大学物理静电场中的导体和电介质习题答案

大学物理静电场中的导体和电介质习题答案
大学物理静电场中的导体和电介质习题答案

. . .. . .

第13章 静电场中的导体

和电介质

P70.

13.1 一带电量为q ,半径为r A 的

金属球A ,与一原先不带电、外半径分别为r B 和r C 的金属球壳B 同心放置,如图所示,则图中P 点的电场强度如何?若用导线将

A 和

B 连接起来,则

A 球的电势为多少?(设无穷远处电势为

零)

[解答]过P 点作一个同心球面作为高斯面,尽管金属球壳侧会感应出异种,但是高斯面只有电荷q .根据高斯定理可得 E 4πr 2 = q /ε0, 可得P 点的电场强度为

2

04q E r

πε=

当金属球壳侧会感应出异种电荷-q 时,外侧将出现同种电荷q .用导线将A 和B 连接起来后,正负电荷将中和.A 球是一个等势体,其电势等于球心的电势.A 球的电势是球壳外侧的电荷产生的,这些电荷到球心的距离都是r c ,所以A 球的电势为

04c

q U r πε=

13.2 同轴电缆是由半径为R 1的导体圆柱和半径为R 2的同轴薄圆筒构成的,其间充满了相对介电常数为εr 的均匀电介质,设沿轴线单位长度上导线的圆筒的带电量分别为+λ和-λ,则通过介质长为l ,半径为r 的同轴封闭圆柱面的电位移通量为多少?圆柱面上任一点的场强为多少? [解答]介质中

的电场强度和电位移是轴对称分布

的.在外半径之间作一个半径为r 、长为l 的圆柱形高斯面,

根据介质中的高斯定理,通过圆柱面的电位移通过等于该

面包含的自由电荷,即 Φd = q = λl .

设高斯面的侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为

d d S

Φ=

??

D S

1

2

d d d 2S S S rlD π=?+?+?=???D S D S D S ,

可得电位移为 D = λ/2πr , 其方向垂直中心轴向外.

电场强度为 E = D/ε0εr = λ/2πε0εr r ,

方向也垂直中心轴向外.

13.3 金属

球壳原来带有电量Q ,壳外半径分别为a 、b ,壳距球心为r 处有一点电荷

q ,求球心o 的电

势为多少?

[解答]点电荷q 在壳上感应出负电荷-q ,不论电荷如何分布,距离球心都为a .外壳上就有电荷q+Q ,距离球为b .球心的电势是所有电荷产生的电势叠加,大小为

0001

11444o q q Q q

U r a b

πεπεπε-+=

++

13.4 三块平行金属板A 、B 和C ,面积都是S = 100cm 2,A 、B 相距d 1 = 2mm ,A 、C 相距d 2 = 4mm ,B 、C 接地,A 板带有正电荷q =

3×10-8C ,忽略边

缘效应.求 (1)B 、C

图14.3

(2)A 板电势为多少?

[解答](1)设A 的左右两面的电荷面密度分别为σ1和σ

2,所带电量分别为

q 1 = σ1S 和q 2 = σ2S ,

在B 、C 板上分别感应异号电荷-q 1和-q 2,

由电荷守恒得方程

q = q 1 + q 2 = σ1S + σ2S . ① A 、B 间的场强为 E 1 = σ1/ε0, A 、C 间的场强为 E 2 = σ2/ε0.

设A 板与B 板的电势差和A 板与C 板的的电势差相等,设为ΔU ,则

ΔU = E 1d 1 = E 2d 2, ②

即 σ1d 1 = σ2d 2. ③

解联立方程①和③得

σ1 = qd 2/S (d 1 + d 2),

所以 q 1 = σ1S = qd 2/(d 1+d 2) = 2×10-8(C);

q 2 = q - q 1 = 1×10-8(C).

B 、

C 板上的电荷分别为

q B = -q 1 = -2×10-8(C); q C = -q 2 = -1×10-8(C). (2)两板电势差为

ΔU = E 1d 1 = σ1d 1/ε0 = qd 1d 2/ε0S (d 1+d 2),

由于 k = 9×109 = 1/4πε0, 所以 ε0 = 10-9/36π,

因此 ΔU = 144π = 452.4(V). 由于B 板和C 板的电势为零,所以

U A = ΔU = 452.4(V).

13.5 一无限大均匀带电平面A ,带

电量为q ,在它的附近放一块与A 平行的金属导体板B ,板B 有一定的厚度,如图所示.则在板B 的两个表面1和2上的感应电荷分别为多少?

[解答]由于板B 原来不带电,两边感应出电荷后,由电荷守恒得

q 1 + q 2 = 0. ①

虽然两板是无限大的,为了计算的方便,不妨设它们的面积为S ,则面电荷密度分别为

σ1 = q 1/S 、σ2 = q 2/S 、σ = q/S , 它们产生的场强大小分别为

σ2/ε0、E = σ/ε0.

在B 板部任取一点P ,其场强为零,其中1面产生的场强向右,2面和A 板产生的场强向左,取向右的方向为正,可得

E 1 - E 2 – E = 0,

即 σ1 - σ2 – σ = 0,

或者说 q 1 - q 2 + q = 0. ② 解得电量分别为

q 2 = q /2,q 1 = -q 2 = -q /2.

13.6 两平行金属板带有等异号电荷,若两板的电势差为

120V ,两板间相距为1.2mm ,忽略边缘效应,求每一个金属板表面的电荷密度各为多少?

[解答]由于左板接地,所以σ1 = 0.

由于两板之间的电荷相互吸引,右板右面的电荷会全部吸引到右板左面,所以σ4 = 0.

由于两板带等量异号的电荷,所以

σ2 = -σ3.

两板之间的场强为

E = σ3/ε0,

而 E = U/d , 所以面电荷密度分别为

σ3 = ε0E = ε0U/d = 8.84×10-7(C ·m -2),

σ2 = -σ3 = -8.84×10-7(C·m -2). 13.7 一球形电容器,外球壳半径分别为R 1和R 2,球壳与地面及其他物体相距很远.将球用细导线接地.试证:球面间电容

可用公式2

02

21

4R C R R πε=-表示.

(提示:可看作两个球电容器的并联,且地球半径R >>R 2)

[证明]方法一:并联电容法.在

外球外面再接一个

图14.5 图14.6

半径为R 3大外球壳,外壳也接地.球壳和外球壳之间是一个电容器,电容为

1210

01221

1

441/1/R R C R R R R πεπε==--

外球壳和大外球壳之间也是一个电容器,电容为

2023

1

41/1/C R R πε=-.

外球壳是一极,由于球壳和大外球壳都接地,共用一极,所以两个电容并联.当R 3趋于无穷大时,C 2 = 4πε0R 2.并联电容为

12

120

0221

44R R C C C R R R πεπε=+=+-

2

02

21

4R R R πε=

-. 方法二:电容定义法.假设外壳带正电为q ,则壳将感应电荷q`.球的电势是两个电荷产生的叠加的结果.由于球接地,所以其电势为零;由于球是一个等势体,其球心的电势为

02

01

`044q q R R πεπε+

=,

因此感应电荷为

1

2

`R q q R =-

. 根据高斯定理可得两球壳之间的场强为

122

002`44R q q E r R r πεπε=

=-,

负号表示场强方向由外球壳指向球壳.

取外球壳指向球壳的一条电力线,两球壳之间的电势差为

1

1

2

2

d d R R R R U E r =

?=??E l

1

2

12

02()d 4R R R q

r R r

πε=

-

? 1212

021202

()11

()44R q R R q R R R R πεπε-=

-= 球面间的电容为

2

02

21

4R q C U R R πε==

-.

13.8 球形电容器的、外半径分别为R 1和R 2,其间一半充满相对介电常量为εr 的均匀电介质,求电容C 为多少?

[解答]球形电容器的电容为

120

01221

1

441/1/R R C R R R R πεπε==--.

对于半球来说,由于相对面积减少了一

半,所以电容也减少一半:

012

121

2R R C R R πε=

-.

当电容器中充满介质时,电容为:

012

221

2r R R C R R πεε=

-.

由于球是一极,外球是一极,所以两个电容器并联:

012

1221

2(1)r R R C C C R R πεε+=+=

-.

13.9 设板面积为S 的平板电容器析板间有两层介质,介电常量分别为ε1和ε2,厚度分别为d 1和d 2,求电容器的电容.

[解答]假设在

两介质的介面插入一薄导体,可知两个电容器串联,电

容分别为

C 1 = ε1S/d 1和C 2 = ε2S/d 2.

总电容的倒数为

122112*********

d d d d C C C S S S

εεεεεε+=+=+=, 总电容为 122112

S

C d d εεεε=+.

13.10 圆柱形电容器是由半径为R 1

的导线和与它同轴的半径为R 2的导体圆筒构成的,其长为l ,其间充满了介电常量为ε的介质.设沿轴线单位长度导线上的电荷为λ,圆筒的电荷为-λ,略去边缘效应.求:

(1)两极的电势差U ;

(2)介质中的电场强度E 、电位移D ; (3)电容C ,它是真空时电容的多少倍?

[解答]介质中

的电场强度和电位移是轴对称分布的.在外半径之间作一个半径为r 、长

为l 的圆柱形高斯面,侧面为S 0,上

下两底面分别为S 1和S 2.通过高斯面的电位移通量为

d d S

Φ=

??

D S

1

2

d d d 2S S S rlD π=?+?+?=???D S D S D S ,

高斯面包围的自由电荷为 q = λl , 根据介质中的高斯定理 Φd = q , 可得电位为 D = λ/2πr , 方向垂直中心轴向外.

电场强度为 E = D/ε = λ/2πεr , 方向也垂直中心轴向外.

取一条电力线为积分路径,电势差为

2

1

d d d 2R L

L

R U E r r r λπε=?==

???E l 21

ln 2R R λ

πε=

. 电容为 212ln(/)

q l

C U R R πε=

=

. 在真空时的电容为

00212ln(/)

l q C U R R πε=

=, 所以倍数为C/C 0 = ε/ε0.

13.11 在半径为R 1的金属球外还有一层半径为R 2的均匀介质,相对介电常量为εr .设金属球带电Q 0,求:

(1)介质层、外D 、E 、P 的分布; (2)介质层、外表面的极化电荷面密度.

[解答](1)在介质,电场强度和电位移以及极化强度是球对称分布的.在外半径之间作一个半径为r 的球形高斯面,通过高斯面的电位移通量为

2d d 4d S

S

D S r D Φπ=

?=

=?

?

D S

高斯面包围的自由电荷为q = Q 0, 根据介质中的高斯定理 Φd = q , 可得电位为 D = Q 0/4πr 2, 方向沿着径向.用矢量表示为

D = Q 0r /4πr 3.

电场强度为

E = D /ε0εr = Q 0r /4πε0εr r 3, 方向沿着径向.

由于 D = ε0E + P , 所以 P = D - ε0E = 03

1

(1)

4r

Q r επ-

r

. 在介质之外是真空,真空可当作介电常

量εr = 1的介质处理,所以

D = Q 0r /4πr 3,

E = Q 0r /4πε0r 3,P = 0.

(2)在介质层靠近金属球处,自由电荷Q 0产生的场为

E 0 = Q 0r /4πε0r 3;

极化电荷q 1`产生的场强为

E` = q 1`r /4πε0r 3;

总场强为 E = Q 0r /4πε0εr r 3. 由于 E = E 0 + E `,

解得极化电荷为 `

101(1)r

q Q ε=-,

介质层表面的极化电荷面密度为

`

`011

22

111

(1)44r Q q R R σπεπ==-. 在介质层外表面,极化电荷为

``21q q =-,

面密度为

``0

22

22

221(1)44r Q q R R σπεπ==-.

13.12 两个电容器电容之比C 1:C 2 = 1:2,把它们串联后接电源上充电,它们的静电能量之比为多少?如果把它们并联后接到电源上充电,它们的静电能之比又是多少?

[解答]两个电容器串联后充电,每个电容器带电量是相同的,根据静电能量公式W = Q 2/2C ,得静电能之比为

W 1:W 2 = C 2:C 1 = 2:1. 两个电容器并联后充电,每个电容器两端的电压是相同的,根据静电能量公式W = CU 2/2,得静电能之比为

W 1:W 2 = C 1:C 2 = 1:2.

13.13 一平行板电容器板面积为S ,板间距离为d ,接在电源上维持其电压为U .将一块厚度为d 相对介电常量为εr 的均匀介电质板插入电容器的一半空间,求电容器的静电能为多少?

[解答]平行板电容器的电容为

C = ε0S/d ,

当面积减少一半时,电容为C 1 = ε0S /2d ; 另一半插入电介质时,电容为C 2 = ε0εr S /2d .

两个电容器并联,总电容为

C = C 1 + C 2 = (1 + εr )ε0S /2d ,

静电能为

W = CU 2/2 = (1 + εr )ε0SU 2/4d .

13.14 一平行板电容器板面积为S ,板间距离为d ,两板竖直放着.若电容器两板充电到电压为U 时,断开电源,使电容器的一半浸在相对介电常量为εr 的液体中.求:

(1)电容器的电容C ;

(2)浸入液体后电容器的静电能; (3)极板上的自由电荷面密度. [解答](1)如前所述,两电容器并联的电容为

C = (1 + εr )ε0S /2d .

(2)电容器充电前的电容为C 0 = ε0S/d ,

充电后所带电量为 Q = C 0U . 当电容器的一半浸在介质中后,电容虽然改变了,但是电量不变,所以静电能为

W = Q 2/2C = C 02U 2/2C = ε0SU 2/(1 + εr )d .

(3)电容器的一半浸入介质后,真空的一半的电容为 C 1 = ε0S /2d ;

介质中的一半的电容为 C 2 = ε0εr S /2d .

设两半的所带自由电荷分别为Q 1和Q 2,则

Q 1 + Q 2 = Q . ① 由于C = Q/U ,所以

U = Q 1/C 1 = Q 2/C 2. ② 解联立方程得

0111221

1/C U C Q

Q C C C C =

=

++, 真空中一半电容器的自由电荷面密度为

001

12122/2(1/)(1)r C U U Q S C C S d

εσε=

==

++. 同理,介质中一半电容器的自由电荷面密度为

0021222(/1)(1)r r C U U

C C S d

εεσε=

=

++.

13.15 平行板电容器极板面积为200cm 2,板间距离为1.0mm ,电容器有一

块1.0mm 厚的玻璃板(εr = 5).将电容器与300V 的电源相连.求:

(1)维持两极板电压不变抽出玻璃板,电容器的能量变化为多少?

(2)断开电源维持板上电量不变,抽出玻璃板,电容器能量变化为多少?

[解答]平行板电容器的电容为

C 0 = ε0εr S/d ,

静电能为 W 0 = C 0U 2/2. 玻璃板抽出之后的电容为

C = ε0S/d .

(1)保持电压不变抽出玻璃板,静电能为 W = CU 2/2, 电能器能量变化为

ΔW = W - W 0 = (C - C 0)U 2/2 = (1 - εr )ε0SU 2/2d =

-3.18×10-5(J).

(2)充电后所带电量为 Q = C 0U , 保持电量不变抽出玻璃板,静电能为

W = Q 2/2C ,

电能器能量变化为

2

000(1)

2

C C U W W W C ?=-=- 2

0(1)

2r r SU d

εεε=-= 1.59×10-4(J).

13.16 设圆柱形电容器的、外圆筒半径分别为a 、b .试证明电容器能量的一半

储存在半径R =

[解答]设圆柱形电容器电荷线密度为λ,场强为 E = λ/2πε0r , 能量密度为 w = ε0E 2/2, 体积元为 d V = 2πrl d r , 能量元为 d W = w d V .

在半径a 到R 的圆柱体储存的能量为

2

d d 2

V

V

W w V E V ε==??

2200d ln 44R

a

l l R

r r a λλπεπε==?.

当R = b 时,能量为

210ln

4l b W a

λπε=;

当R =

22200ln

48l l b W a

λλπεπε==, 所以W 2 = W 1/2,即电容器能量的一半储存

在半径R =

13.17 两个同轴的圆柱面,长度均为l ,半径分别为a 、b ,柱面之间充满介电常量为ε的电介质(忽略边缘效应).当这两个导体带有等量异号电荷(±Q )时,求:

(1)在半径为r (a < r < b )、厚度为d r 、长度为l 的圆柱薄壳中任一点处,电场能量体密度是多少?整个薄壳层中总能量是多少?

(2)电介质中总能量是多少(由积分算出)?

(3)由电容器能量公式推算出圆柱形电容器的电容公式?

[解答](1)圆柱形柱面的电荷线密度为 λ = Q/l ,

根据介质是高斯定理,可知电位移为

D = λ/2πr = Q /2πrl ,

场强为 E = D/ε = Q /2πεrl , 能量密度为w = D ·E /2 = DE /2 = Q 2/8π2εr 2l 2.

薄壳的体积为d V = 2πrl d r ,

能量为 d W = w d V = Q 2d r /4πεlr .

(2)电介质中总能量为

22d d ln 44b

V a

Q Q b

W W r lr l a πεπε===??.

(3)由公式W = Q 2/2C 得电容为

222ln(/)

Q l

C W b a πε==

13.18 两个电容器,分别标明为200PF/500V 和300PF/900V .把它们串联

起来,等效电容多大?如果两端加上1000V

电压,是否会被击穿?

[解答]当两个电容串联时,由公式

21

1212

111C C C C C C C +=+=

, 得 12

12

120PF C C C C C =

=+.

加上U = 1000V 的电压后,带电量为

Q = CU ,

第一个电容器两端的电压为

U 1 = Q/C 1 = CU/C 1 = 600(V); 第二个电容器两端的电压为

U 2 = Q/C 2 = CU/C 2 = 400(V). 由此可知:第一个电容器上的电压超过它的耐压值,因此会被击穿;当第一个电容器被击穿后,两极连在一起,全部电压就加在第二个电容器上,因此第二个电容器也接着被击穿.

第13章静电场中的导体和电介质

思考题 13-1 尖端放电的物理实质是什么? 答: 尖端放电的物理实质,是尖端处的强电场致使附近的空气分子电离,电离所产生的带电粒子在电场的作用下急剧运动和相互碰撞,碰撞又使更多的空气分子电离,并非尖端所带的电荷直接释放到空间去。 13-2 将一个带电+q 半径为R B 的大导体球B 移近一个半径为R A 而不带电的小导体球A ,试判断下列说法是否正确?并说明理由。 (1) B 球电势高于A 球。 答: 正确。不带电的导体球A 在带电+q 的导体球B 的电场中,将有感应电荷分布于表面。另外,定性画出电场线,在静电场的电力线方向上电势逐点降低,又由图看出电场线自导体球B 指向导体球A ,故B 球电势高于A 球。 (2) 以无限远为电势零点,A 球的电势: V A < 0 答: 不正确。若以无穷远处为电势零点V ∞=0,从图可知A 球的电力线伸向无穷远处。所以,V A >0。 13-3 怎样能使导体净电荷为零 ,而其电势不为零? 答:将不带电的绝缘导体(与地绝缘并与其它任何带电体绝缘)置于某电场中,则该导体有∑=0q 而导体的电势V ≠0 。 图13-37 均匀带电球体的电场能

13-4 怎样理解静电平衡时导体内部各点的场强为零? 答: 必须注意以下两点: (1) 这里的“点”是指导体内的宏观点,即无限小体积元。对于微观点,例如导体中某电子或某原子核附近的一个几何点,场强一般不为零; (2) 静电平衡的这一条件,只有在导体内部的电荷除静电场力以外不受其他力(如“化学力”)的情况下才能成立。 13-5 怎样理解导体表面附近的场强与表面上对应点的电荷面密度成正比? 答: 不应产生这样的误解:导体表面附近一点的场强,只是由该点的一个面电荷元S ?σ产生的。实际上这个场强是导体表面上全部电荷所贡献的合场强。如果场中不止一个导体,则这个场强应是所有导体表面上的全部电荷的总贡献。 13-6 为什么不能使一个物体无限制地带电? 答: 所谓一个物体带电,就是指它因失去电子而有多余的净的正电荷或因获得电子而有多余的负的净电荷。当物体带电时,在其周围空间产生电场,其电场强度随物体带电量的增加而增大。带电体附近的大气中总是存在着少量游离的电子和离子,这些游离的电子和离子在其强电场作用下,获得足够的能量,使它们和中性分子碰撞时产生碰撞电离,从而不断产生新的电子和离子,这种电子和离子的形成过程如雪崩一样地发展下去,导致带电物体附近的大气被击穿。在带电体带电的作用下,碰撞电离产生的、与带电体电荷异号的电荷来到带电体上,使带电体的电量减少。所以一个物体不能无限制地带电。如尖端放电现象。 13-7 感应电荷的大小和分布怎样确定? 答: 当施感电荷Q 接近于一导体时,导体上出现等量异号的感应电荷±q ′。其分布一方面与导体的表面形状有关,另一方面与施感电荷

10静电场中的导体和电介质习题解答

第十章 静电场中的导体和电介质 一 选择题 1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。设无限远处的电势为零,则导体球的电势为 ( ) 2 02 00π4 . D ) (π4 . C π4 . B π4 .A R) (a qa R a q a qR a q o --εεεε 解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势 ??'±'±='= ' = 'q q q R R q V 0d π41π4d 00 εε 点电荷q 在球心处的电势为 a q V 0π4ε= 据电势叠加原理,球心处的电势a q V V V 00π4ε= '+=。 所以选(A ) 2. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为σ ,如图所示,则板外两侧的电场强度的大小为 ( ) 2 . D . C 2 . B 2 .A εd E= εE= E E σσεσ εσ= = 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且高斯面内电荷为S 2σ,可得 0 εσ= E 。 所以选(C ) 3. 如图,一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为 d 处(d

第6章 静电场中导体和电介质

第6章 静电场中的导体与电介质 一、选择题 1. 当一个导体带电时, 下列陈述中正确的是 (A) 表面上电荷密度较大处电势较高 (B) 表面上曲率较大处电势较高 (C) 表面上每点的电势均相等 (D) 导体内有电力线穿过 [ ] 2. 关于带电导体球中的场强和电势, 下列叙述中正确的是 (A) 导体内的场强和电势均为零 (B) 导体内的场强为零, 电势不为零 (C) 导体内的电势与导体表面的电势相等 (D) 导体内的场强大小和电势均是不为零的常数 [ ] 3. 当一个带电导体达到静电平衡时 (A) 导体内任一点与其表面上任一点的电势差为零 (B) 表面曲率较大处电势较高 (C) 导体内部的电势比导体表面的电势高 (D) 表面上电荷密度较大处电势较高 [ ] 4. 一个带正电的小球放入一个带等量异号电荷、半径为R 的球壳中,如图1所示.在距球心为r (R r <)处的电场与放入小球前相比将 (A) 放入前后场强相同 (B) 放入小球后场强增加 (C) 因两者电荷异号, 故场强减小 (D) 无法判定 [ ] 5. 设无穷远处电势为零, 半径为R 的导体球带电后其电势为V , 则球外离球心距离为r 处的电场强度大小为 (A) 23R V r (B) V r (C) 2RV r (D) V R [ ] 6. 有两个大小不等的金属球, 其大球半径是小球半径的两倍, 小球带有正电荷.当用金属细线连接两金属球后 (A) 大球电势是小球电势的两倍 (B) 大球电势是小球电势的一半 (C) 所有电荷流向大球 (D) 两球电势相等 [ ] 7. 在某静电场中作一封闭曲面S .若有 ??=?s S D 0d ? ρ, 则S 面内必定 (A) 没有自由电荷 (B) 既无自由电荷, 也无束缚电荷 (C) 自由电荷的代数和为零 (D) 自由电荷和束缚电荷的代数和为零 [ ] 8. 有一空气球形电容器, 当使其内球半径增大到两球面间的距离为原来的一半时, 此电容器的电容为 (A) 原来的两倍 (B) 原来的一半 (C) 与原来的相同 (D) 以上答案都不对 [ ] 9. 一均匀带电Q 的球体外, 罩一个内、外半径分别为r 和R 的同心金属球壳,如图2所示.若以无限远处为电势零点, 则在金属球壳r <R '<R 的区域内 q 图1

大学物理试题库及答案详解【考试必备】

第一章 质点运动学 1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v . (1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr (B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( ) (A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v 分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B). (2) 由于|Δr |≠Δs ,故t s t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故t s t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)t d d r ; (3)t s d d ; (4)2 2d d d d ?? ? ??+??? ??t y t x . 下述判断正确的是( ) (A) 只有(1)(2)正确 (B) 只有(2)正确

大学物理(第四)课后习题及答案磁介质

大学物理(第四)课后习题及答案磁介质

————————————————————————————————作者:————————————————————————————————日期:

磁介质 题11.1:如图所示,一根长直同轴电缆,内、外导体间充满磁介质,磁介质的相对磁导率为)1(r r <μμ,导体的磁化率可以略去不计。电缆沿轴向有稳恒电流I 通过,内外导体上电流的方向相反。求(1)空间各区域内的磁感强度和磁化强度;(2)磁介质表面的磁化电流。 题11.2:在实验室,为了测试某种磁性材料的相对磁导率r μ,常将这种材料做成截面为矩形的环形样品,然后用漆包线绕成一螺绕环,设圆环的平均周长为0.01 m ,横截面积为24m 1005.0-?,线圈的匝数为200匝,当线圈通以0.01 A 的电流时测得穿过圆环横截面积的磁通为Wb 100.65-?,求此时该材料的相对磁导率r μ。 题11.3:一个截面为正方形的环形铁心,其磁导率为μ。若在此环形铁心上绕有N 匝线圈,线圈中的电流为I ,设环的平均半径为r ,求此铁心的磁化强度。 题11.4:如图所示的电磁铁有许多C 型的硅钢片重叠而成,铁心外绕有N 匝载流线圈,硅钢片的相对磁导率为r μ,铁心的截面积为S ,空隙的宽度为b ,C 型铁心的平均周长为l 4,求空隙中磁感强度的值。

题11.5:一铁心螺绕环由表面绝缘的导线在铁环上密绕1000匝而成,环的中心线mm 500=L ,横截面积23mm 100.1?=s 。若要在环内产生T 0.1=B 的磁感应强度,并由铁的H B -曲线查得此时铁的相对磁导率796r =μ。导线中需要多大的电流?若在铁环上开一间隙(mm 0.2=d ),则导线中的电流又需多大? 题11.1解:(1)取与电缆同轴的圆为积分路径,根据磁介质中的安培环路定理,有 ∑=f 2I r H π 对1R r <, 22 f r R I I ππ= ∑ 得 2 1 12R Ir H π= 忽略导体的磁化(即导体相对磁导率1r =μ)有 01=M 2 1012R Ir B πμ= 对12R r R >> I I =∑f 得 r I H π22= 填充的磁介质相对磁导率为r μ,有 r I M πμ2) 1(r 2-=;r I B πμμ2r 02= 对23R r R >> )() (2222 22 3f R r R R I I I --- =∑ππ 得 ) (2)(2 22 322 33R R r r R I H --=π 同样忽略导体得磁化,有 03=M ) (2) (2 22322303R R r r R I B --=πμ 对3R r > 0f =-=∑I I I 得 04=H 04=M 04=B (2) 由 r M I π2s ?=。磁介质内、外表面磁化电流的大小为 I R R M I )1(2)(r 112si -==μπ I R R M I )1(2)(r 212se -==μπ 对抗磁质(1

大学物理课后答案第七章静电场中的导体和电介质

大学物理课后答案第 七章静电场中的导 体和电介质 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2 习题7 7-2 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 都接地,如题7-2图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少以地的电势为零,则A 板的电势是多少 解: 如题7-2图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为 2σ 题7-2图 (1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴ 2d d 21===AC AB AB AC E E σσ 且 1σ+2σS q A = 得 ,32S q A = σ S q A 321=σ 而 711023 2 -?-=- =-=A C q S q σC C 10172-?-=-=S q B σ (2) 30 1 103.2d d ?== =AC AC AC A E U εσV

3 7-3 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算: (1)外球壳上的电荷分布及电势大小; (2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; *(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量. 解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势 题7-3图 ? ? ∞ ∞==?=2 2 020π4π4d d R R R q r r q r E U εε (2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生: 0π4π42 02 0=- = R q R q U εε (3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且 0π4' π4'π4'2 02 01 0=+-+ - = R q q R q R q U A εεε

大学物理期末考试题库

1某质点的运动学方程x=6+3t-5t 3,则该质点作 ( D ) (A )匀加速直线运动,加速度为正值 (B )匀加速直线运动,加速度为负值 (C )变加速直线运动,加速度为正值 (D )变加速直线运动,加速度为负值 2一作直线运动的物体,其速度x v 与时间t 的关系曲线如图示。设21t t →时间内合力作功 为A 1,32t t →时间内合力作功为A 2,43t t → (C ) (A )01?A ,02?A ,03?A (B )01?A ,02?A , 03?A (C )01=A ,02?A ,03?A (D )01=A ,02?A ,03?A 3 关于静摩擦力作功,指出下述正确者( C ) (A )物体相互作用时,在任何情况下,每个静摩擦力都不作功。 (B )受静摩擦力作用的物体必定静止。 (C )彼此以静摩擦力作用的两个物体处于相对静止状态,所以两个静摩擦力作功之和等于 零。 4 质点沿半径为R 的圆周作匀速率运动,经过时间T 转动一圈,那么在2T 的时间内,其平 均速度的大小和平均速率分别为(B ) (A ) , (B ) 0, (C )0, 0 (D )T R π2, 0 5、质点在恒力F ρ作用下由静止开始作直线运动。已知在时间1t ?内,速率由0增加到υ; 在2t ?内,由υ增加到υ2。设该力在1t ?内,冲量大小为1I ,所作的功为1A ;在2t ?内, 冲量大小为2I ,所作的功为2A ,则( D ) A .2121;I I A A <= B. 2121;I I A A >= C. 2121;I I A A => D. 2121;I I A A =< 6如图示两个质量分别为B A m m 和的物体A 和B 一起在水平面上沿x 轴正向作匀减速直 线运动,加速度大小为a ,A 与B 间的最大静摩擦系数为μ,则A 作用于B 的静摩擦力 F 的大小和方向分别为(D ) 轴正向相反与、轴正向相同 与、轴正向相同 与、轴正向相反 与、x a m D x a m x g m x g m B B B B ,,C ,B ,A μμT R π2T R π2T R π2t

ch7-静电场中的导体和电介质-习题及答案

第7章 静电场中的导体和电介质 习题及答案 1. 半径分别为R 和r 的两个导体球,相距甚远。用细导线连接两球并使它带电,电荷面密度分别为1σ和2σ。忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。试证明: R r =21σσ 。 证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以 半径为R 的导体球的电势为 R R V 0211π4επσ= 14εσR = 半径为r 的导体球的电势为 r r V 0222π4επσ= 24εσr = 用细导线连接两球,有21V V =,所以 R r =21σσ 2. 证明:对于两个无限大的平行平面带电导体板来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同。 证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ (1)取与平面垂直且底面分别在A 、B 部的闭合圆柱面为高斯面,由高斯定理得 S S d E S ?+==??)(1 0320 σσε 故 +2σ03=σ 上式说明相向两面上电荷面密度大小相等、符号相反。 (2)在A 部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即 022220 4 030201=---εσεσεσεσ

又 +2σ03=σ 故 1σ4σ= 3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。 解:如图所示,设金属球表面感应电荷为q ',金属球接地时电势0=V 由电势叠加原理,球心电势为 = O V R q dq R 3π4π4100εε+ ? 03π4π400=+'= R q R q εε 故 - ='q 3 q 4.半径为1R 的导体球,带有电量q ,球外有外半径分别为2R 、3R 的同心导体球壳,球壳带有电量Q 。 (1)求导体球和球壳的电势1V 和2V ; (2)如果将球壳接地,求1V 和2V ; (3)若导体球接地(设球壳离地面很远),求1V 和2V 。 解:(1)应用均匀带电球面产生的电势公式和电势叠加原理求解。 半径为R 、带电量为q 的均匀带电球面产生的电势分布为 ???????>≤=)( 4)( 400 R r r q R r R q V πεπε 导体球外表面均匀带电q ;导体球壳表面均匀带电q -,外表面均匀带电Q q +,由电势叠加原理知,空间任一点的电势等于导体球外表面、导体球壳表面和外表面电荷在该点产生的电势的代数和。 导体球是等势体,其上任一点电势为 )( 413 210 1R Q q R q R q V ++-= πε 球壳是等势体,其上任一点电势为

大学物理考试题库-大学物理考试题

马文蔚( 112 学时) 1-9 章自测题 第 1 部分:选择题 习题 1 1-1 质点作曲线运动,在时刻t质点的位矢为r ,速度为 v ,t 至 t t 时间内的位移为r ,路程为s,位矢大小的变化量为r (或称r ),平均速度为v ,平均速率为v 。 (1)根据上述情况,则必有() (A )r s r (B )(C)(D )r s r ,当t0 时有 dr ds dr r r s ,当t0 时有 dr dr ds r s r ,当t0 时有 dr dr ds (2)根据上述情况,则必有() (A )(C)v v, v v( B)v v, v v v v, v v(D )v v, v v 1-2 一运动质点在某瞬间位于位矢r ( x, y) 的端点处,对其速度的大小有四种意见,即 (1)dr ;( 2) dr ;(3) ds ;(4)( dx )2( dy )2 dt dt dt dt dt 下列判断正确的是: (A )只有( 1)(2)正确(B )只有( 2)正确 (C)只有( 2)(3)正确(D )只有( 3)( 4)正确 1-3 质点作曲线运动,r 表示位置矢量,v 表示速度, a 表示加速度,s表示路程,a t表示切向加速度。对下列表达式,即 (1)dv dt a ;(2) dr dt v ;(3) ds dt v ;(4)dv dt a t。 下述判断正确的是() (A )只有( 1)、( 4)是对的(B )只有( 2)、(4)是对的 (C)只有( 2)是对的( D)只有( 3)是对的 1-4 一个质点在做圆周运动时,则有() (A )切向加速度一定改变,法向加速度也改变 (B )切向加速度可能不变,法向加速度一定改变 (C)切向加速度可能不变,法向加速度不变 (D )切向加速度一定改变,法向加速度不变 1-5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边

静电场中的导体

第七章 静电场中的导体、电介质 一、选择题: 1. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为σ,如图所示,则板外两侧的电场强度的大小为:[ ] (A )E=0 2εσ (B )E=02εσ (C )E=0εσ (D )E=02d εσ 2. 两个同心薄金属体,半径分别为R 1和R 2(R 2>R 1),若分别带上电量为q 1和q 2的电荷,则两者的电势分别为U 1和U 2(选无穷远处为电势零点),现用导线将两球壳相连接,则它们的电势为[ ] (A )U 1 (B )U 2 (C )U 1+U 2 (D )2 1 (U 1+U 2) 3.如图所示,一封闭的导体壳A 内有两个导体B 和C ,A 、C 不带电,B 带正电,则A 、B 、C 三导体的电势U A 、U B 、U C 的大小关系是[ ] (A )U A =U B =U C (B )U B > U A =U C (C )U B >U C >U A (D )U B >U A >U C 4.一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ,则板的两侧离板的距离均为h 的两点a 、b 之间的电势差为: [ ] (A )零 (B )02εσ (C )0εσh (D )0 2εσh 5. 当一个带电导体达到静电平衡时: [ ] (A) 表面上电荷密度转大处电势较高

(B) 表面曲率较大处电势。 (C)导体内部的电势比导体表面的电势高。 (D)导体内任一点与其表面上任一点的电势差等于零。 6. 如图示为一均匀带电球体,总电量为+Q ,其外部同心地罩一内、 外半径分别为r 1、r 2的金属球壳、设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势为: [ ] (A )E= r Q U r Q 02 04,4πεπε= (B )E=0, 1 04r Q πε (C )E=0, r Q 04πε (D )E=0,2 04r Q πε 7. 设有一个带正电的导体球壳,若球壳内充满电介质,球壳外是真空时,球壳外一点的场强大小和电势用E 1,U 1表示;若球壳内、外均为真空时,壳外一点的场强大小和电势用E 2、U 2表示,则两种情况下,壳外同一处的场强大小和电势大小的关系为: [ ] (A )E 1=E 2, U 1=U 2 (B )E 1=E 2, U 1>U 2 (C )E 1>E 2, U 1>U 2 (D )E 1

10第十章 静电场中的导体与电介质作业答案

一、选择题 [ B ]1(基础训练2) 一“无限大”均匀带电平面A ,其附近放一与它 平行的有一定厚度的“无限大”平面导体板B ,如图所示.已知A 上的电荷 面密度为+σ ,则在导体板B 的两个表面 1和2上的感生电荷面密度为: (A) σ 1 = - σ, σ 2 = + σ. (B) σ 1 = σ21- , σ 2 =σ2 1 +. (C) σ 1 = σ21- , σ 1 = σ2 1 -. (D) σ 1 = - σ, σ 2 = 0. 【提示】“无限大”平面导体板B 是电中性的:σ 1S+σ 2S=0, 静电平衡时平面导体板B 内部的场强为零,由场强叠加原理得: 02220 2010=-+εσεσεσ 联立解得: 122 2 σ σ σσ=- = [ C ]2(基础训练6)半径为R 的金属球与地连接。在与球心O 相距d =2R 处有一电荷为q 的点电荷。如图所示,设地的电势为零,则球上的感生电荷q ' 为: (A) 0. (B) 2q . (C) -2 q . (D) -q . 【提示】静电平衡时金属球是等势体。金属球接地,球心电势为零。球心电 势可用电势叠加法求得: 000'044q dq q R d πεπε' +=?, 00' 01'44q q dq R d πεπε=-?, 'q q R d =-,其中d = 2R ,'2q q ∴=- [ C ]3(基础训练8)两只电容器,C 1 = 8 μF ,C 2 = 2 μF ,分别把 它们充电到 1000 V ,然后将它们反接(如图所示),此时两极板间的电势差 为: (A) 0 V . (B) 200 V . (C) 600 V . (D) 1000 V 【提示】反接,正负电荷抵消后的净电量为 661212(82)101000610Q Q Q C U C U C --=-=-=-??=? 这些电荷重新分布,最后两个电容器的电压相等,相当于并联。并联的等效电容为 512C'10C C F -=+=,电势差为'600()' Q U V C = =。 [ D ]4(基础训练10)两个完全相同的电容器C 1和C 2,串联后与电源连接。现将一各向同性均匀电介质板插入C 1中,如图所示,则(A) 电容器组总电容减小. (B) C 1上的电荷大于C 2上的电荷. (C) C 1上的电压高于C 2上的电压 .(D) 电容器组贮存的总能量增大. 【提示】(A) C 1↑,1/C=(1/C 1)+(1/C 2),∴C ↑ (B) 串联,Q 1=Q 2 (C) U 1=Q/C 1,U 2=Q/C 2 ,∴U 1

大学物理期末考试题库

1某质点的运动学方程x=6+3t-5t 3 ,则该质点作 ( D ) (A )匀加速直线运动,加速度为正值 (B )匀加速直线运动,加速度为负值 (C )变加速直线运动,加速度为正值 (D )变加速直线运动,加速度为负值 2一作直线运动的物体,其速度x v 与时间t 的关系曲线如图示。设21t t →时间合力作功为 A 1,32t t →时间合力作功为A 2,43t t → 3 C ) (A )01?A ,02?A ,03?A (B )01?A ,02?A , 03?A (C )01=A ,02?A ,03?A (D )01=A ,02?A ,03?A 3 关于静摩擦力作功,指出下述正确者( C ) (A )物体相互作用时,在任何情况下,每个静摩擦力都不作功。 (B )受静摩擦力作用的物体必定静止。 (C )彼此以静摩擦力作用的两个物体处于相对静止状态,所以两个静摩擦力作功之和等于 零。 4 质点沿半径为R 的圆周作匀速率运动,经过时间T 转动一圈,那么在2T 的时间,其平均 速度的大小和平均速率分别为(B ) (A ) , (B ) 0, (C )0, 0 (D ) T R π2, 0 5、质点在恒力F 作用下由静止开始作直线运动。已知在时间1t ?,速率由0增加到υ;在2t ?, 由υ增加到υ2。设该力在1t ?,冲量大小为1I ,所作的功为1A ;在2t ?,冲量大小为2I , 所作的功为2A ,则( D ) A .2121;I I A A <= B. 2121;I I A A >= C. 2121;I I A A => D. 2121;I I A A =< 6如图示两个质量分别为B A m m 和的物体A 和B 一起在水平面上沿x 轴正向作匀减速直线 运动,加速度大小为a ,A 与B 间的最大静摩擦系数为μ,则A 作用于B 的静摩擦力F 的 大小和方向分别为(D ) 轴正向相反与、轴正向相同 与、轴正向相同 与、轴正向相反 与、x a m D x a m x g m x g m B B B B ,,C ,B ,A μμT R π2T R π2T R π2t

大学物理考试试题

一、选择题 (每小题2分,共20分) 1. 关于瞬时速率的表达式,正确的是 ( B ) (A) dt dr =υ; (B) dt r d = υ; (C) r d =υ; (D) dr dt υ= r 2. 在一孤立系统内,若系统经过一不可逆过程,其熵变为S ?,则下列正确的是 ( A ) (A) 0S ?>; (B) 0S ?< ; (C) 0S ?= ; (D) 0S ?≥ 3. 均匀磁场的磁感应强度B 垂直于半径为r 的圆面,今以该圆面为边界,作以半球面S ,则通过S 面的磁通量的大小为 ( B ) (A )2πr 2B; (B) πr 2B; (C )0; (D )无法确定 4. 关于位移电流,有下面四种说法,正确的是 ( A ) (A )位移电流是由变化的电场产生的; (B )位移电流是由变化的磁场产生的; (C )位移电流的热效应服从焦耳—楞次定律; (D )位移电流的磁效应不服从安培环路定律。 5. 当光从折射率为1n 的介质入射到折射率为2n 的介质时,对应的布儒斯特角b i 为 ( A ) 2 1 1 2 (A)( );(B)( );(C) ;(D)02 n n arctg arctg n n π 6. 关于电容器的电容,下列说法正确..的是 ( C ) (A) 电容器的电容与板上所带电量成正比 ; (B) 电容器的电容与板间电压成反比; (C)平行板电容器的电容与两板正对面积成正比 ;(D) 平行板电容器的电容与两板间距离成正比 7. 一个人站在有光滑转轴的转动平台上,双臂水平地举二哑铃。在该人把二哑铃水平收缩到胸前的过程中,人、哑铃与转动平台组成的系统 ( C ) (A )机械能守恒,角动量不守恒; (B )机械能守恒,角动量守恒; (C )机械能不守恒,角动量守恒; (D )机械能不守恒,角动量也不守恒; 8. 某气体的速率分布曲线如图所示,则气体分子的最可几速率v p 为 ( A ) (A) 1000 m ·s -1 ; (B )1225 m ·s -1 ; (C) 1130 m ·s -1 ; (D) 1730 m ·s -1 得分

第9章_静电场中的导体和电介质

第9章静电场中的导体和电介质 什么是导体什么是电介质 静电场中的导体静电平衡 9.1.1 静电感应静电平衡 金属导体:金属离子+、自由电子- 1、静电感应:在外电场作用下,导体中电荷重新分布而呈现出的带电现象,叫做静电感应现象,对应的电荷称为感应电荷。(感应电荷与外加电场相互影响,比如金属球置于匀强电场中,外电场使电荷重新分布,感应电荷的分布使均匀电场在导体附近发生弯曲。) 2、导体静电平衡条件 不受外电场影响时,无论对整个导体或对导体中某一个小部分来说,自由电子的负电荷和金属离子的正电荷的总量是相等的,正负电荷中心重合,导体呈现电中性。

若把金属导体放在外电场中,比如把一块金属板放在电场强度为0E r 的匀强电场中,这时导体中的自由电子在作无规则热运动的同时,还将在电场力作用下作宏观定向运动,自由电子逆着电场方向移动,从而使导体中的电荷重新分布。电荷重新分布的结果使得金属板两侧会出现等量异号的电荷。这种在外电场作用下,引起导体中电荷重新分布而呈现出的带电现象,叫做静电感应现象,对应的电荷称为感应电荷。 感应电荷在金属板的内部建立起一个附加 电场,其电场强度'E r 和外在的电场强度0E r 的方向相反。这样,金属板内部的电场强度E r 就是0 E r 和'E r 的叠加。开始时0'E E <,金属板内部的 电场强度不为零,自由电子会不断地向左移动, 从而使'E r 增大。这个过程一直延续到金属板内部的电场强度等于零,即0'0E E E =+=r r r 时为止。这时,导体上没有电荷作定向运动,导体处于静电平衡 状态。 当导体处于静电平衡状态时,满足以下条件:

静电场中的导体与电介质考试题及答案

静电场中的导体与电介质考试题及答案 6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( ) (A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势。由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。 6 -2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。若将导体N 的左端接地(如图所示),则( ) (A ) N 上的负电荷入地 (B )N 上的正电荷入地 (C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地 分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关。因而正确答案为(A )。 6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。设无穷远处为零电势,则在导体球球心O 点有( ) (A )d εq V E 0π4,0= = (B )d εq V d εq E 02 0π4,π4== (C )0,0==V E

(D )R εq V d εq E 020π4,π4== 分析与解 达到静电平衡时导体内处处各点电场强度为零。点电荷q 在导 体球表面感应等量异号的感应电荷±q ′,导体球表面的感应电荷±q ′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。因而正确答案为(A )。 6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。下列推论正确的是( ) (A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关 分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关。因而正确答案为(E )。 6 -5 对于各向同性的均匀电介质,下列概念正确的是( ) (A ) 电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (B ) 电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍 (C ) 在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该

大学物理(第四版)课后习题及答案 磁介质

题11.1:如图所示,一根长直同轴电缆,内、外导体间充满磁介质,磁介质的相对磁导率为)1(r r <μμ,导体的磁化率可以略去不计。电缆沿轴向有稳恒电流I 通过,内外导体上电流的方向相反。求(1)空间各区域内的磁感强度和磁化强度;(2)磁介质表面的磁化电流。 题11.2:在实验室,为了测试某种磁性材料的相对磁导率r μ,常将这种材料做成截面为矩形的环形样品,然后用漆包线绕成一螺绕环,设圆环的平均周长为0.01 m ,横截面积为24m 1005.0-?,线圈的匝数为200匝,当线圈通以0.01 A 的电流时测得穿过圆环横截面积的磁通为Wb 100.65-?,求此时该材料的相对磁导率r μ。 题11.3:一个截面为正方形的环形铁心,其磁导率为μ。若在此环形铁心上绕有N 匝线圈,线圈中的电流为I ,设环的平均半径为r ,求此铁心的磁化强度。 题11.4:如图所示的电磁铁有许多C 型的硅钢片重叠而成,铁心外绕有N 匝载流线圈,硅钢片的相对磁导率为r μ,铁心的截面积为S ,空隙的宽度为b ,C 型铁心的平均周长为l 4,求空隙中磁感强度的值。

题11.5:一铁心螺绕环由表面绝缘的导线在铁环上密绕1000匝而成,环的中心线mm 500=L ,横截面积23mm 100.1?=s 。若要在环内产生T 0.1=B 的磁感应强度,并由铁的H B -曲线查得此时铁的相对磁导率796r =μ。导线中需要多大的电流?若在铁环上开一间隙(mm 0.2=d ),则导线中的电流又需多大? 题11.1解:(1)取与电缆同轴的圆为积分路径,根据磁介质中的安培环路定理,有 ∑=f 2I r H π 对1R r <, 22f r R I I ππ=∑ 得 21 12R Ir H π= 忽略导体的磁化(即导体相对磁导率1r =μ)有 01=M 21012R Ir B πμ= 对12R r R >> I I =∑f 得 r I H π22= 填充的磁介质相对磁导率为r μ,有 r I M πμ2) 1(r 2-=;r I B πμμ2r 02= 对23R r R >> )() (2222223f R r R R I I I ---=∑ππ 得 )(2)(222322 33R R r r R I H --= π 同样忽略导体得磁化,有 03=M ) (2)(222322303R R r r R I B --=πμ 对3R r > 0f =-=∑I I I 得 04=H 04=M 04=B (2) 由 r M I π2s ?=。磁介质内、外表面磁化电流的大小为 I R R M I )1(2)(r 112si -==μπ I R R M I )1(2)(r 212se -==μπ 对抗磁质(1

静电场中的导体和电介质

第十章静电场中的导体和电介质§10-1 静电场中的导体 一、导体的静电平衡 1、金属导体的电结构及静电感应 (1)金属导体:由带正电的晶格和带负电的自由电子组成. 带电导体:总电量不为零的导体; 中性导体:总电量为零的导体; 孤立导体:与其他物体距离足够远的导体. “足够远”指其他物体的电荷在该导体上激发的场强小到可以忽略. (2)静电感应过程:导体内电荷分布与电场的空间分布相互影响的过程. (3)静电平衡状态:导体中自由电荷没有定向移动的状态. 2、导体静电平衡条件 (1)从场强角度看: ①导体内任一点,场强; ②导体表面上任一点与表面垂直. 证明:由于电场线与等势面垂直,所以导体表面附近的电场强度必定与该处表面垂直. 说明:①静电平衡与导体的形状和类别无关.

②“表面”包括内、外表面; (2)从电势角度也可以把上述结论说成:静电平衡时导体为等势体. ①导体内各点电势相等; ②导体表面为等势面. 证明:在导体上任取两点A,B,.由于=0,所以. (插话:空间电场线的画法. 由于静电平衡的导体是等势体,表面是等势面.因此,导体正端发出的电场线绝对不会回到导体的负端.应为正电荷发出的电场线终于无穷远,负电荷发出的电场线始于无穷远.) 二、静电平衡时导体上的电荷分布 1、导体内无空腔时电荷分布 如图所示,导体电荷为Q,在其内作一高斯面S,高斯定理为: 导体静电平衡时其内, , 即. S面是任意的,导体内无净电荷存在. 结论:静电平衡时,净电荷都分布在导体外表面上. 2、导体内有空腔时电荷分布 (1)腔内无其它电荷情况 如图所示,导体电量为Q,在其内作一高斯面S,高斯定理为:

大学物理考试题库完整

普通物理Ⅲ 试卷( A 卷) 一、单项选择题 1、运动质点在某瞬时位于位矢r 的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)dt r d ; (3)t s d d ; (4)22d d d d ?? ? ??+??? ??t y t x . 下述判断正确的是( ) (A) 只有(1)(2)正确 (B) 只有(2)正确 (C) 只有(2)(3)正确 (D) 只有(3)(4)正确 2、一个质点在做圆周运动时,则有( ) (A) 切向加速度一定改变,法向加速度也改变 (B) 切向加速度可能不变,法向加速度一定改变 (C) 切向加速度可能不变,法向加速度不变 (D) 切向加速度一定改变,法向加速度不变 3、如图所示,质量为m 的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为( ) (A) g sin θ (B) g cos θ (C) g tan θ (D) g cot θ 4、对质点组有以下几种说法: (1) 质点组总动量的改变与内力无关; (2) 质点组总动能的改变与内力无关; (3) 质点组机械能的改变与保守内力无关. 下列对上述说法判断正确的是( ) (A) 只有(1)是正确的 (B) (1) (2)是正确的 (C) (1) (3)是正确的 (D) (2) (3)是正确的 5、静电场中高斯面上各点的电场强度是由:( ) (A) 高斯面内的电荷决定的 (B) 高斯面外的电荷决定的 (C) 空间所有电荷决定的 (D) 高斯面内的电荷的代数和决定的 6、一带电粒子垂直射入均匀磁场中,如果粒子的质量增加为原来的2倍,入射速度也增加为原来的2倍,而磁场的磁感应强度增大为原来的4倍,则通过粒子运动轨道所围面积的磁通量增大为原来的:( ) (A) 2倍 (B) 4倍 (C) 0.5倍 (D) 1倍 7、一个电流元Idl 位于直角坐标系原点 ,电流沿z 轴方向,点P (x ,y ,z )的磁感强度沿 x 轴的分量 是: ( )

相关文档
最新文档