求极限方法汇总(含例题及考研真题)

合集下载

求极限的方法总结及例题

求极限的方法总结及例题

求极限的方法总结及例题求极限是微积分学探究函数变化规律的基础,也是微积分学最重要的概念之一。

在求极限的运算中,由于函数的特殊性,其结果有可能是一个常数、一个变量或者无穷大,因此,求极限的计算要建立在对偏导数的理解和计算上,即在计算极限之前,首先要掌握偏导数的概念和计算方法。

一般来说,有三种常见的求极限方法:1、基本形式求极限;这种方法是指函数表达式本身具有特定性,可以用固定的简单运算公式直接求出极限值。

例如:当x趋向于0时,lim x→0 (1-cosx/x2)= 1/22、恒等式转换求极限;这种方法是指通过给出函数的形式进行合理的变换,从而使函数表达式转换成可以直接求出极限值的公式,从而解决函数求极限的问题。

例如计算:lim x→0(sin2x/x)可以将该式化简进行转换:lim x→0(sin2x/x)= lim x→0(2sinxcosx/x)= lim x→0(2cosx/1)= 2* lim x→0 (cosx)由于cosx等于1,当x趋向于0时,极限结果为2。

3、洛必达法则求极限;洛必达法则是指在求函数极限时,可以根据函数的性质将原函数转换成另外一组函数,从而推出极限结果。

例如:计算:lim x→∞ (1+1/x)x可以把原本的函数,转换成另一函数,即:lim x→∞ (1+1/x)x= lim x→∞ x/x2= lim x→∞ 1/x= 0 以上所述就是求极限的三种常见的方法。

接下来,我们就以例题来试验一下这三种方法的使用。

例题1:求lim x→0 (sin2x/x)解:由上文所述,这种情况应使用恒等式转换求极限:可以将该式化简进行转换:lim x→0(sin2x/x)= lim x→0(2sinxcosx/x)= lim x→0(2cosx/1)= 2* lim x→0 (cosx)由于cosx等于1,当x趋向于0时,极限结果为2。

例题2:求lim x→∞ (1+1/x)x解:这种情况应使用洛必达法则:可以把原本的函数,转换成另一函数,即:lim x→∞ (1+1/x)x= lim x→∞ x/x2= lim x→∞ 1/x= 0 以上就是求极限的三种方法总结及例题分析。

求极限的12种方法总结及例题

求极限的12种方法总结及例题

求极限的12种方法总结及例题求极限的12种方法总结及例题1. 引言在数学学习中,求极限是一个重要的概念,也是许多数学题解的基础。

在学习求极限的过程中,有许多不同的方法可以帮助我们理解和解决问题。

本文将总结12种方法,帮助我们更全面地理解求极限的概念,并提供相应的例题进行演示。

2. 利用极限的定义我们可以利用极限的定义来求解问题。

根据定义,当x趋向于a时,函数f(x)的极限为L,即对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。

利用这个定义,可以求得一些简单的极限,如lim(x→0) sinx/x=1。

3. 利用夹逼准则夹逼准则是求极限常用的方法之一。

当我们无法直接求出某个函数的极限时,可以利用夹逼准则来找到该函数的极限值。

要求lim(x→0) xsin(1/x)的极限,可以通过夹逼准则来解决。

4. 利用极限的四则运算极限的四则运算法则是求解复杂函数极限的基本方法之一。

利用这个法则,我们可以将复杂的函数分解成简单的部分,再进行求解。

要求lim(x→0) (3x^2+2x-1)/(x+1),可以利用极限的四则运算法则来求解。

5. 利用洛必达法则当我们遇到不定型的极限时,可以利用洛必达法则来求解。

洛必达法则可以帮助我们求出不定型极限的值,例如0/0、∞/∞、0*∞等形式。

通过洛必达法则,我们可以将求解不定型极限的过程转化为求解导数的问题,从而得到极限的值。

6. 利用泰勒展开泰勒展开是求解复杂函数极限的有效方法之一。

当我们遇到无法直接求解的函数极限时,可以利用泰勒展开将其转化为无穷级数的形式,然后再进行求解。

通过泰勒展开,我们可以将复杂函数近似为一个多项式,从而求得函数的极限值。

7. 利用换元法换元法是求解复杂函数极限的常用方法之一。

通过适当的变量替换,可以将复杂的函数转化为简单的形式,然后再进行求解。

对于lim(x→∞) (1+1/x)^x,可以通过换元法将其转化为e的极限形式来求解。

求函数极限的方法总结及例题

求函数极限的方法总结及例题

求函数极限的方法总结及例题一、求函数极限的方法总结。

1. 代入法。

当函数在极限点处连续时,直接将极限点代入函数求值。

例如,对于函数f(x)=x + 1,求lim_x→2(x + 1),直接将x = 2代入,得到lim_x→2(x+1)=2 + 1=3。

2. 因式分解法。

适用于(0)/(0)型的极限。

例如,求lim_x→1frac{x^2-1}{x 1},将分子因式分解为(x + 1)(x 1),则原式=lim_x→1((x + 1)(x 1))/(x 1)=lim_x→1(x + 1)=2。

3. 有理化法。

对于含有根式的函数,通过有理化来消除根式。

例如,求lim_x→0(√(x+1)-1)/(x),分子分母同时乘以√(x + 1)+1进行有理化,得到lim_x→0((√(x + 1)-1)(√(x + 1)+1))/(x(√(x + 1)+1))=lim_x→0(x)/(x(√(x + 1)+1))=lim_x→0(1)/(√(x + 1)+1)=(1)/(2)。

4. 等价无穷小替换法。

当x→0时,sin xsim x,tan xsim x,ln(1 + x)sim x,e^x-1sim x等。

例如,求lim_x→0(sin2x)/(x),因为sin2xsim2x(x→0),所以lim_x→0(sin2x)/(x)=lim_x→0(2x)/(x)=2。

5. 洛必达法则。

对于(0)/(0)型或(∞)/(∞)型的极限,可对分子分母分别求导再求极限。

例如,求lim_x→0frac{e^x-1}{x},这是(0)/(0)型,根据洛必达法则,lim_x→0frac{e^x-1}{x}=lim_x→0frac{(e^x-1)'}{x'}=lim_x→0frac{e^x}{1}=1。

二、例题。

1. 例1。

求lim_x→3frac{x^2-9}{x 3}解析:这是(0)/(0)型极限,可先对分子因式分解,x^2-9=(x + 3)(x 3)。

函数的极限考研真题填空

函数的极限考研真题填空

函数的极限考研真题填空填空一:对于一个函数f(x),当x无限靠近一个实数a时,如果f(x)的值也无限接近某个实数L,那么就称L为函数f(x)在x趋近于a时的极限,记作:lim (x→a) f(x) = L填空二:要想计算函数的极限,我们可以通过一些特定的方法和定理来求解。

下面是一些常用的计算极限的方法:方法一:代入法当函数在某个点a处连续时,可以直接将a代入函数表达式中,求得极限的值。

方法二:夹逼定理当对于函数f(x)、g(x)和h(x),在某个点a处有f(x)≤g(x)≤h(x),且lim (x→a) f(x) = lim (x→a) h(x) = L时,我们可以推断lim (x→a) g(x) = L。

方法三:恒等变形通过将极限表达式进行恒等变形,通常是通过分子有理化、分解因式、提取公因式等操作,将极限转化为可以直接计算的形式。

填空三:解析题下面是一个函数的极限计算实例:例:已知函数f(x) = (x^2 - 1)/(x - 1),求lim (x→1) f(x)的值。

解:我们可以利用恒等变形的方法进行计算,首先分解f(x)为(x - 1)(x + 1)/(x - 1),再将分子(x - 1)与(x + 1)相约去,得到f(x) = x + 1。

由于f(x)在x = 1处连续,所以我们可以直接将1代入f(x),得到lim (x→1) f(x) = lim (x→1) (x + 1) = 2。

填空四:综合题下面是一个综合题的极限计算实例:例:已知函数f(x) = 3x^2 - x,g(x) = 2x - 1,求lim (x→2) (f(x) +g(x))的值。

解:我们可以利用恒等变形的方法将f(x)和g(x)进行合并,得到f(x) + g(x) = (3x^2 - x) + (2x - 1) = 3x^2 + x - 1。

将x = 2代入f(x) + g(x),得到lim (x→2) (f(x) + g(x)) = lim (x→2) (3x^2 + x - 1) = 11。

高等数学求极限的常用方法(附例题和详解)

高等数学求极限的常用方法(附例题和详解)

高等数学求极限的常用方法(附例题和详解)高等数学求极限的常用方法(附例题和详解)在高等数学中,求极限是一个基础而重要的概念,它在各个数学领域都有广泛的应用。

本文将介绍一些常用的方法,以及针对这些方法的例题和详细解析。

I. 无穷小量法无穷小量法是求解极限最常见的方法之一。

它的基本思想是将待求极限转化为无穷小量之间的比较。

下面通过一个例题来说明这个方法。

例题1:求极限lim(x→0) (sin x) / x解析:考虑当 x 趋近于 0 时,sin x 和 x 的关系。

根据三角函数的极限性质,我们知道 sin x / x 的极限为 1。

因此,原式可以看作(sin x) / x ≈ 1,即它在 x 趋近于 0 时趋近于 1。

故lim(x→0) (sin x) / x = 1.II. 夹逼法夹逼法也是常用的求解极限的方法,它适用于求解含有不等式的极限问题。

下面通过一个例题来说明夹逼法的思想。

例题2:求极限lim(x→0) x^2sin(1/x)解析:首先,我们要注意到 x^2sin(1/x) 的取值范围在 [-x^2, x^2] 之间,因为 -1 ≤sin(θ) ≤ 1 对任意θ 成立。

然后,我们可以利用夹逼法,将 x^2sin(1/x) 夹逼在 0 和 0 之间。

也就是说,对于任何 x,都有 -x^2 ≤ x^2sin(1/x) ≤ x^2。

根据夹逼定理,当 x 趋近于 0 时,x^2sin(1/x) 的极限为 0。

故lim(x→0) x^2sin(1/x) = 0.III. 泰勒展开法泰勒展开法是一种将函数在某点附近进行多项式逼近的方法,它可以帮助我们求解一些复杂的极限问题。

下面通过一个例题来说明泰勒展开法的应用。

例题3:求极限lim(x→0) (e^x - 1) / x解析:考虑函数 f(x) = e^x 在 x = 0 处的泰勒展开式:f(x) = f(0) + f'(0)x + f''(0)x^2 / 2! + f'''(0)x^3 / 3! + ...其中,f'(0)表示 f(x) 在 x = 0 处的导数,依次类推。

高等数学求极限的17种常用方法(附例题和详解)

高等数学求极限的17种常用方法(附例题和详解)
(ii)
(iii)
(iv)单调有界准则
(v)两边夹挤准则(夹逼定理/夹逼原理)
(vi)柯西收敛准则(不需要掌握)。极限 存在的充分必要条件是:
二.解决极限的方法如下:
1.等价无穷小代换。只能在乘除时候使用。例题略。
2.洛必达(L’hospital)法则(大题目有时候会有暗示要你使用这个方法)
它的使用有严格的使用前提。首先必须是X趋近,而不是N趋近,所以面对数列极限时候先要转化成求x趋近情况下的极限,数列极限的n当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f(x)、g(x),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况:

cos=
ln(1+x)=x-
(1+x) =
以上公式对题目简化有很好帮助
4.两多项式相除:设 ,
P(x)= ,
(i) (ii)若 ,则
5.无穷小与有界函数的处理办法。例题略。
面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了。
(i)“ ”“ ”时候直接用
(ii)“ ”“ ”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通项之后,就能变成(i)中的形式了。即 ;
(iii)“ ”“ ”“ ”对于幂指函数,方法主要是取指数还取对数的方法,即 ,这样就能把幂上的函数移下来了,变成“ ”型未定式。
3.泰勒公式(含有 的时候,含有正余弦的加减的时候)
例1已知A={x -2≤x<3},B={x -1<x≤5},求A B,A B

考研:求数列极限的十五种解法

考研:求数列极限的十五种解法

求数列极限的十五种方法1.定义法N ε-定义:设{}n a 为数列,a 为定数,若对任给的正数ε,总存在正数N ,使得当n N >时,有n a a ε-<,则称数列{}n a 收敛于a ;记作:lim n n a a →∞=,否则称{}n a 为发散数列.例1.求证:1lim 1nn a →∞=,其中0a >.证:当1a =时,结论显然成立.当1a >时,记11n a α=-,则0α>,由()1111(1)nn a n n ααα=+≥+=+-,得111n a a n--≤, 任给0ε>,则当1a n N ε->=时,就有11n a ε-<,即11na ε-<,即1lim 1nn a →∞=.当01a <<时,令1b a=,则1b >,由上易知:1lim 1nn b →∞=,∴111lim 1lim n n nn a b→∞→∞==.综上,1lim 1nn a →∞=,其中0a >.例2.求:7lim !nn n →∞.解:变式:77777777777771!1278917!6!n n n n n n=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅≤⋅=⋅-;∴77710!6!n n n -≤⋅, ∴0ε∀>,7716!N ε⎡⎤∃=⋅⎢⎥⎣⎦,则当n N >时,有77710!6!n n n ε-≤⋅<;∴7lim 0!nn n →∞=. 2.利用柯西收敛准则柯西收敛准则:数列{}n a 收敛的充要条件是:0ε∀>,∃正整数N ,使得当n m N >、时,总有:n m a a ε-<成立. 例3.证明:数列1sin (1, 2, 3, )2nn kk kx n ===⋅⋅⋅∑为收敛数列. 证:11111sin(1)sin 111112()122222212n mn m m n m n m m m n x x m -+++-+-=+⋅⋅⋅+≤+⋅⋅⋅+<<<-, 0ε∀>,取1N ε⎡⎤=⎢⎥⎣⎦,当n m N >>时,有n m x x ε-<,由柯西收敛准则,数列{}n x 收敛.例4.(有界变差数列收敛定理)若数列{}n x 满足条件:11221n n n n x x x x x x M ----+-+⋅⋅⋅-≤,(1, 2, )n =⋅⋅⋅,则称{}n x 为有界变差数列,试证:有界变差数列一定收敛.证:令1112210, n n n n n y y x x x x x x ---==-+-+⋅⋅⋅-,那么{}n y 单调递增,由已知可知:{}n y 有界,故{}n y 收敛, 从而0ε∀>,∃正整数N ,使得当n m N >>时,有n m y y ε-<;此即1121n m n n n n m m x x x x x x x x ε---+-≤-+-+⋅⋅⋅-<;由柯西收敛准则,数列{}n x 收敛. 注:柯西收敛准则把N ε-定义中的n a 与a 的关系换成了n a 与m a 的关系,其优点在于无需借用数列以外的数a ,只需根据数列本身的特征就可鉴别其敛散性. 3.运用单调有界定理单调有界定理:在实数系中,有界的单调数列必有极限.例5.证明:数列n x =n 个根式,0a >,1, 2, n =)极限存在,并求lim nn x →∞.证:由假设知n x =;①用数学归纳法可证:1, n n x x k N +>∈;② 此即证{}n x 是单调递增的.事实上,10n x +<<<1=;由①②可知:{}n x 单调递增有上界,从而lim nn x l →∞=存在,对①式两边取极限得:l解得:l =l (舍负);∴lim n n x →∞.4.利用迫敛性准则(即两边夹法)迫敛性:设数列{}n a 、{}n b 都以a 为极限,数列{}n c 满足:存在正数N ,当n N >时,有:n n n a c b ≤≤,则数列{}n c 收敛,且lim nn c a →∞=. 例6.求:22212lim()12n nn n n n n n n→∞++⋅⋅⋅+++++++.解:记:2221212n n x n n n n n n n =++⋅⋅⋅+++++++,则:2212121n n nx n n n n n ++⋅⋅⋅+++⋅⋅⋅+≤≤++++; ∴22(1)(1)2(2)2(1)n n n n n x n n n n ++≤≤+++;从而22(1)1(1)lim lim 2(2)22(1)n n n n n n n n n n →∞→∞++==+++, ∴由迫敛性,得:222121lim()122n n n n n n n n n →∞++⋅⋅⋅+=++++++. 注:迫敛性在求数列极限中应用广泛,常与其他各种方法综合使用,起着基础性的作用.5.利用定积分的定义计算极限黎曼积分定义:设为()f x 定义在[, ]a b 上的一个函数,J 为一个确定的数,若对任给的正数0ε>,总存在某一正数δ,使得对[, ]a b 的任意分割T ,在其上任意选取的点集{}i ξ,i ξ∈[]1,i i x x -,只要T δ<,就有1()niii f x Jξε=∆-<∑,则称函数()f x 在[, ]a b 上(黎曼)可积,数J 为()f x 在[, ]a b 上的定积分,记作()b aJ f x dx =⎰.例7.求:()()11lim !2!n n n n n n --→∞⎡⎤⋅⋅⎣⎦. 解:原式n n =112lim (1)(1)(1)n n n n n n →∞⎡⎤=++⋅⋅⋅+⎢⎥⎣⎦ 11exp lim ln(1)nn i i nn →∞=⎛⎫=+ ⎪⎝⎭∑()()1expln(1)exp 2ln 21x dx =+=-⎰.例8.求:2sin sin sin lim 1112n n n n n n n n n πππ→∞⎛⎫⎪++⋅⋅⋅+ ⎪+ ⎪++⎪⎝⎭. 解:因为:222sinsinsin sin sin sin sin sin sin 111112n n n nn n n n n n n n n n n n n n nπππππππππ++⋅⋅⋅+++⋅⋅⋅+<++⋅⋅⋅+<+++++,又:2sinsinsin 12lim lim (sin sin sin )11n n n n n nn n n n n n n n ππππππππ→∞→∞++⋅⋅⋅+⎡⎤=⋅⋅++⋅⋅⋅+⎢⎥++⎣⎦∴02sin sinsin 12limsin 1n n nn n xdx n ππππππ→∞++⋅⋅⋅+=⋅=+⎰; 同理:2sinsinsin 2lim1n n nn n n nππππ→∞++⋅⋅⋅+=+; 由迫敛性,得:2sin sin sin 2lim 1112n n n n n n n n n ππππ→∞⎛⎫ ⎪++⋅⋅⋅+= ⎪+ ⎪++⎪⎝⎭. 注:数列极限为“有无穷多项无穷小的和的数列极限,且每项的形式很规范”这一类型问题时,可以考虑能否将极限看作是一个特殊的函数定积分的定义;部分相关的数列极限直接利用积分定义可能比较困难,这时需要综合运用迫敛性准则等方法进行讨论.6.利用(海涅)归结原则求数列极限归结原则:0lim ()x xf x A →=⇔对任何0 ()n x x n →→∞,有lim ()n n f x A →∞=. 例9.求:11lim 1n n e n →∞-. 解:11001lim lim ()1110n nxx n n e e e e n n=→∞→∞--'===-.例10.计算:211lim 1nn n n →∞⎛⎫+- ⎪⎝⎭.解:一方面,2111(1)(1) ()n n e n n n n+-<+→→∞; 另一方面,2221112221111(1)(1)(1)n n n n n n n n n n n n n -------+-=+≥+; 由归结原则:(取2, 2, 3, 1n n x n n ==⋅⋅⋅-),22222111222211111lim(1)lim(1)lim(1)lim(1)lim(1)n n n x n n n n n n n x n n n n e x n n n n -----→∞→∞→∞→∞→∞----+=+⋅+=+=+=; 由迫敛性,得:211lim(1)nn e n n →∞+-=. 注:数列是一种特殊的函数,而函数又具有连续、可导、可微、可积等优良性质,有时我们可以借助函数的这些优良性质将数列极限转化为函数极限,从而使问题得到简化和解决. 7.利用施托尔茨(stolz )定理求数列极限stolz 定理1:()∞∞型:若{}n y 是严格递增的正无穷大数列,它与数列{}n x 一起满足:11lim n n n n n x x l y y +→∞+-=-,则有lim n n nxl y →∞=,其中l 为有限数,或+∞,或-∞.stolz 定理2:0()0型:若{}n y 是严格递减的趋向于零的数列,n →∞时,0n x →且11lim n n n n n x x l y y +→∞+-=-,则有lim n n nxl y →∞=,其中l 为有限数,或+∞,或-∞.例11.求:112lim ()p p pp n n p N n +→∞++⋅⋅⋅+∈.解:令112, , p p p p n n x n y n n N +=++⋅⋅⋅+=∈,则由定理1,得:112lim p p pp n n n +→∞++⋅⋅⋅+=11(1)lim (1)p p p n n n n ++→∞+=+-1(1)1lim (1)1(1)12p n p p n p p p p n n →∞-+=+⋅++-+⋅⋅⋅+. 注:本题亦可由方法五(即定积分定义)求得,也较为简便,此处略.例12.设02ln nk nk n CS n ==∑,求:lim n n S →∞. 解:令2n y n =,则{}n y 单调递增数列,于是由定理2得:lim n n S →∞=02ln lim nkn k n C n =→∞∑110022ln ln lim (1)n nk k n nk k n C C n n ++==→∞-=+-∑∑01ln 1lim 21nk n n n k n =→∞+-+=+∑11(1)ln(1)ln lim 21n k n n n k n +=→∞++-=+∑ 1ln()(1)ln(1)ln ln(1)1limlim 2122nn n n n n n n n n n →∞→∞+++--+===+.注:stolz 定理是一种简便的求极限方法,特别对分子、分母为求和型,利用stolz 定理有很大的优越性,它可以说是求数列极限的洛必达(L'Hospita )法则. 8.利用级数求和求数列极限由于数列与级数在形式上的统一性,有时数列极限的计算可以转化为级数求和,从而通过级数求和的知识使问题得到解决.例13.求:212lim()n n na a a→∞++⋅⋅⋅+,(1)a >.解:令1x a =,则1x <,考虑级数:1nn nx ∞=∑.∵11(1)lim lim 1n n n n n n a n x x a nx ++→∞→∞+==<,∴此级数是收敛的.令1()nn S x nx ∞==∑11n n x nx∞-==⋅∑,再令11()n n f x nx ∞-==∑,∵10011()xxn n n n f t dt nt dt x ∞∞-=====∑∑⎰⎰1xx-;∴21()()1(1)x f x x x '==--; 而2()()(1)x S x x f x x =⋅=-;因此,原式=1112()(1)a S a a ---==-.9.利用级数收敛性判断极限存在由于级数与数列在形式上可以相互转化,使得级数与数列的性质有了内在的密切联系,因此数列极限的存在性及极限值问题,可转化为研究级数收敛性问题. 例14.设00x >,12(1)2n n nx x x ++=+(0, 1, 2, )n =⋅⋅⋅,证明:数列{}n x 收敛,并求极限lim nn x →∞. 证:由00x >,可得:0n x >(0, 1, 2, )n =⋅⋅⋅,令2(1)(), (0)2x f x x x+=>+, 则2210'()(2)2f x x <=<+,且12(1)(), 0, (0, 1, 2, )2n nn n n x f x x x n x ++==>=⋅⋅⋅+, 考虑级数:10n n n x x ∞+=-∑;由于11n n n n x x x x +--=-11()()n n n n f x f x x x ---=-11'()()12n n n n f x x x x ξ---<-;所以,级数10n n n x x ∞+=-∑收敛,从而10()n n n x x ∞+=-∑收敛.令()10nn k k k S x x +==-∑10n x x +=-,∵lim n n S →∞存在,∴10lim lim n n n n x x S l +→∞→∞=+=(存在); 对式子:12(1)2n n n x x x ++=+,两边同时取极限:2(1)2l l l+=+,∴l =l =lim n n x →∞.例15.证明:111lim(1ln )23n n n →∞++⋅⋅⋅+-存在.(此极限值称为Euler 常数).证:设1111ln 23n a n n=++⋅⋅⋅+-,则1n n a a --=[]1ln ln(1)n n n ---;对函数ln y n =在[1, ]n n -上应用拉格朗日中值定理, 可得:1ln ln(1) (01)1n n n θθ--=<<-+,所以1211111(1)(1)n n a a n n n n n θθθ---=-=<-+-+-; 因为221(1)n n ∞=-∑收敛,由比较判别法知:12n n n a a ∞-=-∑也收敛, 所以lim n n a →∞存在,即111lim(1ln )23n n n→∞++⋅⋅⋅+-存在. 10.利用幂级数求极限利用基本初等函数的麦克劳林展开式,常常易求出一些特殊形式的数列极限. 例16.设11sin sin , sin sin(sin ) (2, 3, )n n x x x x n -===⋅⋅⋅,若sin 0x >,求:sin n n x →∞. 解:对于固定的x ,当n →∞时,1sin n x单调趋于无穷,由stolz 公式,有: 2222111lim sin lim lim 111sin sin sin n n n n n n n n n n x x x x →∞→∞→∞++-==-221lim 11sin (sin )sin n n n x x→∞=-46622220002244221()1sin 3lim lim lim 111sin (())sin 3t t t t t o t t t t t t t t o t t t +++→→→-⋅+⋅===----+46622004411()1()33lim lim 311()(1)33t t t t o t t o t t o t o ++→→-⋅+-⋅+===++. 11.利用微分中值定理求极限拉格朗日中值定理是微分学重要的基本定理,它利用函数的局部性质来研究函数的整体性质,其应用十分广泛.下面我们来看一下拉格朗日中值定理在求数列极限中的应用. 例17.求:2lim (arctanarctan )1n a a n n n →∞-+,(0)a ≠. 解:设()arctan f x x =,在[, ]1a an n+上应用拉格朗日中值定理, 得:21()()(), [, ]1111a a a a a af f n n n n n nξξ-=-∈++++,故当n →∞时,0ξ→,可知:原式22lim 11n a nn a n ξ→∞=⋅⋅=++. 12.巧用无穷小数列求数列极限引理:数列{}n x 收敛于a 的充要条件是:数列{}n x a -为无穷小数列. 注:该引理说明, 若lim n n x a →∞=,则n x 可作“变量”替换:令n n x a α=+,其中{}n α是一个无穷小数列. 定理1:若数列{}n α为无穷小数列,则数列{}n α也为无穷小数列,反之亦成立. 定理2:若数列{}n α为无穷小数列,则数列12{}nn ααα++⋅⋅⋅+也为无穷小数列. 推论1:设数列{}n α为无穷小数列,则数列12{}nnααα++⋅⋅⋅+也为无穷小数列.例18.(算术平均收敛公式)设lim n n x a →∞=,求极限12limnn x x x n→∞++⋅⋅⋅+.解:由lim n n x a →∞=,作“变量”代换,令n n x a α=+,其中{}n α是一无穷小数列; 由定理2的结论有:12limn n x x x n →∞++⋅⋅⋅+12()()()lim n n a a a nααα→∞++++⋅⋅⋅++= 1212()()lim lim 0n n n n na a a a n nαααααα→∞→∞+++⋅⋅⋅+++⋅⋅⋅+==+=+=.此题还可以用方法1(定义法)证明,也可通过方法7(stolz 公式)求得,此处略. 例19.设lim n n x a →∞=,lim n n y b →∞=,求极限1211lim n n n n x y x y x y n-→∞++⋅⋅⋅+.解:由lim n n x a →∞=,lim n n y b →∞=,作“变量”代换,令n n x a α=+,n n y b β=+,其中{}n α,{}n β都是一无穷小数列, 故1211limn n n n x y x y x y n -→∞++⋅⋅⋅+11()()()()lim n n n a b a b nαβαβ→∞+++⋅⋅⋅+++= 1111lim n n n n n ab b a n n n ααββαβαβ→∞+⋅⋅⋅++⋅⋅⋅++⋅⋅⋅+⎡⎤=+++⎢⎥⎣⎦因为0n β→()n →∞,所以{}n β有界数列,即n M β≤, 从而结合上述推论1,有:12110 ()nn n M n nnααααβαβ++⋅⋅⋅++⋅⋅⋅≤⋅→→∞,再根据定理1,即有:110 ()n n n nαβαβ+⋅⋅⋅→→∞;又由定理2,可知:10na nββ+⋅⋅⋅+⋅→,10 ()nb n nαα+⋅⋅⋅+⋅→→∞;∴1211limn n n n x y x y x y ab n-→∞++⋅⋅⋅+=.注:利用无穷小数列求数列极限通常在高等数学和数学分析教材中介绍甚少,但却是一种很实用有效的方法.用这种方法求某类数列的极限是极为方便的. 13.利用无穷小的等价代换求某些函数列的极限定理:设函数()f x 、()g x 在0x =的某个领域有意义,()0g x >,0()lim1()x f x g x →=,且当n →∞时, 0mn a →(1, 2, 3, )m =⋅⋅⋅,11lim ()lim ()nnmn mn n n m m f a g a →∞→∞===∑∑,则在右端极限存在时成立.例20.求极限1lim 1)nn i →∞=∑.解:令()1f x =,1()3g x x =,当0x →1x ~,由定理1,得:2111111lim 1)lim 3326nnn n i i i n →∞→∞===⋅=⋅=∑∑. 例21.求:2231lim (1)nn i i a n →∞=+∏,(a 为非零常数).解:原式2331exp lim ln(1)nn i i a n →∞=⎛⎫=+ ⎪⎝⎭∑;令()ln(1)f x x =+,当0x →时,ln(1)x x +~, 由定理1,得:22333311lim ln(1)lim nnn n i i i i a a n n →∞→∞==+=∑∑223(1)(21)1lim 63n n n n a a n →∞++==; ∴2231lim (1)nn i i a n →∞=+=∏21exp()3a .注:我们知道,当0x →时,函数sin , tan , arcsin , arctan , 1, ln(1)x x x x x e x -+都x 与等价,倘若熟悉这些等价函数,观察它们与本文定理中的()f x 的关系,把求某些函数列极限问题转化为求熟知的数列极限问题,这样就会起到事半功倍的效果. 14.利用压缩映射原理求数列极限定义1:设()f x 在[, ]a b 上有定义,方程()f x x =在[, ]a b 上的解称为()f x 在[, ]a b 上的不动点. 定义2:若存在一个常数k ,且01k ≤<,使得[, ]x y a b ∀∈、有()()f x f y k x y -≤-,则称()f x 是[, ]a b 上的一个压缩映射.压缩映射原理:设称()f x 是[, ]a b 上的一个压缩映射且0x ∈[, ]a b ,1()n n x f x +=,对n N ∀∈,有[, ]n x a b ∈,则称()f x 在[, ]a b 上存在唯一的不动点c ,且lim nn x c →∞=. 例22.设12ax =,212n n a x x ++=(01)a <<,1, 2, n =⋅⋅⋅,求lim nn x →∞. 解:考察函数2()22a x f x =+,1[0,]2ax +∈, 易见对1[0, ]2a x +∀∈,有:21()2n n n a x x f x ++==,11[0, ]22a a x +=∈,1()12af x x +'=≤<; 所以,()f x 是压缩的,由压缩映射原理,数列{}n x 收敛.设lim n n x c →∞=,则c 是222a x x =+在1[0, ]2a+的解,解得1c =,即lim 1n n x →∞=例23.证明:数列n x =n 个根式,14a >,1, 2, n =⋅⋅⋅)极限存在,并求lim nn x →∞.解:易知:n x =,考察函数:()f x =[0, )x ∈+∞且在[0, )+∞上有:()1f x '=≤<,因此,()f x 在[0, )+∞上是压缩的;1[0, )x =+∞,1()n n x f x +=,由压缩映射原理,数列{}n x 收敛且极限为方程:()x f x ==解得:lim n n x →∞. 本题也可通过方法三(单调有界定理)解得,此处略.注:压缩映射原理在实分析中有着十分广泛的应用,如用它可十分简单的证明稳函数存在定理、微分方程解的存在性定理,特别的在求一些数列极限中有着十分重要的作用,往往可以使数列极限问题得到简便快速的解决.15.利用矩阵求解一类数列的极限(1)若数列的递推公式形如:12n n n x px qx --=+且已知01x x 、,其中p q 、为常数且0p ≠,0q ≠,2, 3, n =⋅⋅⋅;解:可将递推公式写成矩阵形式,则有1111201010n n n n n x x x p q p q x x x ----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⋅⋅⋅= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 2, 3, n =⋅⋅⋅,从而可利用线性代数知识求出n x 的表达式,并进一步求出lim nn x →∞. (2)若数列的递推公式形如:11n n n ax bx cx d--+=+且已知0x ,其中0c ≠且ad bc ≠,1, 2, n =⋅⋅⋅,解法1:令211n n n y cx d y ---+=,则1121()n n n y x d c y ---=-,11()n n n yx d c y -=-,从而有:121211()(())n n n n n n y yy a d d b c y c y y ------=-+⋅,整理得:12()()n n n y a d y bc ad y --=++-,再由(1)可以求解. 解法2:设与关系式010ax b x cx d +=+对应的矩阵为a b A c b ⎛⎫= ⎪⎝⎭,由关系式11n n n ax b x cx d --+=+; 逐次递推,有00n nn n n a x b x c x d +=+,其对应的矩阵为nn nn a b B c d ⎛⎫= ⎪⎝⎭, 利用数学归纳法易证得n B A =,通过计算n A 可求出n x 的表达式,并进一步求出lim nn x →∞. 例24.证明:满足递推公式11(1)n n n x x x αα+-=+-(01)α<<的任何实数序列{}n x 有一个极限,并求出以α、0x 及1x 表示的极限.解:由已知可得:111111200111010n n n n n n x x x x A x x x x αααα-------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,(110A αα-⎛⎫= ⎪⎝⎭); 矩阵A 的特征值121, 1λλα==-,对应的特征向量分别为:''12(1, 1), (1, 1)ξξα==-;令1211(, )11P αξξ-⎛⎫== ⎪⎝⎭,则11001P AP α-⎛⎫= ⎪-⎝⎭,从而有:()()111111011111111120101n n n A P P ααααα----⎛⎫⎛⎫--⎛⎫⎛⎫==⎪⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭ ()()()()111111121111n nn n ααααααα--⎛⎫---+- ⎪= ⎪----+-⎝⎭; 于是,101(1(1))(1(1))2n n n x x x αααα=--+-+-⎡⎤⎣⎦-.因为11α-<,所以lim(1)0n n α→∞-=,从而[]011lim (1)2n n x x x αα→∞=-+-. 例25.已知斐波那契数列定义为:1101 (1, 2, 1)n n n F F F n F F +-=+=⋅⋅⋅==;;若令1n n n F x F +=,01x =且111n n x x -=+,(1, 2, )n =⋅⋅⋅,证明极限lim nn x →∞存在并求此极限. 解:显然1011x x =+,相应矩阵0111A ⎛⎫= ⎪⎝⎭的特征值12 λλ=,对应的特征向量分别为:''12 1), 1)ξξ==;令()21121211, 111111P λλλλξξ⎛⎫--⎛⎫ ⎪==== ⎪⎪⎝⎭ ⎪⎝⎭⎝⎭,11211P λλ-⎫⎪--⎭; 则有:11200P AP λλ-⎛⎫= ⎪⎝⎭;于是11112121112121200nn n n n nn n n n n A P P λλλλλλλλλλ---++--⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭;从而,()111212111212, 1, 2, n n n nn n n n n x n λλλλλλλλ--++-+-==⋅⋅⋅-+-,由于211λλ<,上式右端分子、分母同时除以1n λ, 再令n →∞,则有:1lim lim n n n n n F x F →∞→∞+==. 注:求由常系数线性递推公式所确定的数列的极限有很多种方法,矩阵解法只是其一,但与之相关的论述很少,但却简单实用.。

考研数列极限计算汇总

考研数列极限计算汇总
此题的分母已经很简单了,主要是放缩分子,分子的每一项都含有根号,无法直接求和,所以希望通过 放缩可以把根号去掉,简化表达式。
类题 设数列
,求
(三)利用定积分定义
我们知道,定积分本身就是由一个“和式极限”来定义的,那么反过来,某些特殊类型的“和式极限”,也可
以凑成定积分定义的形式,从而将极限题转化为定积分求解。最常考的形式便是
例题 求极限
类题 1 求极限 类题 3 求极限
类题 2 求极限 类题 4 求极限
类题 5 求极限
类题 6 求极限
例题 3.利用压缩映像原理,证明数列 收敛,其中
类题 1 类题 2 类题 3 类题 4
,利用压缩映像原理,证明数列 收敛 ,利用压缩映像原理,证明数列 收敛
,利用压缩映像原理,证明数列 收敛 ,利用压缩映像原理,证明数列 收敛
例题 4 设
满足
,且对

,证明数列 收敛于 ,且
,设 满足
,且
作者小结 数学博大精深,我们不可能、也没有时间穷尽所有的题型和解法,尤其是在课堂上如此宝贵的时间里。
,并证明当
时,
(二)利用夹逼准则
夹逼准则的核心是对原式进行适当的放缩,使得放缩后的两个极限均存在且相等,从而使得夹在中间的原
式极限也一定存在,即——
。很明显,
如何选取,是夹逼准则的重点,也是难点。通过以下几个典型例题,积累放缩时的常用技巧。
(在考研中偶尔会出现比较复杂的放缩,此时命题人一般会设置两个问,第一问让你证明一个不等式, 而这个不等式,往往就是第二问求极限放缩时的关键步骤。)

从这个式子中我们可以发现,将所求极限进行适当变形,凑成形如“ 限的关键步骤。
下面先看几个最为简单的题目。 例题 1 求极限
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、常用等价无穷小:当0x →时, sin x x :,tan x x :,arcsin x x :, 2
11cos 2
x x -:,ln(1+x)~x ,ex-1~x ,(1+x)a-1~ax ,ax-1~xlna ) 2、泰勒公式(麦克劳林公式) n
n x n f x f x f f x f !
)0( !2)0()0()0()()(2+⋅⋅⋅+''+
'+≈ n x x n x x e !
1 !2112+⋅⋅⋅+++≈
)()!12()1(!51!31sin 212153x R x m x x x x m m m +--+⋅⋅⋅++-=-- 3、洛必达法则
定理1 (洛必达法则Ⅰ)若函数)(),(x g x f 满足条件: (1) ;0)(lim ,0)(lim ==x g x f
(2) )(),(x g x f 在点0x 的某个邻域内(点0x 可除外)可导,且0)(0≠'x g ; (3) A x g x f ='')
()
(lim
(或∞) 则 A x g x f x g x f =='')
()
(lim )()(lim
(或∞). 定理2 (洛必达法则Ⅱ)若函数)(),(x g x f 满足条件: (1) ;)(lim ,)(lim ∞=∞=x g x f
(2) )(),(x g x f 在点0x 的某个邻域内(点0x 可除外)可导,且0)(0≠'x g ; (3) A x g x f ='')
()
(lim
(或∞) 则 A x g x f x g x f =='')
()
(lim )()(lim
(或∞). 4、定积分定义
定积分是用极限来定义的
∑⎰
=→∆=n
i i i b
a
x f dx x f 1
)(lim )(ξλ
5、两个重要极限
1sin lim 0=→x x x ,e x
x x =+∞→)11(lim
1(2010数学一)
2013
(1) 设cos 1sin ()x x x α-=,其中()2
x π
α<,则当0x →时,()x α是
( )
(A) 比x 高阶的无穷小 (B) 比x 低阶的无穷小 (C) 与x 同阶但不等价的无穷小 (D) 与x 等价的无穷小 【答案】(C)
【解析】cos 1sin ()x x x α-=⋅Q ,(已知条件)2
1cos 1~2
x x --
21sin ()~2x x x α∴⋅- 1
sin ()~2
x x α∴-
又sin ()~()x x ααQ (sin x x :) 1
()~2
x x α∴-
∴()x α与x 同阶但不等价的无穷小. 所以选(C ).
3(2010数学三)若1])1
(1[lim =--→x o x e a x x 则a =
A0 B1 C2 D3 答案:C
6(2010数学三)求极限x
x x x ln 11)
1(lim -+∞

答案:
1
ln 11ln 2ln ln )
1(lim 1
ln ln 1lim ln 1ln lim ln )1ln(lim
,0ln ,,ln 11lim ln )1ln(lim
ln ln -+∞
→+∞→+∞→+∞→∞→∞→=-∴-=-=-⋅=-→+∞→-⋅-=-e x x
x
x x x
x e x e x
x
x x x e xe x e x
x
x x x
x x x x x x
x x x x
x x
x 故而当Θ
e^x-1~x
9(2011数学一)求极限1
1
0ln(1)lim x
e
x x x -→+⎛⎫
⎪⎝⎭
【答案】1
2
e
-
【考点分析】:本题考查极限的计算,属于1∞
形式的极限。

计算时先按1∞
未定式的计算方法将极限式变形,再综合利用等价无穷小替换、洛必达法则等方法进行计算。

(00
1,0,∞∞形式未定式,可以采用()ln ()()
g x f x f x e =g(x)
形式运用洛必达法则)
【解析】:1
1
1
1
00ln(1)ln(1)lim lim 1x
x
e
e
x x x x x x x --→→++-⎛⎫⎛⎫=+
⎪ ⎪⎝⎭
⎝⎭
2
001
11ln(1)ln(1)1lim
lim lim 1
2x x x x x x
x x x x e x x
e
e
e
→→→-+-+-+-===
01
lim
2(1)2
x x x x e
e →--
+==
12(2011数学二)=+→x
x x 1
0)2
21(
lim 答案:2 (1∞型)
15(2012)(本题满分 10 分)
已知函数()11
sin x f x x x
+=
-,记()0lim x a f x →=,
(I )求a 的值;
(I )()00011
lim lim sin sin lim 011sin sin x x x x a f x x x x x x x x x
→→→+==--=+=+=(

()(重要极限)
(II )若0x →当时,()f x a -与k
x 是同阶无穷小,求常数k 的值.
(II )()0
0011sin sin lim lim 1lim sin sin sin x x x x x x x x f x a x x x x
x →→→+--⎛⎫⎛⎫
-=--=+⎡⎤
⎪ ⎪⎣⎦⎝⎭⎝⎭ ()()3
001sin 16lim lim sin sin x x x x x x x x x x →→-+⎛⎫== ⎪⎝⎭。

相关文档
最新文档