用平行线的性质得到∠BDN的度数,由此得到∠1的度数;(2)过B点作BG∥直线m,利用平行线的性质可得到∠3=DBG和∠LAB=∠ABG,再利用等量代换得到∠3+∠LAB=75°,利用余角性质得到∠LAB=90°-∠2,由此证明结论;(3)结论:∠2=3∠3.利用(2)中结论,结合平行线的性质得到∠2和∠3的度数由此证明结论.【详解】(1)∵直线n∥直线l,∴∠DBC=∠BDN,又∵∠DBC=∠ABC﹣∠ABD=45°﹣30°=15°,∴∠BDN=15°,∴∠1=90°﹣15°=75°.(2)如图所示,过B点作BG∥直线m,∵BG∥m,l∥m,∴BG∥l(平行于同一直线的两直线互相平行),∵BG∥m,∴∠3=DBG,又∵BG∥l,∴∠LAB=∠ABG,∴∠3+∠LAB=∠DBA=30°+45°=75°,又∵∠2和∠LAB互为余角,∴∠LAB =90°﹣∠2,∴∠3+90°﹣∠2=75°,∴∠2﹣∠3=15°.(3)结论:∠2=3∠3.理由:在(2)的条件下,∠2﹣∠3=15°,又∵CN 平分∠BCA ,∴∠BCN =∠CAN =22.5°,又∵直线n ∥直线l ,∴∠2=22.5°,∴∠3=7.5°,∴∠2=3∠3.【点睛】考查平行线的性质并结合了三角板中的特殊角度,学生需要作辅助线利用平行线的传递性将特殊的角的关系联系起来,熟悉掌握平行线之间角的关系是解题的关键. 14.如图,AB CD ∥,点E 、F 分别在直线AB 、CD 上,点O 在直线AB 、CD 之间,100EOF ∠=︒.(1)求BEO DFO ∠+∠的值;(2)如图2,直线MN 交BEO ∠、CFO ∠的角平分线分别于点M 、N ,求EMN FNM∠-∠的值;(3)如图3,EG 在AEO ∠内,AEG n OEG ∠=∠,FK 在DFO ∠内,DFK n OFK ∠=∠.直线MN 交FK 、EG 分别于点M 、N ,若50FMN ENM ∠-∠=︒,则n 的值是__________.【答案】(1)260° ;(2)40°;(3)53【分析】(1)如下图,过点O 作OG AB ,可得出AB OG CD ,然后利用平行的性质进行角度转换可得出答案;(2)如图,过点M 作MK AB ,过点N 作NH CD ∥,然后设BEM OEM x ∠=∠=,CFN OFN y ∠=∠=,利用方程思想进行角度推导,可得出答案;(3)如下图,过点O 作AB 的平行线OQ ,同样利用方程思想进行推导转化,可得出n 的值.【详解】(1)证明:过点O 作OG AB∵AB CD ∥∴AB OG CD∴180BEO EOG ∠+∠=︒,180DFO FOG ∠+∠=︒∴360BEO EOG DFO FOG ︒∠+∠+∠+∠=即360BEO EOF DFO ∠+∠+∠=︒∵100EOF ∠=︒∴260BEO DFO ︒∠+∠=(2)解:过点M 作MK AB ,过点N 作NH CD ∥,∵EM 平分BEO ∠,FN 平分CFO ∠设BEM OEM x ∠=∠=,CFN OFN y ∠=∠=∵260BEO DFO ︒∠+∠=∴21802260BEO DFO x y ︒︒∠+∠=+-=∴40x y -=︒∵MK AB ,NH CD ∥,AB CD ∥ ∴AB MK NH CD∴EMK BEM x ∠=∠=,HNF CFN y ∠=∠=,KMN HNM ∠=∠∴()EMN FNM EMK KMN HNM HNF ∠∠=∠+∠-∠+∠-x KMN HNM y =+∠-∠-40x y ︒=-=(3)如下图,过点O 作AB 的平行线OQ设∠NEO=x ,则∠AEN=nx设∠OFM=y,则∠MFD=ny∵AB∥CD,AB∥OQ∴AB∥OQ∥CD∴∠EOQ=∠AEO=(n+1)x,∠QOF=180°-(n+1)y∵∠EOF=100°∴∠EOQ+∠QOF=100°,化简得:(n+1)(y-x)=80°在△NPE中,∠ENP=180°-x-∠NPE在四边形POFM中,∠PMF=360°-y-100°-∠OPM∵∠PMF-∠ENP=50°∴∠PMF-∠ENP=50=360°-y-100°-∠OPM-(180°-x-∠NPE) ∵∠NPE=∠OPM∴∠PMF-∠ENP化简后得:150°+(y-x)=180°∴y-x=30°∵(n+1)(y-x)=80°∴解得:n=53.【点睛】本题考查平行线的综合应用,解题关键是构造平行线,然后利用方程思想进行角度转化求解.15.如图,已知∠AOB,作∠AOB的平分线OC,将直角尺DEMN如图所示摆放,使EM边与OB边重合,顶点D落在OA边上,DN边与OC交于点P.(1)猜想DOP是三角形;(2)补全下面证明过程:∵OC平分∠AOB∴=∵DN∥EM∴=∴=∴=【答案】等腰,∠DOP,∠BOP,∠DPO,∠BOP,∠DOP,∠DPO,OD,PD,见解析【分析】(1)三角形的种类有多种,从边和角的关系上看常见的有:等腰三角形、等边三角形、直角三角形、观察此三角形即可大体猜想出三角形的类型;(2)根据角平分线的性质和平行线的性质,求得∠DOP=∠DPO,即可判断三角形的形状.【详解】解:(1)我们猜想△DOP是等腰三角形;(2)补全下面证明过程:∵OC平分∠AOB,∴∠DOP =∠BOP ,∵DN ∥EM ,∴∠DPO =∠BOP ,∴∠DOP =∠DPO ,∴OD =PD .故答案为:等腰,∠DOP ,∠BOP ,∠DPO ,∠BOP ,∠DOP ,∠DPO ,OD ,PD .【点睛】本题考查了角平分线的性质和平行线的性质及等腰三角形,解决本题的关键是掌握平行线的性质定理,找到相等的角.16.在小学认识三角形的基础上我们来继续学习三角形.三角形可用符号“”表示. 例:如图1中的三角形可记作“ABC ”;在一个三角形中,如果有两个角相等,我们新定义这个三角形为等角三角形.(1)如图1,ABC ∠的角平分线交AC 于D ,//DE BC 交AB 于E ,①请在图1中依题意补全图形;②判断EBD △是不是等角三角形;(直接写出结论即可).(2)如图2,AF 是GAC ∠的角平分线,//BC AF .判断ABC 是不是等角三角形,并说明理由.(3)如图3,BM ,CM 分别是ABC ∠和ACB ∠的角平分线,请过图中某一点,作一条图中已有线段的平行线,使图中出现一个或两个等角三角形,标出字母,并就出现的一个三角形是等角三角形说明理由.【答案】(1)①见解析;②△EBD 是等角三角形;(2)△ABC 是等角三角形,理由见解析;(3)见解析【分析】(1)①根据题意画出图形即可;②根据角平分线定义可得∠ABD =∠DBC ,根据平行线的性质可得∠EDB =∠DBC ,进而可得∠EBD =∠EDB ,从而可得△EBD 是等角三角形;(2)根据平行线的性质可得∠1=∠B ,∠2=∠C ,再根据角平分线的性质可得∠1=∠2,进而可得结论;(3)过点M 作GH ∥BC ,交AB 于点G ,交AC 于点H ,利用平行线的性质和角平分线定义解答即可.【详解】解:(1)①补全图形如图4所示.②△EBD是等角三角形.理由:∵BD平分∠ABC,∴∠ABD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴△EBD是等角三角形;(2)△ABC是等角三角形.理由如下:如图5,∵AF∥BC,∴∠1=∠B,∠2=∠C,∵AF是∠GAC的角平分线,∴∠1=∠2,∴∠B=∠C,∴△ABC是等角三角形.(3)过点M作GH∥BC,交AB于点G,交AC于点H,如图6,出现两个等角三角形分别是:△GBM和△HMC.下面说明△GBM是等角三角形.理由:∵GH∥BC,∴∠1=∠2,∵BM是∠ABC角平分线,∴∠GBM=∠2,∴∠1=∠GBM,所以△GBM是等角三角形.【点睛】此题主要考查了平行线的性质以及角平分线的定义,正确理解题意、熟练掌握平行线的性质是解题的关键.17.如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E 2,第三次操作,分别作∠ABE 2和∠DCE 2的平分线,交点为E 3,…,第n 次操作,分别作∠ABE n ﹣1和∠DCE n ﹣1的平分线,交点为E n .(1)如图①,已知∠ABE=50°,∠DCE=25°,则∠BEC = °;(2)如图②,若∠BEC=140°,求∠BE 1C 的度数;(3)猜想:若∠BEC =α度,则∠BE n C = °.【答案】(1)75;(2)70°;(3)2n α⎛⎫ ⎪⎝⎭【分析】(1)先过E 作EF ∥AB ,根据AB ∥CD ,得出AB ∥EF ∥CD ,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE=75°;(2)先根据∠ABE 和∠DCE 的平分线交点为E 1,运用(1)中的结论,得出∠BE 1C=∠ABE 1+∠DCE 1=12∠ABE+12∠DCE=12∠BEC ; (3)根据∠ABE 1和∠DCE 1的平分线,交点为E 2,得出∠BE 2C=14∠BEC ;根据∠ABE 2和∠DCE 2的平分线,交点为E 3,得出∠BE 3C=18∠BEC ;…据此得到规律∠E n =12n ∠BEC ,最后求得∠BE n C 的度数.【详解】解:(1)如图①,过E 作EF ∥AB ,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE=75°;故答案为:75;(2)如图2,∵∠ABE和∠DCE的平分线交点为E1,∴由(1)可得,∠BE1C=∠ABE1+∠DCE1=12∠ABE+12∠DCE=12∠BEC;∵∠BEC=140°,∴∠BE1C=70°;(3)如图2,∵∠ABE1和∠DCE1的平分线交点为E2,∴由(1)可得,∠BE 2C=∠ABE 2+∠DCE 2=12∠ABE 1+12∠DCE 1=12∠CE 1B=14∠BEC ; ∵∠ABE 2和∠DCE 2的平分线,交点为E 3,∴∠BE 3C=∠ABE 3+∠DCE 3=12∠ABE 2+12∠DCE 2=12∠CE 2B=18∠BEC ; …以此类推,∠E n =12n ∠BEC , ∴当∠BEC=α度时,∠BE n C 等于2n α⎛⎫ ⎪⎝⎭°. 故答案为:2n α⎛⎫ ⎪⎝⎭. 【点睛】本题主要考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.18.完成下面的证明.如图:BAP ∠与APD ∠互补,BAE CPF ∠=∠,求证:E F ∠=∠.对于本题小明是这样证明的,请你将他的证明过程补充完整.证明:BAP ∠与APD ∠互补,(已知)//AB CD ∴.( )BAP ∴∠= .(两直线平行,内错角相等)BAE CPF ∠=∠,(已知)BAP BAE APC CPF ∴∠-∠=∠-∠,(等量代换)即EAP ∠= .∴ .(内错角相等,两直线平行)E F ∴∠=∠.( )19.如图,//AB CD ,点C 在点D 的右侧,ABC ∠,ADC ∠的平分线交于点E (不与B ,D 点重合),70ADC ∠=︒.设BED n ∠=︒.(1)若点B 在点A 的左侧,求ABC ∠的度数(用含n 的代数式表示)(2)将(1)中的线段BC 沿DC 方向平移,当点B 移动到点A 右侧时,请画出图形并判断ABC ∠的度数是否改变.若改变,请求出ABC ∠的度数(用含n 的代数式表示);若不变,请说明理由.【答案】同旁内角互补,两直线平行;APC ∠;APF ∠;//AE FP ;两直线平行,内错角相等.【分析】已知∠BAP 与∠APD 互补,根据同旁内角互补两直线平行,可得AB ∥CD ,再根据平行线的判定与性质及等式相等的性质即可得出答案.【详解】证明:BAP ∠与APD ∠互补,(已知)//AB CD ∴(同旁内角互补,两直线平行).BAP ∴∠=APC ∠(两直线平行,内错角相等), BAE CPF ∠=∠,(已知)BAP BAE APC CPF ∴∠-∠=∠-∠,即EAP ∠=APF ∠,//AE FP ∴(内错角相等,两直线平行),E F ∴∠=∠(两直线平行,内错角相等). 故答案为:同旁内角互补,两直线平行;APC ∠;APF ∠;//AE FP ;两直线平行,内错角相等.【点睛】本题考查了平行线的判定与性质和等式的性质,关键是正确理解与运用平行线的判定与性质.20.如图,AC ∥DE ,BD 平分∠ABC 交AC 于F ,∠ABC=70°,∠E=50°,求∠D ,∠A 的度数.【答案】95,60D A ∠=︒∠=︒【分析】根据BD 平分∠ABC ,∠ABC=70°得出1352ABF DBC ABC ∠=∠=∠=︒,再根据//,50AC CE E ∠=︒得出50∠=°ACB ,从而计算,D A ∠∠.【详解】∵根据BD 平分∠ABC 交AC 于F ,∠ABC=70° ∴1352ABF DBC ABC ∠=∠=∠=︒ 又∵//,50AC CE E ∠=︒∴50∠=°ACB∴180705060A ∠=︒-︒-︒=︒180355095BFC ∠=︒-︒-︒=︒∴95D BFC ∠=∠=︒综上所述:95,60D A ∠=︒∠=︒【点睛】本题考查了三角形的内角和定理以及平行线的性质,转化相关的角度是解题关键. 21.直线AB ∥CD ,直线EF 分别交AB 、CD 于点A 、C ,CM 是ACD ∠的平分线,CM 交AB 于点N .(1)如图①,过点A 作AC 的垂线交CM 于点M ,若55MCD ∠=,求MAN ∠的度数; (2)如图②,点G 是CD 上的一点,连接MA 、MG ,180MGD EAB ∠+∠=,MC 平分AMG ∠.①AMG ∠和EAB ∠满足怎么样的数量关系时EC AM ⊥?②若36AMG ∠=,求ACD ∠的度数.【答案】(1)20°;(2)①当AMG ∠+EAB ∠=180°时,EC AM ⊥;②108°【分析】(1)根据角平分线的定义求出∠ACD ,然后根据平行线的性质可得∠EAB=∠ACD=110°,然后根据垂直的定义求出∠MAE=90°,即可求出结论;(2)①当AMG ∠+EAB ∠=180°时,根据平行线的性质可推出∠AMG +∠ACD=180°,然后根据角平分线的定义可得出∠ACM +∠AMC=90°,利用三角形的内角和即可求出∠MAC=90°,从而得出EC AM ⊥;②设∠ACD=x ,根据角平分线的定义可得∠GCM=12ACD ∠=12x ,∠GMC=12∠AMG =18°,根据平行线的性质可得∠EAB=∠ACD=x ,从而得出∠MGD=180°-x ,然后根据三角形外角的性质列出方程即可求出结论.【详解】解:(1)∵CM 是ACD ∠的平分线,55∠=︒MCD∴∠ACD=2∠MCD=110°∵AB ∥CD ,∴∠EAB=∠ACD=110°∵MA ⊥AC∴∠MAE=90°∴∠MAN=∠EAB -∠MAE=20°(2)①当AMG ∠+EAB ∠=180°时,EC AM ⊥ ∵AB ∥CD ,∴∠EAB=∠ACD∴∠AMG +∠ACD=180°∵CM 是ACD ∠的平分线,MC 平分AMG ∠∴∠ACM=12ACD ∠,∠AMC=12∠AMG ∴∠ACM +∠AMC=12ACD ∠+12∠AMG =()12∠∠+ACD AMG =90° ∴∠MAC=180°-(∠ACM +∠AMC )=90° ∴EC AM ⊥;②设∠ACD=x∵CM 是ACD ∠的平分线,MC 平分AMG ∠,36∠=︒AMG∴∠GCM=12ACD ∠=12x ,∠GMC=12∠AMG =18° ∵AB ∥CD ,∴∠EAB=∠ACD=x∵180MGD EAB ∠+∠=∴∠MGD=180°-x∵∠MGD=∠GCM +∠GMC即180-x=12x +18 解得:x=108即∠ACD=108°【点睛】此题考查的是平行线的性质、垂直的定义、三角形内角和定理和三角形外角的性质,掌握平行线的性质、垂直的定义、三角形内角和定理和三角形外角的性质是解决此题的关键.22.已知AB//CD,点E是平行线之间一点.(测量发现)连结EA,EC,分别做∠EAB与ECD的角平分线交于点F,通过测量我们发现∠AEC=2∠AFC.(探索新知)如图,若∠EAF=14∠EAB,∠ECF=14∠ECD,试探索∠AFC与∠AEC之间的关系,请说明理由.(合理猜想)若∠EAF=1n∠EAB,∠ECF=1n∠ECD,请猜想∠AFC与∠AEC之间的关系,不必说明理由.【答案】∠AFC=34∠AEC,理由见解析;∠AFC=1nn∠AEC【分析】探索新知:过点F作FH//AB,先证∠BAE+∠DCE=∠AEC,再根据∠EAF=14∠EAB,∠ECF=14∠ECD即可证明;合理猜想:过点F作FH//AB,先证∠BAE+∠DCE=∠AEC,再根据∠EAF=1n∠EAB,∠ECF=1n∠ECD,即可证明.【详解】探索新知:过点F作FH//AB,∵AB//CD,∴FH//CD,∴∠AFH=∠FAB,∠CFH=∠FCD,∴∠BAC+∠DCA=180°,∵∠EAC+∠ECA+∠AEC=180°,∴∠BAE+∠DCE=∠AEC,∵∠EAF=14∠EAB,∠ECF=14∠ECD,∴∠FAB+∠FCD=34∠AEC,∴∠AFC=34∠AEC;合理猜想:过点F作FH//AB,∵AB//CD,∴FH//CD,∴∠AFH=∠FAB,∠CFH=∠FCD,∴∠BAC+∠DCA=180°,∵∠EAC+∠ECA+∠AEC=180°,∴∠BAE+∠DCE=∠AEC,∵∠EAF=1n∠EAB,∠ECF=1n∠ECD,∴∠FAB+∠FCD=1nn-∠AEC,∴∠AFC=1nn-∠AEC.【点睛】本题是对平行线性质的考查,熟练掌握平行线的性质定理是解决本题的关键.23.AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在的直线交于点E.∠ADC=70°.(1)求∠EDC 的度数;(2)若∠ABC=30°,求∠BED 的度数;(3)将线段BC沿DC方向移动,使得点B在点A的右侧,其他条件不变,若∠ABC =n°,请直接写出∠BED 的度数(用含n的代数式表示).【答案】(1)35︒(2)50︒(3)12152n ︒-︒ 【分析】(1)根据角平分线定义即可得到答案;(2)过点E 作//EF AB ,然后根据角平分线的定义、平行线的判定和性质以及角的和差进行推导即可得解;(3)过点E 作//EF AB ,然后根据角平分线的定义、平行线的判定和性质以及角的和差进行推导即可得解.【详解】解:(1)∵DE 平分ADC ∠,70ADC ∠=︒ ∴1352EDC ADC ∠=∠=︒; (2)过点E 作//EF AB ,如图:∵DE 平分ADC ∠,70ADC ∠=︒;BE 平分ABC ∠,30ABC ∠=︒ ∴1352EDC ADC ∠=∠=︒,1152ABE ABC ∠=∠=︒ ∵//AB CD ,//EF AB∴////AB EF CD∴35FED CDE ∠=∠=︒,15FEB ABE ∠=∠=︒∴50BED FED FEB ∠=∠+∠=︒;(3)过点E 作//EF AB ,如图:∵DE 平分ADC ∠,70ADC ∠=︒;BE 平分ABC ∠,ABC n ∠=︒ ∴1352EDC ADC ∠=∠=︒,1122ABE ABC n ∠=∠=︒ ∵//AB CD ,//EF AB∴////AB EF CD∴35FED CDE ∠=∠=︒,11801802FEB ABE n ∠=︒-∠=︒-︒ ∴113518021522BED FED FEB n n ∠=∠+∠=︒+︒-︒=︒-︒. 故答案是:(1)35︒(2)50︒(3)12152n ︒-︒ 【点睛】本题考查了角平分线的定义、平行线的判定和性质以及角的和差,解答本题的关键是作出辅助线,要求同学们掌握平行线的性质,难度中等.24.如图①,BE 、DF 分别平分四边形ABCD 的外角MBC ∠和NDC ∠,设BAD ∠=α,BCD β∠=.(1)若110αβ+=︒,则MBC NDC ∠+∠= ︒;(2)若BE 与DF 相交于点G ,且25BGD ∠=︒,求α、β所满足的等量关系式,并说明理由;(3)如图②,若αβ=,试判断BE 、DF 的位置关系,并说明理由.【答案】(1)110;(2)50βα-=︒,理由见解析;(3)BE DF ∥,理由见解析【分析】(1)根据四边形的内角和与邻补角的性质即可求解;(2)连接BD ,先得到1()2CBG CDG αβ∠+∠=+,再根据三角形的内角和得到角度的关系即可求解;(3)由(1)有,∠MBC +∠NDC =αβ+,BE 、DF 分别平分四边形的外角∠MBC 和∠NDC ,则∠CBE +∠CDH =12(αβ+),∠CBE +β−∠DHB =12(αβ+),根据α=β,则有∠CBE +β−∠DHB =12(β+β)=β,得到∠CBE =∠DHB ,故可得到BE ∥DF .【详解】解:(1)∵∠ABC +∠ADC =360°−(αβ+)=250°,∴∠MBC +∠NDC =180°−∠ABC +180°−∠ADC =360°-(∠ABC +∠ADC )=αβ+=110°.故答案为:110;(2)50βα-=︒.理由如下:如解图①,连接BD ,由(1)知,MBC NDC αβ∠+∠=+, BE 、DF 分别平分四边形ABCD 的外角MBC ∠和NDC ∠, ∴12CBG MBC ∠=∠,12CDG NDC ∠= ()1111()2222CBG CDG MBC NDC MBC NDC αβ∴∠+∠=∠+=∠+=+. 在△BCD 中,∠BDC +∠CBD =180°−∠BCD =180°−β, 在△BDG 中,∠GBD +∠GDB +∠BGD =180°,∴∠CBG +∠CBD +∠CDG +∠BDC +∠BGD =180°,∴(∠CBG +∠CDG )+(∠BDC +∠CBD )+∠BGD =180°, ∴12(αβ+)+180°−β+25°=180°, 整理得50βα-=︒;(3)BE DF ∥.理由如下,如解图②所示,延长BC 交DF 于点H ,由(1)、(2)可知,MBC NDC αβ∠+∠=+,1()2CBE CDH αβ∠+∠=+.BCD CDH DHC ∠=∠+∠,CDH BCD DHC DHC β∴∠=∠-∠=-∠,1()2CBE DHC βαβ∴∠+-∠=+. αβ=,1()2CBE DHB ββββ∴∠+-∠=+=, CBE DHB ∴∠=∠,BE DF ∴∥.【点睛】此题考查了平行线的性质及其判定,多边形的内角和公式,利用多边形的内角和公式倒角为解题关键.25.已知AM ∥CN ,点B 为平面内一点,AB ⊥BC 于B(1)如图1,直接写出∠A 和∠C 之间的数量关系;(2)如图2,过点B 作BD ⊥AM 于点D ,求证:∠ABD=∠C ;(3)如图3,在(2)问的条件下,点E.F 在DM 上,连接BE.BF.CF ,BF 平分∠DBC ,BE 平分∠ABD ,若∠FCB+∠NCF=180°,∠ABF=2∠ABE ,求∠EBC 的度数.【答案】(1)90°;(2)详见解析;(3)105°【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【详解】解:(1)如图1,AM与BC的交点记作点O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.。
【2020中考数学专项复习】角平分线模型探究

【中考专项复习】角平分线模型【回归概念】(一)定理:角平分线定义(Angle bisector definition)从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线。
三角形三条角平分线的交点叫做三角形的内心。
三角形的内心到三边的距离相等,是该三角形内切圆的圆心。
1.角平分线分得的两个角相等,都等于该角的一半。
(定义)2·角平分线上的点到角的两边的距离相等。
3.三角形的三条角平分线交于一点,称作三角形的内心。
三角形的内心到三角形三边的距离相等。
4.三角形一个角的平分线,这个角平分线其对边所成的两条线段与这个角的两邻边对应成比例。
(二)与角平分线相关的模型1.角平分线+平行线—等腰三角形(见下图1)2.过角平分线上的点作角两边的垂线(见下图2)3.角平分线的两端过角的顶点取相等的两条线段构造全等三角形(见下图3)4.过角平分线上一点作角平分线的垂线,从而得到等腰三角形(见下图4)【规律探寻】1.两个内角平分线的夹角:三角形两内角的平分线的夹角等于90°与第三个内角的一半的和。
2.一个内角平分线和一个外角平分线的夹角三角形一内角与另外一外角的平分线的夹角等于第三个内角的一半。
3.两个外角平分线的夹角三角形两个外角的平分线的夹角等于90°与第三个内角的一半的差。
【典例解析】例题1:如图,要在S区建一个贸易市场,使它到铁路和公路距离相等,离公路与铁路交叉处500米,这个集贸市场应建在何处(比例尺为1︰20000)?【点拨】根据角平分线的判定定理,要求作的点到两边的距离相等,一般需作这两边直线形成的角的平分线,再在这条角平分线上根据要求取点.【解析】解:作夹角的角平分线OC,截取OD=2.5cm ,D即为所求.【例题2】已知:如图,△ABC的角平分线BM,CN相交于点P,求证:点P到三边AB,BC,CA的距离相等.证明:过点P作PD,PE,PF分别垂直于AB,BC,CA,垂足分别为D,E,F.∵BM是△ABC的角平分线,点P在BM上,∴PD=PE.同理PE=PF.∴PD=PE=PF.即点P到三边AB,BC,CA的距离相等.【达标检测】1. (2018·湖南省常德·3分)如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=3,则CE的长为()A.6 B.5 C.4 D.3【分析】根据线段垂直平分线的性质得到DB=DC,根据角平分线的定义、三角形内角和定理求出∠C=∠DBC=∠ABD=30°,根据直角三角形的性质解答.【解答】解:∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CE=CD×cos∠C=3,故选:D.【点评】本题考查的是线段垂直平分线的性质、直角三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.2. (2018•扬州)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC【分析】根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选:C.3. (2019•广西北部湾经济区•3分)如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A. 40°B. 45°C. 50°D. 60°【答案】C【分析】利用等腰三角形的性质和基本作图得到CG⊥AB,则CG平分∠ACB,利用∠A=∠B和三角形内角和计算出∠ACB,从而得到∠BCG的度数.【解析】解:由作法得CG⊥AB,∵AB=AC,∴CG平分∠ACB,∠A=∠B,∵∠ACB=180°-40°-40°=100°,∴∠BCG=∠ACB=50°.故选:C.4. (2018•山东枣庄•3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【解答】解:过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴=,∵FC=FG,∴=,解得:FC=,即CE的长为.故选:A.【点评】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE.5. (2018•广安)如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于C,若EC=1,则OF= 2 .【分析】作EH⊥OA于H,根据角平分线的性质求出EH,根据直角三角形的性质求出EF,根据等腰三角形的性质解答.【解答】解:作EH⊥OA于H,∵∠AOE=∠BOE=15°,EC⊥OB,EH⊥OA,∴EH=EC=1,∠AOB=30°,∵EF∥OB,∴∠EFH=∠AOB=30°,∠FEO=∠BOE,∴EF=2EH=2,∠FEO=∠FOE,∴OF=EF=2,故答案为:2.6. (2018•德州)如图,OC为∠AOB的平分线,CM⊥OB,OC=5,OM=4,则点C到射线OA的距离为.【分析】过C作CF⊥AO,根据勾股定理可得CM的长,再根据角的平分线上的点到角的两边的距离相等可得CF=CM,进而可得答案.【解答】解:过C作CF⊥AO,∵OC为∠AOB的平分线,CM⊥OB,∴CM=CF,∵OC=5,OM=4,∴CM=3,∴CF=3,故答案为:3.7. 如图所示,已知△ABC中,PE∥AB交BC于点E,PF∥AC交BC于点F,点P是AD上一点,且点D 到PE的距离与到PF的距离相等,判断AD是否平分∠BAC,并说明理由.解:AD平分∠BAC.理由如下:∵D到PE的距离与到PF的距离相等,∴点D在∠EPF的平分线上.∴∠1=∠2.又∵PE∥AB,∴∠1=∠3.同理,∠2=∠4.∴∠3=∠4,∴AD平分∠BAC.8. 如图,在直角△ABC中,AC=BC,∠C=900,AP平分∠BAC,BD平分∠ABC;AP,BD交于点O,过点O 作OM⊥AC,若OM=4.(2)若△ABC的面积为32,求△ABC的周长.解:连接OC1112221()21432642ABC AOC BOC AOBS S S S AB OE BC ON AB OM OM AB BC OM ∆∆∆∆=++=⋅+⋅+⋅=++=⨯⨯=9. (2018•宜昌)如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E . (1)求∠CBE 的度数;(2)过点D 作DF ∥BE ,交AC 的延长线于点F ,求∠F 的度数.【分析】(1)先根据直角三角形两锐角互余求出∠ABC=90°﹣∠A=50°,由邻补角定义得出∠CBD=130°.再根据角平分线定义即可求出∠CBE=∠CBD=65°;(2)先根据三角形外角的性质得出∠CEB=90°﹣65°=25°,再根据平行线的性质即可求出∠F=∠CEB=25°.【解答】解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE=∠CBD=65°;(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°﹣65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.10. 如图.已知在△ABC中,∠A、∠B的角平分线交于点O,过O作OP⊥BC于P,OQ⊥AC于Q,OR ⊥AB于R,AB=7,BC=8,AC=9.(1)求BP、CQ、AR的长.(2)若BO的延长线交AC于E,CO的延长线交AB于F,若∠A=60゜,求证:OE=OF.分析:(1)根据角平分线性质得出OR=OQ=OP,根据勾股定理起床AR=AQ,CQ=CP,BR=BP,得出方程组,求出即可;(2)过O作OM⊥AC于肘,ON⊥AB于N,求出OM=ON,证出△FON≌△EOM即可.解:连接AO,OB,OC,∵OP⊥BC,OQ⊥AC,OR⊥AB,∠A、∠B的角平分线交于点O,∴OR=OQ,OR=OP,∴由勾股定理得:AR2=OA2﹣OR2,AQ2=AO2﹣OQ2,∴AR=AQ,同理BR=BP,CQ=CP,即O在∠ACB角平分线上,设BP=BR=x,CP=CQ=y,AQ=AR=z,则x=3,y=5,z=4,∴BP=3,CQ=5,AR=4.(2)过O作OM⊥AC于M,ON⊥AB于N,∵O在∠A的平分线,∴OM=ON,∠ANO=∠AMO=90°,∵∠A=60°,∴∠NOM=120°,∵O在∠ACB、∠ABC的角平分线上,∴∠EBC+∠FCB=(∠ABC+∠ACB)=×(180°﹣∠A)=60°,∴∠FON=∠EOM,在△FON和△EOM中∴△FON≌△EOM,∴OE=OF.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
角与角平分线三只钟的故事一只小钟被主人放在了两只旧钟当中,两只旧钟滴答、滴答的走着。
一只旧钟对小钟说:“来吧,你也该工作了。
可是我有点担心,你走完三千两百万次以后,恐怕会吃不消的。
”“天哪!三千两百万次。
”小钟吃惊不已,“要我做这么大的事?办不到,办不到!”另一支旧钟说:“别听他胡说八道,不用害怕,你只要每秒滴答摆一下就行了。
”“天下哪有这么简单的事情?”小钟将信将疑,“如果这样,我就试试吧。
”小钟很轻松地每秒滴答摆一下,不知不觉中,一年过去了,它摆了三千两百万次。
成功就是这样,把简单的事做到极致,就能成功。
例1 把15°30′化成度的形式,则15°30′=____度.例2 命题“相等的角是对顶角”是______命题.(填“真”或“假”)例3 已知∠A=67°,则∠A的余角等于度.例4 如图,BD 是∠ABC 的平分线,P 是BD 上的一点,PE ⊥BA 于点E ,PE =4㎝,则点P 到边BC 的距离为 ㎝.EPDCBA练习一 角与角平分线A 组1.如图,表示下列各角:(1) (2) (3)2.下列各图中有多少个小于180度的角?并把它们表示出来。
(1) (2)3.下列四个图中,能用∠1、∠AOB 、∠O 三种方法表示同一个的是()4. 计算:① 57.3°=______°=______′; ②18°15′= ° ; ③ 33°52′+21°54′=__________; ④28°23′×2 - 6°2′= __________; ⑤ 90°—43°18′= __ ; ⑥360°÷7≈___ (精确到分)5.按图填空:6.下列四个图形中2∠大于1∠的是( )7.如图,OC 平分∠AOB ,如果∠COB=42°,那么∠AOB=_________°B 组8.尺规作图:求作一个角,使它等于已知角∠AOB ,不写作法,保留作图痕迹。
结论:9.尺规作图:已知∠AOB ,求作∠AOB 的角平分线。
不写作法,保留作图痕迹。
结论:10. Rt 90ABC C BAC ∠∠在△中,=,的角平分线AD 交BC 于点D ,2CD =, 则点D 到AB 的距离是( )A .1B .2C .3D .411. 已知:如图,AD 是ABC △的角平分线,且:AB AC ABD △与ACD △的面积之比为( )A .3:2 BC.2:3D12.已知:如图,在△ABC 中,∠C =2∠B ,∠1=∠2. 求证:AB=AC+CD.13.如图,已知直线AB CD ,相交于点O ,OA 平分EOC ∠,100EOC ∠=,则BOD ∠的度数是( ) A .20 B .40 C .50 D .8014.如图,若//AB CD ,EF 与AB CD 、分别相交于点E F 、,EP 与EFD ∠的平分线相交于点P ,且60EFD ∠=,EP FP BEP ⊥∠=,则 度.15.如图,把矩形ABCD 沿EF 对折后使两部分重合,若150∠=,则AEF ∠=( ) A .110° B .115° C .120° D .130°16.如图,在△ABC 中,AB=BC=12cm ,∠ABC=80°,BD 是∠ABC 的平分线,DE ∥BC. (1)求∠EDB 的度数; (2)求DE 的长.ABC D练习二相交线与平行线A组1. 若∠A=50°30′,则它的余角度数为________________.2. 如图,O是直线AB上一点,∠AOC=53°17′,求∠BOC的度数。
3.4.如图,直线AB与CD交于点O ,OE⊥CD,OF⊥AB, ∠DOF=65°,求∠BOE和∠AOC的度数。
5.如图,一辆汽车在直线形的公路AB上由A向B行使,M、N分别是位于公路AB两侧的村庄.⑴设汽车行使到公路AB上点P位置时,距离村庄M最近;行使到点Q位置时,距离村庄N 最近.请你在图中公路AB上分别画出点P、Q的位置.(保留画图痕迹)⑵当汽车从A出发向B行使时,在公路AB的哪一段上距离M、N两村都越来越近?在哪一段上距离村庄N越来越近,而离村庄M却越来越远?(分别用文字语言表示你的结论,不必证明)6.如右图,ABC∆中,90C∠=,30A∠=,AB的垂直平分线交AC于D,交AB于E,6AC=,则CD= .7.到平面上三点 A,B,C距离相等的点()A.只有一个 B.有二个 C.三个或三个以上 D.一个或没有8.如果一个三角形的三边中垂线的交点恰好在三角形的一边上,则这个三角形是()A、锐角三角形 B、直角三角形 C、钝角三角形 D、任意三角形9.如图,已知直线m∥n,A、B为直线n上的两点,C、P为直线上m的两点,(1) 请写出图中面积相等的各对三角形: (2) 若A、B、C为三个定点,点P在直线m上移动,无论P点移动到任何位置,总有与ΔABC的面积相等,理由是 .A B10.如图,平行四边形ABCD中,P为AC对角线上一点,PE∥BC交 AB于点E,PF∥AB交AD于点F.若ABCDS=20(cm2), 则图中阴影部分的面积= (cm2).BB组11.用三角尺和直尺过点P 作直线AB 的平行线结论:12.在下列三个图中,请用三角尺或和量角器过点A 作直线BD 的垂线13.如图,在ΔABC 中,AB=AC=32,MN 是AB 的垂直平分线,且有BC=21,求ΔBCN 的周长。
14.一条公路两次转弯后又。
回到原来的方向(即AB CD ∥,如图).如果第一次转弯时的140B ∠=°。
那么,C ∠应是( ) A .140° B .40° C .100° D .180°15.如图,Rt ABC △中,90ACB ∠=°,DE 过点C 且平行于AB ,若35BCE ∠=°,则A ∠的度数为( )A .35°B .45°C .55°D .65°16.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是( ) A .同位角相等,两直线平行 B .内错角相等,两直线平行 C .同旁内角互补,两直线平行 D .两直线平行,同位角相等17.如图所示,AB CD ∥,∠E =27°,∠C =52°,则EAB ∠的度数为( ) A .25° B .63° C .79° D .101°角与角平分线例1 【解析】15°30′=15°+错误!未找到引用源。
=15.5°,故填15.5【方法指导】本题考查了角的单位:度分秒的换算。
由高级单位变成低级单位乘以进率,由低级单位变成高级单位除以进率。
例2 【答案】假.【解析】相等的角是对顶角不成立,是假命题.【方法指导】判断一个命题真假,可以举反例,原命题与反例矛盾,说明原命题是假命题.例3 如果两角互余,那么这两个角的和为90°,所以∠A 的余角等于90°-67°=23°.例4 答案:4【详解】根据角平分线的性质可知,角平分线上的点到角两边的距离相等,所以为4cm练习一 角与角平分线1.(1)∠AOB 或∠O ;(2)∠α;(3)∠1.2.答案:(1)3个,分别是:∠α(或∠AOB)、∠β(或∠BOC )、∠AOC ; (2)7个,分别是:∠A 、∠ABD 、∠DBC 、∠C 、∠CDB 、∠BDA 、∠CDA.3. 答案:D4.答案:① 57° 18′ ②18.25° ③55°46′ ④50°44′ ⑤46°42′ ⑥51°26′5.答案:∠AOC; ∠AOD;∠BOC;∠BOD.6.答案:B7.答案:84° 10答案:B 11.答案:B12.分析:从结论分析,“截长”或“补短”都可实现问题的转化,即延长AC 至E 使CE =CD ,或在AB 上截取AF =AC .证明:方法一(补短法)延长AC 到E ,使DC =CE ,则∠CDE =∠CED ,如图4-2∴∠ACB =2∠E ,∵∠ACB =2∠B ,∴∠B =∠E , 在△ABD 与△AED 中,⎪⎩⎪⎨⎧=∠=∠∠=∠AD AD E B 21∴△ABD ≌△AED (AAS ),∴AB =AE . 又AE =AC+CE =AC +DC ,∴AB =AC +DC . 方法二(截长法)在AB 上截取AF =AC ,如图4-3在△AFD 与△ACD 中,EDCB A 12图4-2⎪⎩⎪⎨⎧=∠=∠=AD AD AC AF 21∴△AFD ≌△ACD (SAS ), ∴DF =DC ,∠AFD =∠ACD .又∵∠ACB =2∠B , ∴∠FDB =∠B ,∴FD =FB .∵AB=AF+FB=AC+FD ,∴AB=AC+CD.13.答案:C 14.答案:60 15.答案:B 16.∴∠EDB=40°,DE=6cm.练习二 相交线与平行线1. 答案:39°30′(或39.5°)2. 答案:126°43′3.答案:C4.答案:OE CD,OF AB,90906565FOD DOB BOE DOB BOE FOD BOE ⊥⊥∴∠+∠=︒∠+∠=︒∴∠=∠=︒∠∠︒∴∠=︒∠︒,, AOC=DOB=25,AOC=255.答案:(1)如图。
(2)在AP 段上距离M 、N 两村都越来越近,FDCBA 12图4-3(1)801402//40(2),//16,2406BD ABC ABC ABD DBC ABD DE BCEDB DBC AB BC ABD DBC AD DCDE BC AE BE AB cm ABD EDB DE BE cm ∠∠=︒∴∠=∠=∠=︒∴∠=∠=︒=∠=∠∴=∴===∠=∠=︒∴==平分,,又在PQ 段上距离村庄N 越来越近,而离村庄M 却越来越远。
6.答案:CD=37.答案:A8.答案:B9.答案:(1)△CAB 和△PAB, △ACP 和△BCP(2)平行线间距离处处相等,同底等高的三角形面积相等。
10.答案:1011.12. 答案:,32,21,53MN AB NB NAAC BC BC BN NC BC AN NC BC AC ∴===∴++=++=+=垂直平分又13.答案:A14.答案:C15.答案:A16. 答案:A17.答案:C。