2020秋人教版数学八年级上册14.1.0一次函数与二元一次方程word课堂教学实录

合集下载

数学八年级上《一次函数》复习课件

数学八年级上《一次函数》复习课件

函数平移
例1、将直线 y x 2 向下平移3个单 位后得到的直线是 。 直线平移:
y kx
向上平移b个单位 y kx b 向下平移b个单位 y kx b
配套练习
函数平移
2x 2x 4 1、直线 y 是由 y 3 3
向 平移 个单位得到的。
配套练习
1 2、将直线 y x 2 平移后经过点 2 (-4,-1)。
-1 O
1
2
3
4
5
6
7
8
9
10 11 12
t /分
5、10千米龙舟比赛中,红队由于某些原因,晚 出发了。出发时蓝队已经划出了 500米,如图所示, ɭ和m分别表示蓝队和红队的行驶路程y(千米)和 时间x(分)之间的关系。 是哪个队获胜了?
y(千米) 8 6 4 2 0 5 10 15 20 25 x(分)
平行于 y = k x ,可由它平移而得
当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小.
应 用
(1). 待定系数法; (2).实际问题的应用 (3). 解决方程,不等式,方程组的有关问题
二、范例。
例1 填空题: ②

y x4
, ④ y 4 x 3 。其中过原点的直
一 次 函 数 y=k x + b(k,b为常数,且k ≠0) k>0 y
k>0,b>0
k<0 y x
k<0,b>0
图 象
y o
y
o x
k>0,b<0
o
x
k<0,b<0
x
o
y o

新人教版八年级上册数学课件

新人教版八年级上册数学课件

新人教版八年级上册数学课件注:直接按Ctrl键点击你所要下载的课件即可.可以长期关注11.1 全等三角形PPT课件.ppt11.2 三角形全等的判定PPT课件1.ppt11.2 三角形全等的判定PPT课件2.ppt11.2 三角形全等的判定(ASA AAS) PPT课件.ppt11.2 三角形全等的判定(SAS) PPT课件.ppt11.2 三角形全等的判定(SSS) PPT课件.ppt11.2 三角形全等的判定2PPT课件.ppt11.2 三角形全等的条件PPT课件.ppt11.3 角的平分线的性质PPT课件1.ppt11.3 角的平分线的性质PPT课件2.ppt12.1 轴对称 PPT课件1a.ppt12.1 轴对称 PPT课件2a.ppt12.1 轴对称 PPT课件3a.ppt12.2 作轴对称图形PPT课件1.ppt12.2 作轴对称图形PPT课件2.ppt12.2 作轴对称图形PPT课件3.ppt12.2 作轴对称图形PPT课件4.ppt12.2.1 作轴对称图形PPT课件.ppt 12.2.2 用坐标表示轴对称PPT课件.ppt 12.3.1 等腰三角形PPT课件1.ppt12.3.1 等腰三角形PPT课件2.ppt12.3.1 等腰三角形的判定课件.ppt 12.3.1 等腰三角形的性质课件1.ppt 12.3.1 等腰三角形的性质课件2.ppt 12.3.1 等腰三角形的性质课件3.ppt 12.3.2 等边三角形PPT课件1.ppt12.3.2 等边三角形PPT课件2.ppt12.3.2 等边三角形PPT课件3.ppt13.1 平方根PPT课件1.ppt13.1 平方根PPT课件2.ppt13.1 平方根PPT课件3.ppt13.1 平方根PPT课件4.ppt13.1 平方根PPT课件5.ppt13.1 算术平方根PPT课件.ppt13.1 习题讲解PPT课件.ppt13.2 立方根PPT课件1.ppt13.2 立方根PPT课件2.ppt13.2 立方根PPT课件3.ppt13.2 平方根、立方根习题课课件.ppt13.2 习题讲解PPT课件.ppt13.3 实数PPT课件1.ppt13.3 实数PPT课件2.ppt13.3 实数PPT课件3.ppt13.3 实数(实数的概念)课件.ppt13.3 实数习题讲解课件.ppt14.1 变量与函数的初步认识课件.ppt14.1.1 变量PPT课件.ppt14.1.2 变量与函数PPT课件1.ppt 14.1.2 变量与函数PPT课件2.ppt 14.1.2 函数PPT课件.ppt14.1.3 函数的图象PPT课件1.ppt 14.1.3 函数的图象PPT课件2.ppt 14.2 一次函数_待定系数法PPT课件.ppt 14.2 一次函数_复习课PPT课件.ppt 14.2 一次函数_实际问题PPT课件.ppt 14.2 一次函数_正比例函数PPT课件.ppt 14.2 一次函数的图象和性质课件.ppt 14.2.1正比例函数(第1课时)课件.ppt 14.2.1正比例函数(第2课时)课件.ppt 14.3 一次函数与一元一次方程(1课时).ppt 14.3 一次函数与一元一次方程(2课时).ppt14.3 一次函数与一元一次方程(3课时).ppt 14.3.1一次函数与一元一次方程课件.ppt 14.3.2一次函数与与一元一次不等式.ppt 14.3.3一次函数与二元一次方程组.ppt14.3.4用函数观点看方程(组)与不等式1.ppt 14.3.4用函数观点看方程(组)与不等式2.ppt14.3.4用函数观点看方程(组)与不等式3.ppt15.1 整式的乘法PPT课件1.ppt15.1 整式的乘法PPT课件2.ppt15.1 整式的乘法(1)PPT课件.ppt15.1 整式的乘法(2)PPT课件.ppt15.1.1 单项式乘以单项式PPT课件.ppt 15.1.2 单项式与多项式相乘课件1.ppt 15.1.2 单项式与多项式相乘课件2.ppt 15.1.3 多项式与多项式相乘课件.ppt15.1.4 同底数幂的乘法PPT课件.ppt15.2 乘法公式(第1课时)PPT课件.ppt 15.2 乘法公式(第2课时)PPT课件.ppt 15.2 乘法公式(第3课时)PPT课件.ppt 15.2 乘法公式_平方差公式课件.ppt15.2.1 平方差公式PPT课件.ppt15.2.2 完全平方公式PPT课件.ppt15.3 整式的除法(第1课时)课件.ppt 15.3 整式的除法(第2课时)课件.ppt 15.3.2 单项式除单项式PPT课件.ppt 15.3.2 整式的除法PPT课件.ppt15.4 因式分解.ppt15.4 因式分解(1).ppt15.4 因式分解(2)(平方差公式).ppt 15.4 因式分解(3)(完全平方公式法).ppt 15.4《因式分解》复习ppt课件.ppt。

人教版数学八年级上册 第14章 14.1---14.3分节练习含答案

人教版数学八年级上册 第14章 14.1---14.3分节练习含答案

人教版数学八年级上册第14章14.1---14.3分节练习含答案14.1整式的乘法一.选择题1.计算(2m+3)(m﹣1)的结果是()A.2m2﹣m﹣3B.2m2+m﹣3C.2m2﹣m+3D.m2﹣m﹣32.计算(﹣3x2)2x3的结果是()A.﹣5x6B.﹣6x6C.﹣5x5D.﹣6x53.下列各式中,计算结果为a18的是()A.×a6C.a3×(﹣a)6D.(x﹣1)+(x﹣4)(x+1)的结果是()4. 计算式:(x+4)(x﹣1)+(x﹣4)(x+1)的结果是()A.2x2﹣8B.2x2﹣x﹣4C.2x2+8D.2x2+6x5.下面四个整式中,不能表示图中阴影部分面积的是()A.﹣6x B.x(x+4)+24C.4(x+6)+x2D.x2+246.若x+m与x+2的乘积化简后的结果中不含x的一次项,则m的值为()A.2B.﹣2C.4D.﹣47.已知正方形ABCD边长为x,长方形EFGH的一边长为2,另一边的长为x,则正方形ABCD与长方形EFGH的面积之和等于()A.边长为x+1的正方形的面积B.一边长为2,另一边的长为x+1的长方形面积C.一边长为x,另一边的长为x+1的长方形面积D.一边长为x,另一边的长为x+2的长方形面积8.计算(﹣1.5)2018×()2019的结果是()A.﹣B.C.﹣D.9.若(x+2)(x+a)=x2+bx﹣8,则a b的值为()A.﹣8B.﹣4C.D.10.若(x2﹣px+q)(x﹣3)展开后不含x的一次项,则p与q的关系是()A.p=3q B.p+3q=0C.q+3p=0D.q=3p二.填空题11.若(3x2﹣2x+1)(x+b)的积中不含x的一次项,则b的值为.12.=.13.如图,现有A类、B类正方形卡片和C类长方形卡片各若干张,若要拼一个长为(3a+b),宽为(a+2b)的大长方形,则需要张C类卡片.14.已知a+b=4,ab=3,则代数式(a+1)(b+1)的值为.15.已知a+b=﹣5,ab=4,化简(a﹣2)(b﹣2)的结果是.三.解答题16.计算:(1)3x2y(﹣2x3y2)2;(2)(﹣2a2)(3ab2﹣5ab3).17.若(x2+nx+3)(x2﹣3x+m)的展开式中不含x2项和x3项,求m,n的值.18.甲、乙二人共同计算2(x+a)(x+b),由于甲把第一个多项式中a前面的符号抄成了“﹣”,得到的结果为2x2+4x﹣30;由于乙漏抄了2,得到的结果为x2+8x+15.(1)求a,b的值;(2)求出正确的结果.19.如图,甲、乙都是长方形,边长的数据如图所示(其中m为正整数).(1)图中的甲长方形的面积S1,乙长方形的面积S2,试比较S1、S2的大小,并说明理由;(2)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积S与图中的甲长方形面积S1的差(即S﹣S1)是一个常数,求出这个常数.参考答案与试题解析一.选择题1.【解答】解:原式=2m2﹣2m+3m﹣3=2m2+m﹣3,故选:B.2.【解答】解:(﹣3x2)2x3=﹣6x5,故选:D.3.【解答】解:A.(﹣a6)3=﹣a18,故本选项不合题意;B.(﹣a3)×a6=﹣a9,故本选项不合题意;C.a3×(﹣a)6=a9,故本选项不合题意;D.(﹣a3)6=a18,故本选项符合题意.故选:D.4.【解答】解:(x+4)(x﹣1)+(x﹣4)(x+1)=x2+3x﹣4+x2﹣3x﹣4=2x2﹣8,故选:A.5.【解答】解:A、大长方形的面积为:,空白处小长方形的面积为:6x,所以阴影部分的面积为﹣6x,故不符合题意;B、阴影部分可分为两个长为x+4,宽为x和长为6,宽为4的长方形,他们的面积分别为x(x+4)和4×6=24,所以阴影部分的面积为x(x+4)+24,故不符合题意;C、阴影部分可分为一个长为x+6,宽为4的长方形和边长为x的正方形,则他们的面积为:4(x+6)+x2,故不符合题意;D、阴影部分的面积为x(x+4)+24=x2+4x+24,故符合题意;故选:D.6.【解答】解:根据题意得:(x+m)(x+2)=x2+(m+2)x+2m,由结果中不含x的一次项,得到m+2=0,解得:m=﹣2,故选:B.7.【解答】解:根据题意得:正方形ABCD与长方形EFGH面积之和为x2+2x=x(x+2),则正方形ABCD与长方形EFGH的面积之和等于一边长为x,另一边的长为x+2的长方形面积,故选:D.8.【解答】解:(﹣1.5)2018×()2019=(1.5)2018×()2018×====.故选:D.9.【解答】解:(x+2)(x+a)=x2+(2+a)x+2a,则2+a=b,2a=﹣8,解得,a=﹣4,b=﹣2,∴a b=(﹣4)﹣2=,故选:D.10.【解答】解:(x2﹣px+q)(x﹣3)=x3﹣3x2﹣px2+3px+qx﹣3q=x3+(﹣p﹣3)x2+(3p+q)x﹣3q,∵结果不含x的一次项,∴q+3p=0.故选:C.二.填空题(共5小题)11.【解答】解:(3x2﹣2x+1)(x+b)=3x3+3bx2﹣2x2﹣2bx+x+b=3x3+(3b﹣2)x2+(﹣2b+1)x+b,∵积中不含x的一次项,∴﹣2b+1=0,解得:b=,故答案为:.12.【解答】解:原式=22008×()2008×()2=(2×)2008×=1×=.故答案为:.13.【解答】解:∵(3a+b)(a+2b)=3a2+6ab+ab+2b2=3a2+7ab+2b2,∴若要拼一个长为(3a+b),宽为(a+2b)的大长方形,则需要A类3张,B类2张,C 类7张.故答案为:7.14.【解答】解:原式=ab+a+b+1=ab+(a+b)+1,当a+b=4,ab=3时,原式=3+4+1=8.故答案为:815.【解答】解:∵a+b=﹣5,ab=4,∴(a﹣2)(b﹣2)=ab﹣2a﹣2b+4=ab﹣2(a+b)+4=4﹣2×(﹣5)+4=18,故答案为:18.三.解答题(共4小题)16.【解答】解:(1)3x2y(﹣2x3y2)2=3x2y4x6y4=12x8y5;(2)(﹣2a2)(3ab2﹣5ab3)=(﹣2a2)(3ab2)﹣(﹣2a2)(5ab3)=﹣6a3b2+10a3b3.17.【解答】解:(1)设AB=x,BC=y,由题意得,∵长方形ABCD的周长为16,∴2(x+y)=16,即x+y=8 ①,又∵四个正方形的面积和为68,∴2x2+2y2=68,即:x2+y2=34 ②,①的两边平方得(x+y)2=64,即x2+2xy+y2=64,将②代入得,2xy=30,∴xy=15,即矩形ABCD的面积为15;(2)(x2+nx+3)(x2﹣3x+m)=x4+(﹣3+n)x3+(m﹣3n+3)x2+(mn﹣9)x+3m,∵不含x2和x3项∴﹣3+n=0,m﹣3n+3=0,解得,m=6,n=3,答:m、n的值为6,3.18.【解答】解:(1)甲把第一个多项式中a前面的符号抄成了“﹣”,得到的结果为2x2+4x﹣30,∴2(x﹣a)(x+b)=2x2+2bx﹣2ax﹣2ab=2x2+(2b﹣2a)x﹣2ab=2x2+4x﹣30,∴2b﹣2a=4,∵乙漏抄了2,得到的结果为x2+8x+15,∴(x+a)(x+b)=x2+bx+ax+ab=x2+(a+b)x+ab=x2+8x+15,∴a+b=8,解方程组得:,即a=3,b=5;(2)2(x+3)(x+5)=2x2+10x+6x+30=2x2+16x+30.19.【解答】解:(1)S1=(m+1)(m+7)=m2+8m+7,S2=(m+2)(m+4)=m2+6m+8,∴S1﹣S2=(m2+8m+7)﹣(m2+6m+8)=2m﹣1,∵m为正整数,∴2m﹣1>0,∴S1>S214.2《平方差公式》1. 为了便于直接应用平方差公式计算,应将)变形为()A. B.C. D.2. 可表示为()A. B. C. D.3. 若,则的值为()A. B. C. D.4. 在下列各式中,计算结果是的是()A. B.C. D.5.下列各式中,计算正确的是()A. B.C. D.6.计算:等于()A. B. C. D.7. 计算:________.8. 填空:(1)()();(2)();(3)()()().9.若一个三角形的一条边长为,这条边上的高为,则这个三角形的面积为________.10. 计算:(1)________.(2)( ).11.设=,求的值.12. 利用平方差公式计算:(1);(2).13. 计算:________;________;________;根据上面算式所得的简便方法计算下式:.14.计算:(1);(2);(3).15.计算:(1);(2);(3);(4).16.运用平方差公式计算:(1);(2);(3);(4).参考答案1.【答案】B2.【答案】B3.【答案】A4.【答案】C5.【答案】C6.【答案】A7.略8.【答案】(1)(2)(3)9.【答案】10.【答案】(1)(2)11.====,故=.12.===.===.13.【答案】原式.14.【答案】(1)解:(2)解:(3)解:15.【答案】(1)解:(2)解:(3)解:(4)解:16.【答案】(1)解:(2)解:(3)解:(4)解:14.3《因式分解》一.选择题1.8x m y n﹣1与﹣12x5m y n的公因式是()A.x m y n B.x m y n﹣1C.4x m y n D.4x m y n﹣12.下列计算属于因式分解的是()A.b3+b3=2b3B.(a+b)(a﹣b)=a2﹣b2C.a2﹣b2=(a+b)(a﹣b)D.a2÷a=a3.下列各式能分解因式的是()A.﹣x2﹣1B.C.a2+2ab﹣b2D.a2﹣b4.下列各式中,能用平方差公式进行分解因式的是()A.x2+y2B.x2﹣2x﹣3C.x2+2x+1D.x2﹣45.对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解6.利用因式分解简便计算69×99+32×99﹣99正确的是()A.99×(69+32)=99×101=9999B.99×(69+32﹣1)=99×100=9900 C.99×(69+32+1)=99×102=10096D.99×(69+32﹣99)=99×2=1987.若长和宽分别是a,b的长方形的周长为10,面积为4,则a2b+ab2的值为()A.14B.16C.20D.408.已知a,b都是实数,观察表中的运算,则m为()a、b的运算a+b a﹣b a2﹣b2运算的结果﹣410m A.40B.﹣40C.36D.﹣369.已知a,b,c为△ABC的三边长,且满足ac+bc=b2+ab,则△ABC的形状是()A.等边三角形B.直角三角形C.等腰直角三角形D.等腰三角形10.如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b).把余下的部分剪拼成一个长方形,通过计算阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣2ab+b2=(a﹣b)2B.a2﹣ab=a(a﹣b)C.a2﹣b2=(a﹣b)2D.a2﹣b2=(a+b)(a﹣b)二.填空题11.分解因式:x3+2x2﹣3x=.12.在实数范围分解因式:x2﹣6=.13.利用因式分解计算:2022+202×196+982=.14.若x2+4x+m=(x﹣2)(x+6),则m=.15.若m3+m﹣1=0,则m4+m3+m2﹣2=.三.解答题16.因式分解:(1)2mx2﹣4mxy+2my2;(2)x2﹣4x+4﹣y2.17.将下列各式分解因式:(1)x2+2x﹣15;(2)2x2y﹣8xy2+8y3;(3)9(x+2y)2﹣4(x﹣y)2.18.已知a﹣b=3,ab=4,求下列式子的值:(1)a2b﹣ab2;(2)a4b2﹣2a3b3+a2b4.19.某同学碰到这么一道题“分解因式x2+2x﹣3”,不会做,去问老师,老师说:“能否变成平方差的形式?在原式加上1,再减去1,这样原式化为(x2+2x+1)﹣4,…”,老师话没讲完,此同学就恍然大悟,他马上就做好了此题.请你仔细领会该同学的做法,将a2﹣2ab﹣3b2分解因式.20.对于二次三项式a2+6a+9,可以用公式法将它分解成(a+3)2的形式,但对于二次三项式a2+6a+8,就不能直接应用完全平方式了,我们可以在二次三项式中先加上一项9,使其成为完全平方式,再减去9这项,使整个式子的值保持不变,于是有:a2+6a+8=a2+6a+9﹣9+8=(a+3)2﹣1=[(a+3)+1][(a+3)﹣1]=(a+4)(a+2)请仿照上面的做法,将下列各式因式分解:(1)x2﹣6x﹣16;(2)x2+2ax﹣3a2.参考答案一.选择题1.解:8x m y n﹣1与﹣12x5m y n的公因式是4x m y n﹣1.故选:D.2.解:A、从左到右是合并同类项,不是因式分解,故此选项不符合题意;B、从左到右是整式的乘法,不是因式分解,故此选项不符合题意;C、右边是几个整式的积的形式,故此选项符合题意;D、从左到右是单项式的除法运算,不是因式分解,故此选项不符合题意.故选:C.3.解:A、不能分解,故此选项不符合题意;B、能够运用完全平方式分解因式,故此选项符合题意;C、不能分解,故此选项不符合题意;D、不能分解,故此选项不符合题意.故选:B.4.解:A.多项式中的两项同号,不能用平方差公式分解因式;B.多项式含有三项,不能用平方差公式分解因式;C.多项式含有三项,不能用平方差公式分解因式;D.能变形为x2﹣22,符合平方差公式的特点,能用平方差公式分解因式.故选:D.5.解:①x﹣3xy=x(1﹣3y),从左到右的变形是因式分解;②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.故选:C.6.解:69×99+32×99﹣99=99(69+32﹣1)=99×100=9900.故选:B.7.解:∵长和宽分别是a,b的长方形的周长为10,面积为4,∴2(a+b)=10,ab=4,∴a+b=5,则a2b+ab2=ab(a+b)=20.故选:C.8.解:a2﹣b2=(a+b)(a﹣b)=(﹣4)×10=﹣40.∴m=﹣40.故选:B.9.解:由ac+bc=b2+ab得,c(a+b)=b(a+b),∴b=c,∴△ABC是等腰三角形.故选:D.10.解:由图可知,大正方形减小正方形剩下的部分面积为:a2﹣b2;拼成的长方形的面积为:(a+b)×(a﹣b),所以得出:a2﹣b2=(a+b)(a﹣b),故选:D.二.填空题11.解:x3+2x2﹣3x=x(x2+2x﹣3)=x(x+3)(x﹣1),故答案为:x(x+3)(x﹣1).12.解:x2﹣6=(x+)(x﹣).故答案为:(x+)(x﹣).13.解:原式=2022+2x202x98+982=(202+98)2=3002=90000.14.解:∵x2+4x+m可分解为(x﹣2)(x+6),∴(x﹣2)(x+6)=x2+4x﹣12,则m=﹣12.故答案为:﹣12.15.解:∵m3+m﹣1=0,∴m3+m=1,∴m4+m3+m2﹣2=m4+m2+m3﹣2=m(m3+m)+m3﹣2=m×1+m3﹣2=m+m3﹣2=1﹣2=﹣1.故答案为:﹣1.三.解答题16.解:(1)原式=2m(x2﹣2xy+y2)=2m(x﹣y)2;(2)原式=(x﹣2)2﹣y2=(x﹣2+y)(x﹣2﹣y).17.解:(1)原式=(x+5)(x﹣3);(2)原式=2y(x2﹣4xy+4y2)=2y(x﹣2y)2;(3)原式=(3x+6y)2﹣(2x﹣2y)2.=(3x+6y+2x﹣2y)(3x+6y﹣2x+2y)=(5x+4y)(x+8y).18.解:(1)∵a﹣b=3,ab=4,∴a2b﹣ab2=ab(a﹣b)=4×3=12;(2)∵a﹣b=3,ab=4,∴a4b2﹣2a3b3+a2b4=a2b2(a2﹣2ab+b2)=(ab)2(a﹣b)2=42×32=144.19.解:a2﹣2ab﹣3b2=a2﹣2ab+b2﹣4b2=(a﹣b)2﹣4b2=(a﹣b+2b)(a﹣b﹣2b)=(a+b)(a﹣3b).20.解:(1)x2﹣6x﹣16=x2﹣6x+9﹣9﹣16=(x﹣3)2﹣25=(x﹣3+5)(x﹣3﹣5)=(x+2)(x﹣8);(2)x2+2ax﹣3a2=x2+2ax+a2﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+a+2a)(x+a﹣2a)=(x+3a)(x﹣a).。

八年级数学上册第14章一次函数教材

八年级数学上册第14章一次函数教材

第14章:一次函数复习变量:自变量:自己变化的量;在一个变化的过程中,我们称数值变化的量是自变量. 常量:有些量的数值是始终不变的量叫常量.函数值:当自变量确定一个值,被变量随之确定的一个值. 一次函数和正比例函数的概念1.概念: 若两个变量x ,y 间的关系式可以表示成y=kx+b (k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正比例函数.(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b (k ,b 为常数,k ≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x 的次数为1,一次项系数k 必须是不为零的常数,b 可为任意常数. ★判断一个等式是否是一次函数先要化简(3)当b=0,k ≠0时,y= kx 仍是一次函数.(正比例函数) (4)当b=0,k=0时,它不是一次函数.2. 函数的表示方法: 1)解析法,2)列表法,3)图象法. 一次函数的图象由于一次函数y=kx+b (k ,b 为常数,k ≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b . 由于两点确定一条直线,描出适合关系式的两点,再连成直线,一般选取两个特殊点:直线与y 轴的交点(0,b ),直线与x 轴的交点(-kb,0).画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k )即可.一次函数y=kx+b (k ,b 为常数,k ≠0)的性质(1)k 的正、负决定直线的倾斜方向;①k >0时,y 的值随x 值的增大而增大;②k ﹤O 时,y 的值随x 值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x 轴相交的锐角度数越大(直线陡),|k|越小,直线与x 轴相交的锐角度数越小(直线缓);(3)b 的正、负决定直线与y 轴交点的位置;①当b >0时,直线与y 轴交于正半轴上; ②当b <0时,直线与y 轴交于负半轴上; ③当b=0时,直线经过原点,是正比例函数.(4)由于k ,b 的符号不同,直线所经过的象限也不同;22正比例函数y=kx (k ≠0)的性质(1)正比例函数y=kx 的图象必经过原点;(2)当k >0时,图象经过第一、三象限,y 随x 的增大而增大; (3)当k <0时,图象经过第二、四象限,y 随x 的增大而减小.知识规律小结1.常数k ,b 对直线y=kx+b(k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交;当b=0时,直线经过原点; 当b ﹤0时,直线与y 轴的负半轴相交. ②当k ,b 异号时,即-kb >0时,直线与x 轴正半轴相交;当b=0时,即-kb =0时,直线经过原点; 当k ,b 同号时,即-kb ﹤0时,直线与x 轴负半轴相交.③当k >O ,b >O 时,图象经过第一、二、三象限; 当k >0,b=0时,图象经过第一、三象限; 当b >O ,b <O 时,图象经过第一、三、四象限; 当k ﹤O ,b >0时,图象经过第一、二、四象限; 当k ﹤O ,b=0时,图象经过第二、四象限; 当k <O ,b <O 时,图象经过第二、三、四象限.2. 直线y=kx+b (k ≠0)与直线y=kx(k ≠0)的位置关系: 直线y=kx+b(k ≠0)平行于直线y=kx(k ≠0) 当b >0时,把直线y=kx 向上平移b 个单位,可得直线y=kx+b ; 当b ﹤O 时,把直线y=kx 向下平移|b|个单位,可得直线y=kx+b . 3. 直线b1=k1x+b1与直线y2=k2x+b2(k1≠0 ,k2≠0)的位置关系. ①k1≠k2⇔y1与y2相交;②⎩⎨⎧=≠2121b b k k ⇔y1与y2相交于y 轴上同一点(0,b1)或(0,b2);3③⎩⎨⎧≠=2121,b b k k ⇔y1与y2平行; ④⎩⎨⎧==2121,b b k k ⇔y1与y2重合.14.1.1变量问题一:汽车以60千米/小时的速度匀速行驶,行驶里程为s 千米,行驶时间为t 小时. 1.请同学们根据题意填写下表:2.在以上这个过程中,变化的量是_____________.不变化的量是__________. 3.试用含t 的式子表示s: s=________,t 的取值范围是 _________ .这个问题反映了匀速行驶的汽车所行驶的路程____随行驶时间___的变化过程.问题二:每张电影票的售价为10元,如果早场售出票150张,午场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x 张,票房收入y 元.• 1.请同学们根据题意填写下表:2.在以上这个过程中,变化的量是_____________.不变化的量是__________. 3.试用含x 的式子表示y: y=______ ,x 的取值范围是 .这个问题反映了票房收入_________随售票张数_________的变化过程.问题三:在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm•,•每1kg•重物使弹簧伸长0.5cm ,设重物质量为mkg ,受力后的弹簧长度为L cm. 1.请同学们根据题意填写下表:23.试用含m 的式子表示L: L=____________ ,m 的取值范围是 .这个问题反映了_________随_________的变化过程.小结:以上这些问题都反映了不同事物的变化过程,其实现实生活中还有好多类似的问题,在这些变化过程中,有些量的值是按照某种规律变化的,有些量的数值是始终不变的。

人教版数学初二上册(八年级)《14.1.2 幂的乘方》公开课课件

人教版数学初二上册(八年级)《14.1.2 幂的乘方》公开课课件

探究新知 考点探究4 幂的大小的比较
例4 比较3500,4400,5300的大小.
解析:这三个幂的底数不同,指数也不相同,不能直接比较大 小,通过观察,发现指数都是100的倍数,可以考虑逆用幂的乘 方法则. 解: 3500=(35)100=243100, 4400=(44)100=256100, 5300=(53)100=125100.
解:(1)原式=5a12–13a12=–8a12. (2)原式=–7x9·x7+5x16–x16=–3x16.
(3)原式=(x+y)18–(x+y)18=0.
提升题
已知3x+4y–5=0,求27x·81y的值. 解:∵3x+4y–5=0, ∴3x+4y=5, ∴27x·81y=(33)x·(34)y =33x·34y =33x+4y =35 =243.
420、:2千敏87淘而.1万好4.浪学20虽,20辛不20苦耻:2,下87吹问.1尽。4.黄。20沙72.10始42.0到2:02金2802。707.:12.1484.:23.2002720.102470..:2120482.220002:2008:22807:2.1842:3.020:0228002:208:2:380:3020:28:30
人教版数学八年级上册
14.1 整式的乘法
14.1.2 幂的乘方
探究新知
幂的乘方的法则(较简单的)
请分别求出下列两个正方形的面积?
10
S正 =边长×边长
=边长2
S小 =10×10 =102
103
S正=103×103 =(103)2
= 106
请根据乘方的意义及同底数幂的乘法填空. 观察计算的结果,你能发现什么规律?证明你的猜想.

人教版八年级数学上册第14章2 整式的乘除法

人教版八年级数学上册第14章2 整式的乘除法
解:|-3|+22-( 3-1)0=3+4-1=6.
7-1.计算:
1 2
0-
16+(-2)2.
解:原式=1-4+4=1.
知5-练
知识点 6 单项式除以单项式
知6-讲
1. 单项式除以单项式法则:一般地,单项式相除,把系数 与同底数幂分别相除作为商的因式,对于只在被除式里 含有的字母,则连同它的指数作为商的一个因式.
也可以视为三个小长方形的面积之和,表示为pa+pb+pc.
Байду номын сангаас
所以p(a+b+c)=pa+pb+pc.
警示误区
知2-讲
1. 单项式与多项式相乘的结果是一个多项式,其项数与因
式中多项式的项数相同.
2. 单项式与多项式相乘时,要把单项式和多项式里的每一
项都相乘,不要漏乘、多乘.
3. 计算时要注意符号问题,多项式中每一项都包括它前面
单项式与单项式相乘,系数是带分数的一定要化为假分数
(3)5a3b·(-3b)2+(-6ab)2·(-ab)-ab3·(-4a)2 =5a3b·9b2+36a2b2·(-ab)-ab3·16a2 =45a3b3-36a3b3-16a3b3=-7a3b3 .
有同类项的一定要合并同类项
知1-练
1-1. [中考·陕西]计算:2x·(-3x2y3)=( C )
知4-练
知4-练
例 5 已知xm=9,xn=27,求x3m-2n 的值.
解题秘方:逆用同底数幂的除法法则,即am-n=am÷an (a ≠ 0,m,n都是正整数,并且m>n),进行变形求值.
解:x3m-2n=x3m÷x2n=(xm)3÷(xn)2
=93÷272
93÷272=(32)3÷(33)2

人教版数学初二上册(八年级)14.1.1同底数幂的乘法课件

人教版数学初二上册(八年级)14.1.1同底数幂的乘法课件
花花一一样样美美丽丽,,感感谢谢你你的的阅阅读读。。 87、天勇放下气眼兴通前亡往方,天匹堂只夫,要有怯我责懦们。通继往续20地,:28狱收2。获0:2的80季:3208节72.就01:42在.82前:0320方07T.。1u42e.0s2.d07a2.1y0,4TJ2uu0el.ys7d.11a44y,2,20J0u.72ly.01144。, 2020年7月14日星期二二〇二〇年七月十 四日 8、拥有梦想只是一种智力,实现梦想才是一种能力。20:2820:28:307.14.2020Tuesday, July 14, 2020
运用同底数幂的乘法的运算性质
例 计算: (1) x2 x5; (2) a a6; (3)(-2)(-2)4 (-2)3; (4) xm x3m 1.
运用同底数幂的乘法的运算性质
练习2 计算:
(1)(- 1 )(- 1 )2 (- 1 )3;
2
2
2
(2) a2 a6.
3 a2 • a5
解: (1)(2a)3=23 a3=8a3; (2)(-5b)3 =(-5)3b3 =-125b3; (3)(xy2)2 =x(2 y2)2 =x2 y4; (4)(-2x3)4 =(-2)(4 x3)4 =16x12.
动脑思考,变式训练
练习 计算: (1)(103)3; (2)(x3)2; (3) (- xm)5; (4)(a2)3 a5; (5)(- 2ab3c 2)4 .
解: (ab)3 =ab ab ab =a3b3.
答:所得的铁盒的容积是 a3b3 .
动手操作,得出性质
问题4 根据乘方的意义和乘法的运算律,计算:
(ab)(n n是正整数).
n个ab
(ab)n=(ab)(ab) (ab)

人教版八年级上册数学14.1.2幂的乘方课件

人教版八年级上册数学14.1.2幂的乘方课件
310m=330
m=3
5. 若2a=3,2b=5,求23a+2b+2的值.
解:23a+2b+2=(2a)3·(2b)2·22
=27×25×4
=2700
可逆用: =

=

课堂小结
乘方的意义
推导
类比、归纳、转化
求n个相同因数的积的运算
幂的乘方
幂的乘方,底数不变,指数相加.


= (m,n都是正整数)

m
n个a
(a ) a m a m
m n
n 个m
底数不变
指数相乘
a
=a
m m
am
m
mn
因此,我们有 (am )n amn (m, n都是正整数)
即幂的乘方,底数不变,指数相乘.
n
a m)



p

=
a mnp
多重乘方可以重复运用上述法则:
p
a m)
n =a mnp (m、n、p是正整数)

+
同底数幂的 ⋅ =
底数不变, 为幂的乘方,如3 ⋅
乘法
(m,n都是正整数) 指数相加. 3 = 3 2 .
幂的乘方
强化练习
口算:
① (x3)3;
=x9
③ -(x2)3;
=-x6
② (x2)3;
=x6
④ -(-x2)3
= x6
计算:
① (-104)2;
=108
③ [(-2)4]3;
(1)
6 )
3
(2)
(a 2)=
a 2 a 2 a 2 =a(
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数与二元一次方程(组)
课堂实录
【情境导入】
师:生活中我们时常遇到“收费”问题,请看大屏幕.(多媒体播放上网收费生活实例)师:请思考,你能解决这个问题吗?
(生思考后举手)
生:我们可抓住题中“两种收费方式计算都是一样多”为等量关系,设上网时间为x
分钟,构造方程解决本题.
师:思路很好,谢谢!请坐!老师请再一位同学讲得更具体一些.
(一生举手,发表不同意见)
生:我们设上网时间为x分钟,则方式A计费为:0.1x
方式B计费为:0.05x+20“两者相等”可列方程:
0.1x=0.05x+20解方程即可
(师板演过程)
师:请坐!(师生鼓掌激励)
师:接下来请同学们一起解完,注意应用题的基本步骤,别忘了“答”!
(全体静心演算…)
(一生突然举手)
生:老师,还可以用方程组解决本题!
(生议论纷纷)
师:请详细说明!
生:设上网时间为x分钟,月上网费用为y元.
则A方式:y=0.1x B方式:y=0.05x+20
y=0.1x
可列方程组解方程组易得
y=0.05x+20
师:对吗?同学们!
生:(齐声回答)完全正确!
(鼓掌)
师:请大家观察y=0.1x,y=0.05x+20有何发现?
(生交流)
生:y=0.1x y=0.05x+20均为一次函数
生:老师,我觉得就是两个二元一次方程而已,好像与函数没什么关系!
(生叽叽喳喳争论)
师:同学们!那么一次函数与二元一次方程组之间有没关系呢?如果有关系到底有什么样的联系呢?让我们一起研究!
(揭示课题:一次函数与二元一次方程组)
〖评析〗建构主义认为,在实际情境中学习可以激发学生的学习兴趣.因此,用“上网收费”这一生活实际创设情境,并用问题启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成“心求通而未能得,口欲言而不能说”的情势,从而唤起学生强烈的求知欲,使他们以跃跃欲试的姿态投入到探索活动中来.
【探索新知】
师:首先,让我们一起来探究一次函数与二元一次方程的关系.
(板书填空题,生思考完成后举手.)
生:y=5
853+-x 生:一定是
师:请说明理由.
生:3x +5y =8化为y=5
853+-x 仅是做了一个恒等变形,所以(x,y )如果满足y=5853+-x ,也一定满足3x +5y =8.
师:你真棒!请坐,请思考第2题.
生:可以转化.因为在整个化简过程中,仅是利用等式的性质,所以任意二元一次方程都可以化为一次函数.
生:(补充)化简过程中等式两边同乘以或除以了一个不为零的数而已,所以任意二元一次方程都可以化.
师:两位同学的表述结合起来,答案完美无缺!(师竖起大拇指,生鼓掌).
师:那么,这一问题与解方程组⎩⎨⎧=-=+1
2853y x y x 是同一问题吗?
生:是,因为…
师:能说明理由吗?
(生迟疑)
师:没思考好吗?请坐!
生:理由和(1)相同.
师:你回答得太绝了!
(生掌声鼓励)
师:那么,二元一次方程和一次函数到底有什么关系呢?
(生小声交流)
生:任何一个二元一次方程均可化为一次函数.
生:它们都有两个变量。

师归纳:正如同学们所说:“二元一次方程与一次函数,仅是形式的不同而已,可以互化.”
〖评析〗教学过程循序渐进,不断引导学生反思归纳“数”与“形”间的关系,培养学生良好的思维习惯的同时,激发学生学习兴趣,激起课堂教学高潮.
师:接下来,我们再来探究:一次函数与二元一次方程组的关系,请同学们思考(1). (生动手作图…)
(生观察后互相交流)
生:通过作图,我们发现两一次函数的交点就是方程组的解.
师:能说明这一结论的一般性吗?(生思考)
师:请坐下继续思考…
生:两一次函数图象交点,一定在函数图象上,既满足y=5
853+-x 即3x+5y=8;
3x +5y =8
同时也满足y=2x-1即2x-y=1,也就是说一定是方程组 的解.
2x -y =1
师:那么,同学们能找出二元一次方程组和一次函数关系吗?
(生议论纷纷)
生:二元一次方程组中的方程可转化为两一次函数.
生:二次一次方程组的解可转化为求两一次函数图象的交点.
师:解二元一次方程组相当于确定两直线的交点.
师:请思考(2)
(生思考、演算)
生:当x =1时,y=5
853+-x 与y=2x -1值相等,这个值为1,这一问题与解方程组 3x +5y =8
是同一问题,这与(1)中的问题理由相同.
2x -y =1
师:请哪位将“与(1)中的理由相同”具体些!
生:一次函数y=5
853+-x 和y=2x -1值相等,即求两次函数交点,从而转化为求 y =5
853+-x 3x +5y =8
方程组 的解,即求 的解,两者是同一问题.
y =2x -1 2x -y =1
(师生鼓掌)
师:通过刚才的学习,哪位同学能完整的概况一下二元一次方程组与一次函数的关系! (生交流,议论纷纷)
生:两直线交点坐标一定是相应的方程组的解.
生:两直线交点坐标与相应二元一次方程的解是一一对应关系.
师:能具体一些阐述吗?
生:两直线交点坐标一定是相应方程组的解,反之,由二元一次方程构成的方程组的解一定可以通过两直线交点求得.
生:也就是说:要求两直线交点,求转化为求相应二元一次方程组的解,而要二元一次方程的解又可以通过相应两直线求得.
师:准确、精辟.(师示意,师生鼓掌表示祝贺)
〖评析〗学生经过自主探索、合作交流,从数和形两个角度认识一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,从而在头脑中再现知识的形成过程,避免单纯地记忆,使学习过程成为一种再创造的过程.此时教师及时对学生进行鼓励,充分肯定学生的探究成果,关注学生的情感体验.
【巩固新知】
师:请大家看例题.
(生思考)
生1:设上网时间为x 分钟,计费y 元.
A 方式:y=0.1x
B 方式:y =0.05x +20 作出两函数图象结合图象,利用直线上
点位置高低得出结论:
当时间少于400分钟时,选A 方式省钱;
当时间等于400分钟时,选A、B方式一样;
当时间多于400分钟时,选B方式省钱.
师:太棒了!
请大家看大屏幕,反思和模仿解题步骤.
(生自学议论思考)
师:课后请了解你家的上网收费方式,实际计算一下所选方式好吗?
(生议论)
【课堂测试】
师:请看大屏幕,抢答.
生:y=3x-2
(生迅速计算,举手)
x=1
生:
y=0
〖评析〗抓住学生对竞争充满兴趣的心理特征,用抢答题使学生的眼、耳、脑、口得到充分的调动,并在抢答中品味成功的快乐,提高思维的速度.在学生感兴趣的旅游问题中,进一步培养学生应用数学的意识,更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构.
【课堂延伸】
师:通过本节课的学习,大家有哪些收获?你印象最深的是什么?
生:二元一次方程的解与相应一次函数点的坐标是一一对应关系,以后我们处理二元一次方程解的问题可以通过相应一次函数图象上的点来解决.要一次函数图象上点的坐标的性质,可以通过相应二元一次方程的解来反映.
生:求两直线交点可转化为求相应二元一次方程组的解.
生:利用函数图象解决方程等实际问题使更直观.
师:同学们都总结得很好,希望同学们能将本节课学到的方法应用于解决实际问题.〖评析〗培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价.
师:请大家记住及时完成数学日记,记好今天的作业:
2.作业
(1)当自变量x取何值时,函数
5
1
2
y x与517
y x的值相等?这个函数值是
什么?(必做)
(2)北京2008奥运的理念是“科技奥运、人文奥运、绿色奥运”.为了响应号召,某校甲、乙两班同学参加植树活动。

已知甲班每小时植树20棵,乙班每小时植树24棵.由于某些原因,甲班植完8棵后,乙班才开始.你认为哪个班植树棵数多?(必做)(3)结合一次函数,就“如何选择最佳方案”这一话题写一份调查报告.(选做)〖评析〗新课程强调发展学生数学交流的能力,用数学日记给学生提供一种表达数学思想方法和情感的方式,以体现评价体系的多元化,并使学生尝试用数学的眼睛观察事物,体验数学的价值.作业由必做题和选做题组成,体现分层教学,让“不同的人在数学上得到不同的发展”.。

相关文档
最新文档