配位化合物合成方法以及应用的研究

合集下载

配位化合物的合成与性质

配位化合物的合成与性质

配位化合物的合成与性质在无机化学领域中,配位化合物是指由一个或多个配体与中心金属离子或原子形成的化合物。

这些化合物具有独特的结构和性质,因此在材料科学、催化剂设计以及生物化学等领域具有广泛的应用。

本文将探讨配位化合物的合成方法以及其在化学反应和性质研究中的应用。

一、配位化合物的合成方法1. 配体取代法配体取代法是合成配位化合物的基本方法之一。

该方法通过将已有配体替换为新的配体来合成新的配位化合物。

取代反应的实施需要满足配体的取代能力和反应条件的要求。

例如,可以通过针对底物的氨基化和亲核取代来实现。

2. 配体加合法配体加合法是另一种常见的合成方法,其通过直接将配体与金属离子进行反应,从而形成配位化合物。

这种方法对于配体具有较强的配体场以及配体半衰期较长的情况下较为适用。

通过选择合适的配体加合方法,可以合成不同配位数和配体结构的配位化合物。

3. 纳米复合材料反应法纳米复合材料反应法是一种近年来新兴的合成方法。

该方法利用纳米颗粒作为载体,包裹着金属离子或原子,并通过控制反应条件,使其转化为配位化合物。

这种方法具有较高的选择性和合成效率,并可以得到精确控制结构的配位化合物。

二、配位化合物的性质1. 电子结构和磁性配位化合物的电子结构和磁性是其性质研究的重点之一。

配位化合物中的中心金属离子或原子通常会与配体形成配合物的电子结构。

这种配位作用可以影响到金属离子的价态和配位数,从而影响到物质的化学性质和催化活性。

另外,金属离子的配位环境也会对其磁性产生影响,例如,存在于配合物中的局域自旋和多电子相互作用等。

2. 热稳定性和光学性质配位化合物的热稳定性和光学性质对于其在催化剂和光学材料的应用具有重要意义。

一些过渡金属配合物在高温下具有较好的热稳定性,这使得它们能够在高温催化反应中保持较高的催化活性。

此外,配位化合物还具有丰富的光学性质,例如吸收、荧光和磷光等,这些性质使得它们广泛应用于光电材料和荧光探针等领域。

配位化合物的实验报告

配位化合物的实验报告

配位化合物的实验报告配位化合物的实验报告引言:配位化合物是化学中一类重要的化合物,由中心金属离子和周围的配体离子或分子通过配位键形成。

这种化合物具有独特的结构和性质,广泛应用于催化剂、药物、材料科学等领域。

本实验旨在通过合成和表征不同的配位化合物,探究其结构和性质。

实验一:合成和表征五水合硫酸铜配合物实验目的:合成五水合硫酸铜配合物,并通过实验手段对其进行表征。

实验步骤:1. 将适量的硫酸铜溶解于蒸馏水中,得到硫酸铜溶液。

2. 在搅拌下,缓慢滴加氨水到硫酸铜溶液中,直至溶液呈现明显的蓝色。

3. 继续搅拌并加热溶液,直至溶液呈现深蓝色。

4. 将溶液冷却至室温,并过滤得到固体产物。

5. 对固体产物进行干燥,并进行质量测定。

6. 对固体产物进行红外光谱和X射线衍射分析。

实验结果:经过实验合成得到的五水合硫酸铜配合物呈现出深蓝色的结晶体,质量为X克。

红外光谱显示出配合物中存在的特征峰,如S=O伸缩振动峰和C-N伸缩振动峰。

X射线衍射分析表明,该配合物具有六方晶系结构。

实验二:合成和表征乙二胺四乙酸亚铁配合物实验目的:合成乙二胺四乙酸亚铁配合物,并通过实验手段对其进行表征。

实验步骤:1. 将适量的乙二胺四乙酸亚铁溶解于蒸馏水中,得到乙二胺四乙酸亚铁溶液。

2. 在搅拌下,缓慢滴加盐酸到溶液中,直至溶液呈现明显的橙色。

3. 继续搅拌并加热溶液,直至溶液呈现红色。

4. 将溶液冷却至室温,并过滤得到固体产物。

5. 对固体产物进行干燥,并进行质量测定。

6. 对固体产物进行红外光谱和核磁共振分析。

实验结果:经过实验合成得到的乙二胺四乙酸亚铁配合物呈现出红色的结晶体,质量为X 克。

红外光谱显示出配合物中存在的特征峰,如C=O伸缩振动峰和N-H伸缩振动峰。

核磁共振分析表明,该配合物中乙二胺四乙酸亚铁与乙酸根离子之间存在着强烈的配位键。

讨论:通过本实验,我们成功合成和表征了五水合硫酸铜配合物和乙二胺四乙酸亚铁配合物。

这些配位化合物具有独特的结构和性质,对于理解金属配位化学的基本原理具有重要意义。

配位化学的配位化合物合成

配位化学的配位化合物合成

配位化学的配位化合物合成配位化学是化学领域中的一个重要分支,研究的是金属离子与配体形成配位化合物的过程。

配位化合物合成的方法多种多样,可以通过配位反应、溶液反应、固体反应等途径来实现。

本文将介绍配位化学的配位化合物合成方法以及一些典型的实例。

一、配位反应法配位反应法是配位化合物合成的常用方法之一。

在配位反应过程中,金属离子与配体之间会发生配位键的生成或断裂,从而形成新的配位化合物。

常用的配位反应方法包括配体置换反应、配体加合反应和配位缩合反应等。

1. 配体置换反应配体置换反应是指用新的配体取代原有配体的过程。

在这个过程中,原有配体会与金属离子发生键的断裂,然后新的配体与金属离子形成新的配位键。

常见的配体置换反应包括水合作用和配体交换反应等。

例如,将氯化镍和亚硝酸钠反应可以得到亚硝酸镍:NiCl2 + 2 NaNO2 → Ni(NO2)2 + 2 NaCl2. 配体加合反应配体加合反应是指两种或多种配体与金属离子同时发生配位键生成的过程。

在这个过程中,多个配体与金属离子形成配位键,生成多核配位化合物。

常见的配体加合反应有配体加合聚合反应和配体加合还原反应等。

例如,二氯化铜和四氯化碳反应可以得到二氯化四氯化碳铜:CuCl2 + CCl4 → CuCl2(CCl4)3. 配位缩合反应配位缩合反应是指由两个或多个配体与金属离子反应生成一个较大的配位化合物的过程。

在这个过程中,两个或多个配体之间发生缩合,形成一个配位聚合物。

常见的配位缩合反应有缩合聚合反应和配位链反应等。

例如,二乙酸铜和巯基乙醇反应可以得到巯基乙醇合铜(II):Cu(O2CCH3)2 + HSCH2CH2OH → HSCH2CH2OOCCH3 +Cu(OOCCH3)2二、溶液反应法溶液反应法是指在溶液中进行配位化合物合成的方法。

在溶液中,金属离子和配体之间发生反应,形成溶液态的配位化合物。

溶液反应法适用于需要在溶液中合成大量配位化合物或需要对反应进行控制的情况。

配位化学中的配体设计和合成方法

配位化学中的配体设计和合成方法

配位化学中的配体设计和合成方法配位化学是研究金属离子与配体之间相互作用的重要领域。

在配位化学中,配体的设计和合成方法是十分关键的环节。

本文将讨论配位化学中的配体设计和合成方法,并且探讨其在科学研究和工业生产中的应用。

配体是指能够与金属离子形成配合物的化合物。

通过合理设计和选择配体,可以调控配合物的结构和性质,从而实现对配合物的控制和应用。

配体设计的首要任务是合理选择配体的功能基团和排布方式。

功能基团可以赋予配体不同的化学反应性,例如氨基、羰基、羧基等。

排布方式能够影响配合物的空间构型,例如线性、六方等。

合理的功能基团和排布方式设计可以提高配体的配位能力和选择性,从而改变配合物的性能和性质。

配体的合成方法有多种途径,其中最常见的是有机合成方法。

有机合成方法可以通过改变反应条件、选择不同的反应试剂和催化剂,以及调节反应的温度、压力等条件来合成不同的配体。

例如,通过醇的酯化反应可以制备羧酸型配体,通过亚硝酸酯和胺的反应可以制备氨基型配体。

此外,还可以利用合成路线中的中间体化合物,通过进一步反应转化为目标配体。

有机合成方法的灵活性和多样性为配体的设计和合成提供了广阔的空间。

除了有机合成方法,还有许多其他合成方法在配体的设计和合成中发挥重要作用。

例如,配体可以通过直接合成、溶液反应法、固相法、微波辅助合成等方法制备。

这些方法在不同的场合下具有不同的优势和适用性。

在直接合成中,可以通过简单的物质混合反应来制备配体。

在溶液反应法中,可以通过溶液中的反应来制备配体。

在固相法中,配体的合成通过固相反应进行。

在微波辅助合成中,通过加热反应溶液来促使反应进行。

这些合成方法的灵活性和多样性使得配体的合成更加高效和可控。

配体设计和合成方法在科学研究和工业生产中有着广泛的应用。

在科学研究中,通过合理设计和合成配体,可以探索和揭示配位化学的基本规律和原理。

同时,配体的设计和合成也为新型配合物的开发提供了重要的基础。

例如,通过设计和合成具有特定功能基团和结构的配体,可以制备具有特殊性能和应用价值的金属配合物。

化学实验中的配位化合物合成

化学实验中的配位化合物合成

化学实验中的配位化合物合成化学实验中的配位化合物合成是一项常见的实验方法,通过合成可以得到各种不同性质和用途的化合物。

本文将介绍配位化合物合成的基本原理、实验步骤和实验注意事项。

一、配位化合物合成的基本原理配位化合物是由中心金属离子和周围的配体离子或分子通过配位键结合而成的化合物。

合成配位化合物的基本原理是选择适当的中心金属离子和配体,使它们能够形成稳定的配位键。

其中,中心金属离子的选择通常基于其电子构型和化学性质,而配体的选择则考虑到其配位能力和稳定性。

二、配位化合物合成的实验步骤1. 实验准备:根据实验需要,准备所需的中心金属离子和配体,选择适当的溶剂和实验器材。

2. 配位反应:将中心金属离子和配体按一定的比例溶解在溶剂中,通过搅拌、加热或冷却等方法促进反应的进行。

3. 反应产物的分离和纯化:将反应混合物进行过滤、结晶、萃取等操作,分离出目标化合物。

4. 配位化合物的鉴定:通过一系列物理性质和化学性质的测试,确定所合成的化合物的结构和性质。

5. 结果分析:根据实验结果进行数据分析和结论总结,评价合成效果和实验方法的可行性。

三、实验注意事项1. 实验操作要小心谨慎,避免发生意外事故。

根据实验室安全规范,佩戴适当的防护装备。

2. 选择合适的实验条件,如反应温度、pH值等,以保证反应的进行和产物的质量。

3. 注意溶剂的选择和使用,避免对实验结果产生干扰或危害。

4. 实验过程中要注意反应时间和溶解度等因素,避免过度反应或出现沉淀。

5. 在进行结构鉴定时,可以利用光谱分析、元素分析等手段,辅助确定化合物的结构和成分。

6. 在实验结束后,要及时清洗实验器材并做好废弃物处理。

综上所述,化学实验中的配位化合物合成是一项重要的实验技术,在化学研究和应用中起着关键作用。

通过合适的实验步骤和注意事项,能够成功地合成出各种不同性质的配位化合物,并为后续的研究和应用提供有效的材料基础。

配位化合物的合成与应用

配位化合物的合成与应用

配位化合物的合成与应用配位化合物是由一个或多个配位体与中心金属离子形成的稳定化合物。

它们在化学、医药、材料科学等领域具有广泛的应用。

本文将介绍配位化合物的合成方法以及它们在不同领域中的应用。

一、配位化合物的合成方法1. 配位化合物的合成方法一般可以分为物理法和化学法两类。

(1) 物理法:物理法包括共晶法、溶剂法、气相法等。

其中,共晶法是指通过混合两种或多种配体和金属盐的共晶化合物,然后通过脱溶剂和加热得到纯配位化合物。

溶剂法是将配体和金属盐在无水无氧的条件下溶解,并通过控制溶剂、温度和pH值等参数来控制反应过程。

气相法是通过蒸发和沉积方法在惰性气体或真空氛围下合成配位化合物。

(2) 化学法:化学法是指通过化学反应来合成配位化合物。

常见的化学反应包括配体交换反应、还原反应、氧化反应等。

配体交换反应是指用新的配体取代已有配体,使得配位环境发生改变。

还原反应是指将金属离子还原为金属原子,并与新的配体结合。

氧化反应是指将金属原子氧化为金属离子,然后与新的配体结合。

2. 在合成配位化合物时,需要考虑反应条件、配体选择、金属选择等因素。

其中,反应条件包括温度、压力、溶剂等。

配体选择需要根据金属离子的性质和所需的配位环境来选择合适的配体。

金属选择可以根据所需的化学性质和物理性质来选择适合的金属离子。

二、配位化合物在化学领域的应用1. 催化剂:配位化合物由于其特殊的配位环境和金属离子的活性,可以作为催化剂在化学反应中起到催化剂的作用。

例如,铂配合物可以作为氢化反应和氧化反应的催化剂,使反应速率大大提高。

2. 药物:配位化合物在医药领域有广泛的应用。

一些配位化合物可以通过与生物分子发生相互作用来发挥药物的作用。

例如,铂配合物可用于癌症治疗,通过与DNA结合来抑制癌细胞的生长。

3. 材料科学:配位化合物可以用于制备材料,例如金属有机框架材料(MOFs)。

MOFs具有高表面积、多孔性和可调控性等特点,可以用于气体吸附、分离和储存等方面。

化学配位化合物的合成配位化合物的合成方法与反应条件

化学配位化合物的合成配位化合物的合成方法与反应条件

化学配位化合物的合成配位化合物的合成方法与反应条件化学配位化合物是指由中心金属离子与周围以配体形式存在的化合物。

配合物的合成方法多种多样,不同的合成方法对应着不同的反应条件。

本文将介绍几种常见的配位化合物的合成方法以及相应的反应条件。

一、配位化合物的合成方法1. 配位置换反应:该方法是最常见、最常用的合成配位化合物的方法之一。

在这种反应中,已有的配体会被新的配体取代。

常用的配位置换反应有配体置换反应和配体交换反应等。

2. 配体加成反应:该方法是通过加入新的配体使配位化合物的配位数增加,从而合成新的配位化合物。

这种反应常用于合成多核配位化合物。

3. 配位加成-消除反应:该方法是通过加入新的配体并消除旧的配体,来换位合成新的配位化合物。

这种反应常用于合成配位化合物的同位素。

二、配位化合物的反应条件1. 反应温度:不同的反应需要不同的反应温度。

一般来说,反应温度越高,反应速率越快,但也会导致副反应的发生。

因此,在合成配位化合物时,要选择适宜的反应温度。

2. 反应溶剂:反应溶剂对反应速率和产物产率有重要影响。

常用的反应溶剂有水、有机溶剂(如乙醇、甲醇等)和无机溶剂(如氯化铵溶液等)。

选择合适的反应溶剂可以提高反应效率和选择性。

3. 反应pH值:pH值对配位化合物的形成和稳定性有很大影响。

一些反应需要在酸性或碱性条件下进行,以促进反应的进行。

因此,在配位化合物的合成过程中,要调节反应体系的pH值。

除了以上所述的反应条件,还有可能会影响合成配位化合物的其他因素,如反应时间、反应压力、光照条件等。

在具体的实验中,需要根据具体的反应类型和反应物的特性选择合适的反应条件。

综上所述,化学配位化合物的合成方法包括配位置换反应、配体加成反应和配位加成-消除反应等。

而合成配位化合物时,需要考虑反应温度、反应溶剂和反应pH值等反应条件。

通过精确控制这些反应条件,可以合成出具有特定结构和性质的配位化合物。

配位化合物的制备与性质

配位化合物的制备与性质

配位化合物的制备与性质配位化合物是由一个或多个配体与一个中心金属离子形成的化合物。

配位化合物在化学和生物学中都有广泛的应用。

本文将探讨配位化合物的制备方法以及它们的性质。

一、配位化合物的制备方法1. 水合物合成法水合物合成法是最常见的制备配位化合物的方法之一。

它是通过将金属离子与水合剂反应形成水合物。

水合剂通常是水,但也可以是其他溶剂,例如乙醇。

水合物的配体数目可以通过实验条件来控制,使得配位数发生变化。

例如,将CuSO4溶解在水中,可以得到蓝色的CuSO4·5H2O水合物。

2. 配体置换法配体置换法是一种常用的制备特定配位化合物的方法。

通过在溶液中加入所需的配体,与原有配体进行竞争配位,实现配体的置换。

这种方法可用于制备具有特定性质的配位化合物。

例如,通过将氯化铜(CuCl2)溶解在水中,然后加入亚硝酸钠(NaNO2),可以得到亚硝酸铜(Cu(NO2)2)。

3. 配位聚合法配位聚合法是一种将多个配体与中心金属离子形成配位化合物的方法。

这种方法可以通过将金属离子与多个配体同时反应,使它们在空间上连接起来,形成一个配位聚合物。

例如,将铜离子与乙二胺(en)和氰化钠(NaCN)同时反应,可以制备出[Cu(en)2(CN)2]复合物。

二、配位化合物的性质1. 配位数配位数是指配合物中与中心金属离子配位的配体数目。

配位数通常在2至6之间。

配位数的增加会增加配位化合物的稳定性和化学性质的多样性。

2. 颜色许多配位化合物具有鲜艳的颜色,这是由于配体与金属离子之间的电荷转移或电子转移的结果。

不同的配体和金属离子对颜色的影响是不同的。

3. 稳定性配位化合物通常比金属离子更稳定。

这是因为配体能够通过与中心金属离子形成配位键来降低金属离子的电荷密度,从而减少金属离子与其周围环境的相互作用。

4. 配位键性质配位键是配位化合物中配体与金属离子之间的化学键。

配位键的性质直接影响配位化合物的稳定性和反应性。

配位键可以是共价键或离子键。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

配位化合物合成方法以及应用的研究摘要:近年来,配位化合物已成为化学的一个研究热点,主要在于其在好多方面能够体现出不同的结构性质,广泛应用于日常生活、工业生产及生命科学中。

它不仅与无机化合物、有机金属化合物相关连,并且与现今化学前沿的原子簇化学、配位催化及分子生物学都有很大的重叠。

本文就其的结构、合成方法进行总结以及提出现代合成技术,对其在相关领域应用进行了论述以及发展前景进行了展望。

关键词:配合物;构型;合成方法;催化性能0前言配位化合物简称配合物,又称络合物,是一类非常广泛和重要的化合物. 随着科学技术的发展,它在科学研究和生产实践中显示出越来越重要的意义,配合物不仅在化学领域里得到广泛的应用,并且对生命现象也具有重要的意义.[1]显然, 配位化合物研究的对象已不再局限于传统的配体和中心原子之间形成的配位化合物。

形成了主客体化学和超分子化学, 大大地拓展了配位化合物的研究范围。

一些有重要应用价值的配合物将会实现工业化生产, 配合物的应用会更加广泛, 特别是在开发多功能的绿色催化剂方面, 配合物的进展前景十分美好。

配位化合物的合成成为了目前最大的研究课题,目前各种新型配合物不断涌现,它既包括一些经典配合物,同时也出现一些特殊配合物,要想用统一的模式总结各类配合物的制备和分离方法是不可能的,只能通过各种配合物结构的不同特点针对性地归纳出某些配合物的制备方法,为同类型的配合物合成提供方法鉴见.[2]1 配合物结构和性质[3]配位化合物的构型由配位数所决定,也就是化合物中心原子周围的配位原子个数。

配位数与金属离子和配体的半径、电荷数和电子构型有关,一般在2-9之间,镧系元素和锕系元素的配合物中常会出现10以上的配位数。

五配位中,常常涉及到三角双锥和四方锥两种构型的互变,因此,很大一部分五配位化合物的结构是介于这两个结构之间的一种中间结构。

更高配位数的化合物中,八配位的可以是四方反棱柱体、十二面体、立方体、双帽三角棱柱体或六角双锥结构;九配位的可以是三帽三角棱柱体或单帽四方反棱柱体结构;十配位的可以是双帽四方反棱柱体或双帽十二面体结构;十一配位的化合物很少,可能是单帽五角棱柱体或单帽五角反棱柱体。

异构现象和结构异构是配合物具有的重要性质。

它不仅影响配合物的物理和化学性质,而且与其稳定性、反应性和生物活性也有密切关系。

2 合成方法配位化合物包括经典配合物和特殊配合物。

经典配位化合物是指由一定数目的离子或分子和原子或离子(中心原子) 以配位键相结合,按一定的组成和空间构型所形成的化合物。

[4]通常要想形成稳定的配位化合物必须符合中心原子M 通常是过渡金属元素的原子(或离子) ,具有空的价轨道。

配位体L 则有一对或一对以上孤对电子。

从理论上看,形成配合物它必须是路易斯酸和路易斯碱之间发生反应。

而特殊配合物又包括金属羰基配合物、分子氮配合物、烯和炔类配合物、金属簇状配合物和王冠类化合物。

2.1直接法2.1.1水溶液中的直接配位反应在直接配位合成中,首先必须考虑各种因素对配位合成的影响,考虑到它应易于与配体发生化学反应而且容易使生成物易与反应底物进行分离。

配体在选择时应考虑到它在溶剂中必须有一定的溶解度且不与水发生溶剂化反应等. 例如,由三氯化铬与乙酰丙酮在水溶液中合成[ Cr (C5 H7O2 ) 3 ]时,由于反应物和产物都易溶于水,使反应无法进行到底,如果在该反应体系中加入尿素,由于尿素在水中分解产生氨而控制了溶液的PH 值使产物很快地结晶而析出.[5 ]CO(NH2 ) 2 + H2O 2NH3 + CO2CrCl3 + 3C5 H8O2 + 3NH3 [ Cr ( C5 H7O2 ) 3 ]+ 3NH4Cl 2.1.2组分化合法合成新的配位化合物所谓的组分化合法就是把要合成的配合物的组成成分按适当的分量和次序混合,在一定的条件下直接合成配合物。

对于此类合成方法特别适用于制备那些不稳定的配位化合物,因为此类合成中对于此类合成方法特别适用于制备那些不稳定的配位化合物,避免了制备、分离配体的步骤。

如将二水合醋酸锌的吡啶饱和溶液经过分子筛脱水后与吡咯、吡啶醛、分子筛一起装人高压瓶中混合用油浴加热至130~150 ℃,保温48 小时后冷却、过滤、无水乙醇洗涤结晶、风干即得到大环合锌紫色晶体。

[6]2.2组分交换合成法2. 2. 1金属交换反应这类方法主要是指金属配合物和过渡金属盐之间发生金属离子的交换,其反应通式可以写成下式: MLn + M′n + M′Ln + (n - m)L金属的置换有一定的规律性,对于不同的配体有不同的金属置换次序。

[7]该方法的特点是操作简单,可以从一种金属配合物出发,制备出一系列不同过渡金属的取代物。

2. 2. 2 配体取代反应这类方法主要是指在一定条件下,新配体可以置换原配合物中的一个、几个或全部配体,从而得到新的配合物。

对于该类反应要求所选择的新配体与中心原子的配位能力要远高于原配合物中中心原子与配体的配位能力且易于分离和提纯。

在有些情况下新配体只能部分取代旧配体,这时往往会得到混和配体配合物. 还有些情况是原配合物中的配体具有很高的活性,当加入某些物质时会与配体发生反应从而导致新物质的生成。

2. 3氧化还原反应法[8]在许多金属配合物的制备过程中,往往会发生氧化还原反应。

例如:在钴配合物制备中,可以先由二价的钴盐制成二价钴的配合物,再将该配合物在一定的条件下进行氧化而得到三价钴的配合物在氧化还原法制备配合物时有时将金属单质溶解在酸的水溶液中制备某些金属水合。

物同时在非水溶液中也可以由金属单质进行氧化而得到配合物。

2.4固相反应法通过固相反应合成新的配合物可以由配合物与相应的金属化合物反应来制备也可以从已知的配合物来制备新的配合物。

主要有制备由配体与金属化合物反应法,这种方法中通常配体的熔点较低,在反应条件下配体呈熔融状态,因此配体与金属化合物之间的反应成为配体与金属之间的复相反应。

[9]另外固相反应还包括在固相条件下把已知的配合物通过分解而得到新的配合物,也有在固相条件下通过形成金属—金属键或在固相时通过配体的取代来形成新的配合物。

2.5大环配合物的模板合成某些含氮配合物与天然的血红朊、细胞色素C、酞花青及叶绿素等十分相似,所以合成大环配合物并弄清其结构和性能进而实现人工模拟生命过程的想法一直受到人们的关注。

随着研究的深入,人们发现用金属离子可以促进大环配体生成并能直接合成大环配合物。

究其原因是由于金属离子的配位作用可以将反应基团固定在适当的位置而使环化反应容易进行。

例如:将邻氨基苯甲醛和铜盐混合后,则氨基和醛基将将聚合于铜离子的周围而发生缩合反应制得含铜离子的大环配合物。

[10]2.6 现代合成法2.6.1超声合成法[11]超声合成法能够利用其能量的高效能性提高反应的产率,控制反应的过程,使产物能够快速的结晶,调控配位聚合物的形貌和尺寸等。

2.6.2离子液体法离子液体法主要是利用具有高极性的有机溶剂作为离子液体,利用其溶解性强的特点进行反应, 由于在反应过程中所需的蒸汽压较低、热稳定性比较高, 在配位聚合物的合成方法中也占据着相当重要的地位。

3配位物的实际应用配合物在许多方面有广泛的应用。

在实验研究中,常用形成配合物的方法来检验金属离子,分离物质,定量测定物质的组成。

在生产中,配合物被广泛应用于染色,电镀,硬水软化,金属冶炼领域。

在许多尖端领域如激光材料,超导材料,抗癌药物的研究,催化剂的研制等方面,配合物发挥着越来越大的作用。

3. 1配合物在元素分离和鉴定中的应用在分析化学中应用十分广泛. 它通常用作显色剂、金属指示剂、掩蔽剂和解蔽剂等,来鉴定、分离某些离子或对溶液进行比色分析以测定有关离子浓度等。

例如,用丁二酮肟与Ni2 +在氨溶液生成鲜红色的螯合物沉淀,用来鉴定溶液中Ni2 +的存在是相当灵敏的。

3.2在沉淀分离中的应用配位剂在元素分离中的应用,最早是将它作为沉淀剂使用。

这是由于一些性质相近的元素在形成配合物后它们的溶解度相差巨大,因而有利于元素的分离。

例如Zr ( Ⅳ) 和Hf ( Ⅳ) 它们两者半径相似和性质非常相似,用一般的方法很难将它们完全分离。

但Zr ( Ⅳ) 和Hf ( Ⅳ) 可以形成K2 ZrF6和K2 Hf F6配合物,它们在溶解度上具有很大的差距,据此可以使它们得到很好的分离。

[12]3.3在离子交换中的应用离子交换是利用离子交换树脂来分离和提纯物质的一种方法,也是现代技术领域中的一种重要的分离方法。

例如:铀的提取和分离,天然铀形成配合物的能力很强,能与一些阴离子形成配阴离子,若用苏打水浸取,则在浸取液中形成[UO2 (CO3 ) 3 ]4 -配离子,用硫酸溶液浸取则得到[UO2 (SO4 ) 3 ]4 -配离子,而其它金属具有这种配位能力的极少,因此就可以通过阴离子交换树脂,则配阴离子会被吸附而与其它金属离子分离,再通过淋洗剂脱附就可以得到金属配合物。

3.4配位催化作用当配位催化作用进行时,反应物与过渡金属形成配合物,使反应物围绕在过渡金属原子的周围,使反应物处于活化状态而发生特定的反应。

这些配位催化中的特殊反应主要有:1、与中心原子配位的某些配体插入到相邻的金属—碳、金属—氢键中去形成插入反应。

2、当由σ键合的有机金属配合物,其β—碳位上的C - H 键容易断裂生成金属氢化物,有机体则在端基形成双键而离开配合物形成插入反应的逆过程。

[13]3、当某些配位不饱和的过渡金属配合物,将一个中性分子分解为两个离子加成到金属配合物的配位空位上形成氧化加成和还原消除反应。

4展望配位化合物结合了配体和金属离子两者的特点,通过运用分子设计和晶体工程进行功能的复合和组装,人们可以合理的设计具有特定性质和功能的材料,为开发新型功能材料提供了丰富的研究素材。

随着配位化学研究的不断发展和深入,配合物将在人类的生产和生活中各方面起更加重要的作用。

参考文献[1]F Basolo , R Johnson. Coordination Chemistry[M] . New York :W A Benjamin inc ,1964.[2]刘丹萍,王海燕. 配位化合物的制备及应用[J]. 郧阳师范高等专科学校学报,2008,03:41-45.[3]秦超. 由非对称配体构筑的新型配位化合物的合成、结构和性质研究[D]. 东北师范大学, 2006.[4] J.-W. Cheng, S.-T. Zheng, G.-Y. Yang. Diversity of crystal structure with different lanthanide ions nvolving in situ oxidation-hydrolysis reaction [J]. Dalton Trans., 2007, 36, 4059-4066.[5]F Basolo , R Johnson. Coordination Chemistry[M] . New York :W A Benjamin inc ,1964.[6]徐如人,庞文琴. 无机合成与制备化学[M] . 北京:高等教育出版社,2002.[7]J E Huheey. Inorganic chemistry (2nd edition) [M] . New York :Harper &Row publisher ,1978.[8]王献科, 魏黎明. 用铁(Ⅱ)—邻菲罗啉络合物和氧化还原滴定法测定亚铁[J]. 冶金分析, 2005, (4).[9]徐如人,庞文琴. 无机合成与制备化学[M] . 北京:高等教育出版社,2002.[10]G. Accorsi, A. Listorti, K. Yoosaf, N. Armaroli. 1,10-Phenanthrolines: versatile building blocksfor luminescent molecules, materials and metal complexes [J]. Chem. Soc. Rev., 2009, 38(6), 1690-1700. [11]H. Gudbjartson,K. Biradha,K. M. Poirier,M. J. Zaworotko. Novel Nanoporous CoordinationPolymer Sustained by Self-Assembly of T-Shaped Moieties [J]. J. Am. Chem. Soc., 2010, 121(11), 2599-2600.[12]罗宗铭. 三元络合物及其在分析化学中的应用[M] . 北京:人民教育出版社,2005.[13]R.Vaidhyanathan,D.Bradshaw,JN.Rebilly,J.P.Barrio,J.A.Gould,N.G.Berry,M.J.Rosseinsky,AFamilyofNanoPorousMaterialsBasedonanAminoAcidBackbone,Aw.Chem.,Int.Ed,2006,6495。

相关文档
最新文档