高一数学必修一函数的表示法1.doc

合集下载

高一数学函数的概念表示

高一数学函数的概念表示

函数概念与表示一、知识要点:1.函数的定义及“三要素”: 定义域、对应关系 、值域。

2.常用的函数表示法:(1)列表法:(2)图象法:(3)解析法(分段函数):(4)复合函数:(1)求函数定义域一般方法:①给出函数解析式的:函数的定义域是使解析式有意义的自变量的取值集合;②实际问题:函数的定义域的求解除要考虑解析式有意义外,还应考虑使实际问题有意义;③复合函数定义域: ,已知()f x 的定义域[],a b ,其复合函数[]()f g x 的定义域。

由()a g x b ≤≤解出。

已知[()]f g x 的定义域[],a b ,求()f x 的定义域。

是()g x 在[],a b 上的值域 (2)求函数解析式的方法:①已知函数类型,求函数的解析式:待定系数法; ②已知复合关系,求函数的解析式:换元法、配凑法; ③已知函数图像,求函数解析式;数形结合法; (3)求函数值域的类型与求法:类型:①求常见函数值域;②复合函数的值域;③组合函数的值域。

$求法:①直接法、②配方法、 ③离常数法、④换元法、⑤逆求法、⑥判别式法、⑦数形结合。

二、基础练习:1、下各组函数中表示同一函数的有(1)f (x )=2x ,g (x )=33x ; (2)f (x )=x x ||,g (x )=⎩⎨⎧<-≥;01,01x x(3)f (x )=x 1+x ,g (x )=x x +2; (4)f (x )=x 2-2x -1,g (t )=t 2-2t -1。

2、函数y=x x x +-)1(的定义域为3、已知函数()f x 定义域为(0,2), 2()23f x +定义域 ;*4、(2009山东卷理)定义在R 上的函数f(x )满足f(x)= ⎩⎨⎧>---≤-0),2()1(0),1(log 2x x f x f x x则f (2009)的值为5、设函数1()f x =112223()(),x f x x f x x -==,,则123(((2007)))f f f = .三、例题精讲: 题型1:函数关系式例1.设函数).89(,)100()5()100(3)(f x x f x x x f 求⎩⎨⎧<+≥-=)变式1:已知函数()f x ,()g x 分别由下表给出则[(1)]f g 的值为;当[()]2g f x =时,x =.题型2:求函数解析式例2.(1)f(x +1)=x+2x ;求f(x)(2)f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2.试分别求出f(x)的解析式.](3)已知()f x 满足12()()3f x f x x+=,求()f x 。

新教材苏教版高中数学必修一 知识点09 函数的表示方法

新教材苏教版高中数学必修一 知识点09 函数的表示方法

高一数学同步精品课堂讲、例、测(苏教版2019必修第一册)知识点9函数的表示方法教材知识梳理函数的表示法-------理解函数表示法的三个关注点(1)列表法、图象法、解析法均是函数的表示法,无论是哪种方式表示函数,都必须满足函数的概念.(2)列表法更直观形象,图象法从形的角度描述函数,解析法从数的角度描述函数.(3)函数的三种表示法互相兼容或补充,许多函数是可以用三种方法表示的,但在实际操作中,仍以解析法为主.函数三种表示法的优缺点比较:求函数解析式的四种常用方法(1)换元法:设t=g(x),解出x,代入f(g(x)),求f(t)的解析式即可.(2)配凑法:对f(g(x))的解析式进行配凑变形,使它能用g(x)表示出来,再用x代替两边所有的“g(x)”即可.(3)待定系数法:若已知f(x)的解析式的类型,设出它的一般形式,根据特殊值确定相关的系数即可.(4)方程组法(或消元法):当同一个对应关系中的两个之间有互为相反数或互为倒数关系时,可构造方程组求解.提醒:应用换元法求函数解析式时,务必保证函数在换元前后的等价性.分段函数图象的画法(1)对含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数图象.(2)作分段函数的图象时,分别作出各段的图象,在作每一段图象时,先不管定义域的限制,作出其图象,再保留定义域内的一段图象即可,作图时要特别注意接点处点的虚实,保证不重不漏.分段函数的实际应用(1)当目标在不同区间有不同的计算表达方式时,往往需要用分段函数模型来表示两变量间的对应关系,而分段函数图象也需要分段画.(2)分段函数模型应用的关键是确定分段的各分界点,即明确自变量的取值区间,对每一个区间进行分类讨论,从而写出相应的函数解析式.例题研究一、求函数的解析式题型探究例题1已知函数()f x 的定义域为R ,且对任意x ∈R 均满足:2()()31f x f x x --=+,则函数()f x 的解析式为( ) A .()1f x x =+ B .()1f x x C .()1f x x =-+ D .()1f x x =--【答案】A【分析】利用构造方程组的方法,解出()f x 的解析式. 【详解】由2()()31f x f x x --=+,可得2()()31f x f x x --=-+ ①又4()2()62f x f x x --=+①,+①②得:()333f x x =+,解得()1f x x =+故选:A【点睛】考查函数解析式的求法,考查学生计算能力,属于基础题. 例题2如图中的图象所表示的函数的解析式为( )A .31(02)2y x x =-≤≤B .331(02)22y x x =--≤≤ C .31(02)2y x x =--≤≤ D .11(02)y x x =--≤≤【答案】B【分析】分段求解:分别把0≤x≤1及1≤x≤2时的解析式求出即可. 【详解】当0≤x≤1时,设f (x )=kx ,由图象过点(1,32),得k=32,所以此时f (x )=32x ; 当1≤x≤2时,设f (x )=mx+n ,由图象过点(1,32),(2,0),得3202m n m n ⎧=+⎪⎨⎪=+⎩,解得3m 23n ⎧=-⎪⎨⎪=⎩ 所以此时f (x )=3-x 32+.函数表达式可转化为:y =32 32-|x -1|(0≤x≤2) 故答案为B【点睛】考查函数解析式的求解问题,本题根据图象可知该函数为分段函数,分两段用待定系数法求得.跟踪训练训练1已知()f x 是一次函数,且(1)35f x x -=-,则()f x 的解析式为( ) A .()32f x x =+ B .()32f x x =-C .()23f x x =+D .()23f x x =-【答案】B【分析】设()f x kx b =+,(0k ≠),利用()135f x x -=-两边恒等求出k 即可得结果. 【详解】设()f x kx b =+,(0k ≠)①()()1135f x k x b x -=-+=-, 即35kx k b x -+=-,所以35k b k =⎧⎨-=-⎩,解得3k =,2b =-,①()32f x x =-,故选B .【点睛】考查函数解析式的求法,属于中档题.求函数的解析式常见题型有以下几种:(1)根据实际应用求函数解析式;(2)换元法求函数解析式,利用换元法一定要注意,换元后参数的范围;(3)待定系数法求函数解析式,这种方法适合求已知函数名称的函数解析式;(4)消元法求函数解析式,这种方法求适合自变量互为倒数或相反数的函数解析式. 训练2设函数()f x 的定义域为R ,满足(2)2()f x f x -=,且当[)2,0x ∈-时,()2(2)f x x x =-+.若对任意[),x m ∈+∞,都有3()4f x ≤,则m 的取值范围是( ) A .2,3⎡⎫+∞⎪⎢⎣⎭B .3,4⎡⎫+∞⎪⎢⎣⎭C .1,2⎡⎫+∞⎪⎢⎣⎭D .3,2⎡⎫+∞⎪⎢⎣⎭【答案】D【分析】根据题设条件可得当)12,2k k x +⎡∈⎣时,()10,2k f x ⎡⎤∈⎢⎥⎣⎦,其中*k N ∈,结合函数在[)0,2上的解析式和函数在[)2,-+∞的图象可求m 的取值范围. 【详解】当[)2,0x ∈-时,()2()212f x x =-++,故()[]2()2120,2f x x =-++∈,因为(2)2()f x f x -=,故当[)0,2x ∈时,[)22,0x -∈-,()()()[]1220,12f x f x x x =-=--∈,同理,当[)2,4x ∈时,()()1120,22f x f x ⎡⎤=-∈⎢⎥⎣⎦, 依次类推,可得当)12,2k k x +⎡∈⎣时,()10,2k f x ⎡⎤∈⎢⎥⎣⎦,其中*k N ∈. 所以当2x ≥时,必有3()4f x ≤. 如图所示,因为当[)0,2x ∈时,()f x 的取值范围为[]0,1, 故若对任意[),x m ∈+∞,都有3()4f x ≤,则0m ≥, 令232402x x x ⎧-+≤⎪⎨⎪≤<⎩,322x ≤<或102x ≤≤,结合函数的图象可得32m ≥, 故选:D.【点睛】思路点睛:此类问题考虑函数的“类周期性”,注意根据已知区间上函数的性质推证函数在其他区间上的性质,必要时应根据性质绘制函数的图象,借助形来寻找临界点.二、分段函数的实际应用题型探究例题1已知21,[1,0)()1,[0,1]x x f x x x +∈-⎧=⎨+∈⎩,则函数()y f x =-的图象是( ) A . B .C .D .【答案】A【分析】先画函数()f x 的图象,再根据函数()f x 的图象与()f x -的图象关于y 轴对称,即可选出正确选项.【详解】先画函数21,[1,0)()1,[0,1]x x f x x x +∈-⎧=⎨+∈⎩的图象,如下图:因为函数()f x 的图象与()f x -的图象关于y 轴对称,只有A 选项的图象符合.故选:A.【点睛】考查分段函数的画法,同时考查函数有关对称性的知识,解题的关键是把原函数的图象画出,那么对称函数的图象随之可得.例题2函数22,01()2,123,2x x f x x x ⎧≤≤⎪=<<⎨⎪≥⎩的值域是( )A .RB .[0,+∞)C .[0,3]D .{x |0≤x ≤2或x =3}【答案】D【分析】分段函数的值域等于每一段函数的值域的并集. 【详解】解:当01x ≤≤时,2()2f x x =,其值域为[0,2], 所以()f x 值域为[0,2]①{3,2}={x |0≤x ≤2或x =3}. 故选:D【点睛】考查求分段函数的值域,分段函数的值域等于每一段函数的值域的并集,属于基础题.跟踪训练训练1设{},()max ,,,()a ab a b b a b ≥⎧=⎨<⎩则函数22()max{,1}=--f x x x x 的单调增区间为( )A .1[1,0],[,)2-+∞B .1(,1],[0,]2-∞-C .1(,],[0,1]2-∞- D .1[,0],[1,)2-+∞ 【答案】D【分析】由221x x x -=-,解出x 的值,作出两个函数的图像,当1≥x 或12x ≤-时,{}222()max ,1f x x x x x x =--=-据此可得此时函数的递增区间,当{}22211,(),112x f x max x x x x -<<=--=-,据此可得此时函数的递增区间,综合即可得到结论. 【详解】由221x x x -=-得2210x x --=,解得1x =或12x =-,当1≥x 或12x ≤-时,{}222()max ,1f x x x x x x =--=-此时函数的递增区间为[1,)+∞, 当{}22211,(),112x f x max x x x x -<<=--=-,此时函数的递增区间为1,02⎡⎤-⎢⎥⎣⎦, 综上所述函数的递增区间为1[,0],[1,)2-+∞. 故选:D【点睛】考查函数单调区间,解题的关键是掌握函数单调性及单调区间的求法,属于中档题. 训练2设定义在R 上的函数()y f x =,对于任一给定的正数p ,定义函数()()()(),,p f x f x p f x p f x p ⎧≤⎪=⎨>⎪⎩,则称函数()p f x 为()f x 的“p 界函数”.关于函数()221f x x x =--的2界函数,结论不成立的是( )A .()()()()22 00f f f f = B .()()()()22 11f f f f = C .()()()()2222f f f f = D .()()()()2233f f f f = 【答案】B【分析】先求得函数()f x 的“2界函数”,然后对四个选项逐一进行排除,由此得到正确选项. 【详解】令2212x x --=,解得1x =-或3x =,根据“p 界函数”的定义,有()222,321,132,1x f x x x x x >⎧⎪=---≤≤⎨⎪<-⎩,所以()()()22012f f f =-=,()()()2012ff f =-=,故A 选项成立;()()()22122f f f =-=,()()()2127f f f =-=,故B 选项不成立;()[]22212f f f ⎡⎤=-=⎣⎦,()()()2212f f f =-=,故C 选项成立; ()()()22231f f f ==-,()()()2321f f f ==-,故D 选项成立.故选:B.【点睛】考查新定义函数的概念及应用,考查分段函数求值,考查分析问题和解决问题的能力.属于中档题.解题的突破口在于理解新定义的函数:新定义的函数关键是函数值大于p ,或者函数值小于或等于p ,也就是先要求得函数值等于p 时对应x 的值,由此写出分段函数“p 界函数”.三、函数三种表示法题型探究例题1某学生离家去学校,一开始跑步前进,跑累了再走余下的路程.下列图中纵轴表示离校的距离,横轴表示出发后的时间,则较符合该学生走法的是( )A .B .C .D .【答案】D【分析】根据学生的走法情况,先跑步(快速),再步行(慢速),从离校的距离与出发时间的函数图象来看,先陡后平缓,且y 随着x 的增大而减小,由此可作出判断. 【详解】由题意可知,一开始速度较快,后来速度变慢,所以开始曲线比较陡峭, 后来曲线比较平缓,又纵轴表示离校的距离,所以开始时距离最大, 最后距离为0,故符合要求的图象为D 选项中的图象. 故选:D.【点睛】考查实际问题中函数图象的识别,属于基础题. 例题2已知函数()y f x =,用列表法表示如下:则(2)[(2)]f f f -+-=( ) A .4- B .0C .2D .3【答案】D【分析】根据表格中自变量x 和函数值y 的对应关系,代入数据,即可得答案.【详解】由表格可得:(2)1f -=,所以[(2)](1)2f f f -==,所以(2)(2)3f f +-=故选:D跟踪训练训练1已知函数()f x 满足()()1120f f x x x x x⎛⎫+-=≠⎪⎝⎭,则()2f -= A .72-B .92C .72D .92-【答案】C【分析】令1x x=-,代入解析式,通过解方程组即可求得()f x -的解析式,进而求得()2f -的值. 【详解】由()()112?1f f x x x x ⎛⎫+-=⎪⎝⎭, 可得()12? f x xf x x ⎛⎫--=- ⎪⎝⎭(2), 将(1)x ⨯+(2)得:()2222f x x x-=-⇒()21,f x x x -=-()722f ∴-=, 故选C .【点睛】考查了函数解析式的求法,方程组法在解析式求法中的应用,属于中档题. 训练2如图,矩形AOBC 的面积为4,反比例函数(0)ky k x=≠的图像的一支经过矩形对角线的交点P ,则该反比例函数的解析式是( )A .1y x =-B .1y x=C .2y x=- D .2y x=【答案】A【分析】本题首先可设矩形的长为a 、宽为4a,然后结合图像得出点P 的坐标为2,2a a,最后根据点P 在反比例函数(0)ky k x=≠上即可得出结果. 【详解】设矩形的长为a ,则矩形的宽为4a,结合图形可知,点P 的坐标为2,2a a, 因为点P 在反比例函数(0)ky k x=≠上, 所以22a a k=-,解得1k =-,1y x =-,故选:A.【点睛】考查反比例函数解析式的求法,能否根据图像和矩形面积确定点P 坐标是解决本题的关键,考查数形结合思想,考查计算能力,是简单题.综合式测试一、单选题1.已知函数2221,0()log ,0x x x f x x x ⎧++≤⎪=⎨>⎪⎩,若()()()()1234f x f x f x f x ===,且1234x x x x <<<,则下列判断正确的个数为( ) ①122x x +=-; ①341x x =;①212≤-x x ;①431≤-x x . A .1 B .2C .3D .4【答案】C【分析】先画出()f x 的图象如图所示,令()()()()1234f x f x f x f x t ====,由图可知当1t =时,21x x -和43x x -都取得最大值,从而可求得最值,12,x x 关于二次函数221y xx =++的对称轴1x =-对称,可得122x x +=-,由34()()f x f x =可得2324log log x x -=,化简可得341x x =【详解】解:令()()()()1234f x f x f x f x t ====,即函数()f x 的图象与直线y t =有4个不同的交点,()f x 的图象如图所示,由图可知(0,1]t ∈,12,x x 关于二次函数221y x x =++的对称轴1x =-对称,则122x x +=-,所以①正确;当1t =时,21x x -取得最大值,且此时212x x -=,故212≤-x x ,所以①正确; 因为34()()f x f x =,所以2324log log x x -=,即2324log log 0x x +=,234log ()0x x =,所以341x x =,所以①正确;因为当1t =时,43x x -取得最大值,此时2324log log 1x x -==,解得341,22x x ==,所以此时43132122x x -=-=>,所以①错误, 所以正确的有①①①,共3个, 故选:C【点睛】考查函数和方程的应用,解题的关键是正确画出函数图象,利用数形结合的思想求解,属于中档题2.定义在R 上的函数()f x 满足()()22f x f x +=,且当(]2,4x ∈时,()224,232,34x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩,()1g x ax =+,若任给[]12,0x =-,存在[]22,1x ∈-,使得()()21g x f x =,则实数a 的取值范围为( ). A .11,,88⎛⎫⎡⎫-∞-⋃+∞ ⎪⎪⎢⎝⎭⎣⎭B .11,00,48⎡⎫⎛⎤-⎪⎢⎥⎣⎭⎝⎦C .(]0,8D .11,,48⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭【答案】D【分析】求出()f x 在[2,4]上的值域,利用()f x 的性质得出()f x 在[2-,0]上的值域,再求出()g x 在[2-,1]上的值域,根据题意得出两值域的包含关系,从而解出a 的范围【详解】解:当[2,4]x ∈时,224,23()2,34x x x f x x x x⎧-+⎪=⎨+<≤⎪⎩,可得()f x 在[2,3]上单调递减,在(3,4]上单调递增,()f x ∴在[2,3]上的值域为[3,4],在(3,4]上的值域为11(3,9]2,()f x ∴在[2,4]上的值域为[3,9]2,(2)2()f x f x +=,11()(2)(4)24f x f x f x ∴=+=+, ()f x ∴在[2,0]-上的值域为3[4,9]8,当0a >时,()g x 为增函数,()1g x ax =+在[2-,1]上的值域为[21a -+,1]a +,∴3214918a a ⎧≥-+⎪⎪⎨⎪+⎪⎩,解得18a ;当0a <时,()g x 为减函数,()g x 在[2-,1]上的值域为[1a +,21]a -+,∴3149218a a ⎧+⎪⎪⎨⎪-+⎪⎩,解得14a -;当0a =时,()g x 为常数函数,值域为{1},不符合题意;综上,a 的范围是18a 或14a -. 故选:D .【点睛】考查了分段函数的值域计算,集合的包含关系,对于不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .3.已知函数()22log (1),142,1x x f x x x x ⎧-<=⎨-+-≥⎩,则方程121f x x ⎛⎫+-= ⎪⎝⎭的实根的个数为( )A .5B .6C .7D .8【答案】B【分析】由()1f x =可得13,1,1,2x x x x ===-=,而由121f x x ⎛⎫+-= ⎪⎝⎭,可得121x x +-=-,或1122x x +-=,或121x x +-=,或123x x+-=,然后分别解这四个方程,可得答案 【详解】解:当1x <时,令()1f x =,则2log (1)1x -=,解得1x =-或12x =, 当1≥x 时,令()1f x =,则2421x x -+-=,解得1x =或3x =,因为121f x x ⎛⎫+-= ⎪⎝⎭, 所以121x x +-=-,或1122x x +-=,或121x x +-=,或123x x+-=, 由121x x+-=-,得210x x -+=,此时2(1)40∆=--<,方程无解; 由1122x x +-=,得22520x x -+=,此时2(5)42290∆=--⨯⨯=>,所以方程有两个不相等的实根,分别2x =或12x =;由121x x+-=,得2310x x -+=,此时2(3)41150∆=--⨯⨯=>,所以方程有两个不相等的实根,即为x =由123x x+-=,得2510x x -+=,此时2(5)411210∆=--⨯⨯=>,所以方程有两个不相等的实根,即为52x =, 所以方程121f x x ⎛⎫+-= ⎪⎝⎭的实根的个数为6, 故选:B【点睛】考查函数与方程的应用,解题的关键是由()1f x =可得13,1,1,2x x x x ===-=,从而可得121x x +-=-,或1122x x +-=,或121x x +-=,或123x x+-=,然后解方程可得答案,考查数学转化思想和计算能力,属于中档题4.已知函数()1212,02log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,且()0f m =,则不等式()f x m >的解集为( )A .10,2⎛⎫ ⎪⎝⎭B .()0,1C .11,2⎛⎫- ⎪⎝⎭D .()1,-+∞【答案】C【分析】分0m ≤和0m >解方程()0f m =,求出m 的值,然后分0x ≤和0x >解不等式()f x m >,即可得出结果. 【详解】当0m ≤时,()1202mf m =+>,方程()0f m =无解; 当0m >时,令()12log 0f m m ==,解得1m =,合乎题意.下面解不等式()1f x >.当0x ≤时,令()1212xf x =+>,得出122x >,解得1x >-,此时,10-<≤x ;当0x >时,令()11221log 1log 2f x x =>=,解得12x <,此时,102x <<. 因此,不等式()f x m >的解集为11,2⎛⎫- ⎪⎝⎭.故选:C.【点睛】考查分段函数方程与分段函数不等式的求解,在解题时要注意对自变量的取值进行分类讨论,选择合适的解析式进行计算,考查分类讨论思想的应用与运算求解能力,属于中等题.5.已知2(),()32,()2()()g x f x x g x x x F x f x ⎧=-=-=⎨⎩, ()()()()f x g x f x g x ≥<,则()F x 的最值是( )A .最大值为3,最小值-1 B.最大值为 C .最大值为3,无最小值 D .既无最大值,又无最小值【答案】B【分析】根据函数表达式画出各自图象,()F x 其实表示的是(),()f x g x 较小的值.【详解】如图,在同一坐标系中画出(),()f x g x 图象,又()F x 表示两者较小值,所以很清楚发现()F x 在A 处取得最大值23+222=3+2A A A x x x x y x =-⇒= B.【点睛】取两函数较大值(较小值)构成的新函数问题,有效的手段就是构建图象,数形结合.6.已知函数f (x )=2,02,0x x a x x -⎧⋅≥⎨<⎩(a ①R),若f [f (-1)]=1,则a =( )A .14B .12C .1D .2【答案】A【分析】由题意,函数()f x 的解析式,可得()12f -=,进而求解()(1)f f -的值,列出方程,即可求解. 【详解】由题意,函数()2,02,0x x a x f x x -⎧⋅≥=⎨<⎩,则()(1)122f ---==, 则()2(1)(2)241f f f a a -==⋅==,所以14a =,故选A. 【点睛】考查了分段函数的应用问题,其中解答中根据分段函数的分段条件,合理选择相应的对应法则求解是解答的关键.7.已知f (x )=21102(1)0x x x x ⎧+≤⎪⎨⎪-->⎩,,使f (x )≥–1成立的x 的取值范围是A .[–4,2)B .[–4,2]C .(0,2]D .(–4,2]【答案】B 【解析】①f (x )≥–1,①01112x x ≤⎧⎪⎨+≥-⎪⎩或()2011x x >⎧⎪⎨--≥-⎪⎩,①–4≤x ≤0或0<x ≤2,即–4≤x ≤2.故选B . 8.已知函数()()()()()()()()()2,32,2,,,g x f x g x f x x g x x x F x f x g x f x ⎧≥⎪=-=-=⎨≥⎪⎩则( ) A .()F x 的最大值为3,最小值为1B .()F x的最大值为2C .()F x 的最大值为7-,无最小值D .()F x 的最大值为3,最小值为1-【答案】C【分析】在同一坐标系中先画出()f x 与()g x 的图象,然后根据定义画出()F x ,就容易看出()F x 有最大值,无最小值,解出两个函数的交点,即可求得最大值. 【详解】在同一坐标系中先画出()f x 与()g x 的图象,然后根据定义画出()F x ,就容易看出()F x 有最大值,无最小值. 由图象可知,当0x <时,()y F x =取得最大值,所以由232||2x x x -=-得2x =2x =结合函数图象可知当2x =()F x 有最大值7- 故选:C .【点睛】考查了函数的图象,以及函数求最值,同时考查了分析问题的能力和作图的能力. 二、填空题9.设函数()f x 对于所有的正实数x ,均有(3)3()f x f x =,且()12(13)f x x x =--≤≤,则使得()(2014)f x f =的最小的正实数x 的值为____.【答案】416【分析】由题可得(2014)173f =,根据13,233()333,123n n nn n n x x x f x f x x +⎧-≤≤⎪⎪⎛⎫==⎨ ⎪⎝⎭⎪-≤<⎪⎩分情况讨论可求解.【详解】对于所有的正实数x ,均有(3)3()f x f x =,()33x f x f ⎛⎫∴=⎪⎝⎭, 22201420142014(2014)333333n n f f f f ⎛⎫⎛⎫⎛⎫∴==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当6n =时,[]620141,33∈, 662014(2014)3121733f ⎛⎫∴=-+= ⎪⎝⎭,13,233()333,123n n n n n n x x x f x f x x +⎧-≤≤⎪⎪⎛⎫==⎨ ⎪⎝⎭⎪-≤<⎪⎩,当13173233n n x x +⎧-=⎪⎨≤≤⎪⎩时,113173233n n n x x ++⎧=-⎨⨯≤≤⎩,当6n =时,x 取得最小正值为556; 当3173123n n x x ⎧-=⎪⎨≤<⎪⎩时,3173323n n nx x ⎧=+⎨≤<⨯⎩,当5n =时,x 取得最小正值为416, 综上,使得()(2014)f x f =的最小的正实数x 的值为416.故答案为:416.【点睛】考查分段函数的应用,考查函数性质等基础知识,解题的关键是由已知得出13,233()333,123n n n n n n x x x f x f x x +⎧-≤≤⎪⎪⎛⎫==⎨ ⎪⎝⎭⎪-≤<⎪⎩.10.已知函数2223,2()log ,2x x x f x a x x ⎧-+≤=⎨+>⎩有最小值,则1f a ⎛⎫⎪⎝⎭的取值范围为__________. 【答案】[2,3) 【分析】函数()f x 有最小值,所以求出1a ≥,则有101a<≤,代入()f x 求出()f x 的取值范围. 【详解】当2x ≤时,2()(1)2f x x =-+的最小值为2.当x 2>时,要使()f x 存在最小值,必有2log 22a +≥,解得1a ≥.101a∴<≤,21112[2,3)fa a ⎛⎫⎛⎫∴=-+∈ ⎪ ⎪⎝⎭⎝⎭. 故答案为:[2,3).【点睛】考查分段函数求函数值的范围,属于中档题. 易错点睛:(1)分段函数是一个函数,只有一个最值; (2)分段函数已知函数值求自变量的取值,要分段讨论.11.已知函数211,0,22()13,,12x x f x x x ⎧⎡⎫+∈⎪⎪⎢⎪⎣⎭=⎨⎡⎤⎪∈⎢⎥⎪⎣⎦⎩,若存在12x x <,使得()()12f x f x =,则()12x f x ⋅的取值范围为_____________.【答案】,162⎪⎢⎣⎭【分析】根据条件作出函数图象求解出1x 的范围,利用()()12f x f x =和换元法将()12x f x ⋅变形为二次函数的形式,从而求解出其取值范围. 【详解】由解析式得()f x 大致图象如下图所示:由图可知:当12x x <时且()()12f x f x =,则令211322x ⎛⎫+=⋅ ⎪⎝⎭,解得:14x =, 111,42x ⎡⎫∴∈⎪⎢⎣⎭,又()()12f x f x =,221221333,124x x x ⎛⎫⎡⎫∴+=∈⎪ ⎪⎢⎣⎭⎝⎭,()2222121332x f x x x ⎛⎫∴⋅=⋅- ⎪⎝⎭,令2233,14x t ⎡⎫=∈⎪⎢⎣⎭,则()()2211113,124164x f x g t t t t t ⎛⎫⎛⎫⎛⎫⎡⎫⋅==-=--∈ ⎪ ⎪⎪ ⎪⎢⎝⎭⎝⎭⎣⎭⎝⎭, ()31,162g t ⎡⎫∴∈⎪⎢⎣⎭,即()2131,162x f x ⎡⋅⎫∈⎪⎢⎣⎭.故答案为:,162⎪⎢⎣⎭【点睛】思路点睛:根据分段函数的函数值相等关系可将所求式子统一为一个变量表示的函数的形式,进而根据函数值域的求解方法求得结果;易错点是忽略变量的取值范围,造成值域求解错误. 12.定义在R 上函数()f x 满足()()112f x f x +=,且当[)0,1x ∈时,()121f x x =--.若当x ①[),m +∞时,()116f x ≤,则m 的最小值等于________. 【答案】154. 【分析】转化条件为在区间[)(),1n n n Z +∈上,()()11122122n n f x x n ⎡⎤=--+≤⎣⎦,作出函数的图象,数形结合即可得解. 【详解】 由题意,当[)1,2x ∈时,故()()()11112322f x f x x =-=--, 当[)2,3x ∈时,故()()()11112524f x f x x =-=--⋅⋅⋅, 可得在区间[)(),1n n n Z +∈上,()()11122122n n f x x n ⎡⎤=--+≤⎣⎦, 所以当4n ≥时,()116f x ≤, 作函数()y f x =的图象,如图所示,当7,42x ⎡⎫∈⎪⎢⎣⎭时,由()()11127816f x x =--=得154x =, 由图象可知当154x ≥时,()116f x ≤,所以m 的最小值为154. 故答案为:154. 【点睛】考查了分段函数解析式的求解及图象的应用,考查了运算求解能力与数形结合思想,属于中档题. 三、解答题13.根据下列条件,求函数()f x 的解析式;(1)已知()f x 是一次函数,且满足()()3121217f x f x x +--=+;(2)已知3311f x x x x ⎛⎫+=+ ⎪⎝⎭; (3)已知等式()()()21f x y f x y x y -=--+对一切实数x 、y 都成立,且()01f =;(4)知函数()f x 满足条件()123f x f x x ⎛⎫+= ⎪⎝⎭对任意不为零的实数x 恒成立 【答案】(1)()27f x x =+;(2)3()3(2f x x x x =-≥或2)x ≤-;(3)()21f x x x =++;(4)1()2(0)f x x x x=-≠.【分析】(1)设函数()f x kx b =+,结合等式()()3121217f x f x x +--=+,利用一次项系数和常数项分别相等列出方程组解出k b 、的值,即可得出函数()f x 的解析式;(2)用配凑法根据232321111113x x x x x x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=++-=++-⎢⎥ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,然后换元1t x x =+可得出函数()y f t =的解析式,利用双勾函数求出1t x x=+的取值范围,即为函数()y f x =的定义域; (3)由已知令x y =,则有()()()021f f x x x x =--+且()01f =,化简即可求得结果;(4)将1x代入等式()123f x f x x ⎛⎫+= ⎪⎝⎭得出132()f f x x x ⎛⎫+= ⎪⎝⎭,与原式列方程組解出函数()y f x =的解析式. 【详解】(1)设()(0)f x kx b k =+≠,则[][]3(1)2(1)3(1)2(1)5217f x f x k x b k x b kx b k x +--=++--+=++=+所以2,517k b k =⎧⎨+=⎩解得:2,7k b =⎧⎨=⎩所以()27f x x =+;(2)232321111113x x x x x x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=++-=++-⎢⎥ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦33311113f x x x x x x x x ⎛⎫⎛⎫⎛⎫+=+=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴,令1t x x=+,由双勾函数的性质可得2t ≤-或2t ≥, 3()3f t t t =-∴,3()3(2f x x x x =-≥∴或2)x ≤-(3)因为()()()21f x y f x y x y -=--+对一切实数x 、y 都成立,且()01f = 令x y =则()()()021f f x x x x =--+,又因为()01f = 所以()()()01=1f f x x x =-+,即()22+1f x x x =+(4)将1x代入等式()123f x f x x ⎛⎫+= ⎪⎝⎭得出132()f f x x x ⎛⎫+= ⎪⎝⎭,联立12()313()2f x f x x f x f x x ⎧⎛⎫+= ⎪⎪⎪⎝⎭⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩,变形得:14()2613()2f x f x x f x f x x ⎧⎛⎫+= ⎪⎪⎪⎝⎭⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩,解得1()2(0)f x x x x=-≠ 【点睛】考查求函数解析式的一般方法:配凑法、换元法、待定系数法、方程组法.14.若函数f (x )()()2211,02,0b x b x x b x x ⎧-+->⎪=⎨-+-≤⎪⎩,满足对于任意的12x x ≠,都有()()12120f x f x x x ->-成立,g (x )=23x +.(1)求b 的取值范围;(2)当b =2时,写出f [g (x )],g [f (x )]的表达式.【答案】(1)12b ≤≤;(2)()()23610,2323,2x x f g x x x ⎧+>-⎪⎪⎡⎤=⎨⎣⎦⎪-+≤-⎪⎩;[]265,0()23,0x x g f x x x +>⎧=⎨-+≤⎩. 【分析】(1)先利用已知条件判断函数单调性,再根据分段函数单调性列条件计算即得结果;(2)先讨论()g x 的符号,再代入分段函数()f x 解析式中,即得[]()f g x 的解析式;利用分段函数()f x 的解析式,直接代入()g x 的解析式,即得[]()g f x 的解析式.【详解】解:(1)因为任意的12x x ≠,都有()()12120f x f x x x ->-成立,故设任意的12x x <时,有()()12f x f x <,即分段函数()f x 在R 上单调递增,故当0x >时,()()211f x b x b =-+-单调递增,即210b ->,即12b >; 当0x ≤时,()2()2f x x b x =-+-单调递增,即对称轴202bx -=≥,即2b ≤; 且在临界点0x =处,左边取值不大于右边取值,即01b ≤-,即1b ≥ . 综上,b 的取值范围是12b ≤≤;(2)当b =2时,231,0(),0x x f x x x +>⎧=⎨-≤⎩,又()23g x x =+, 故当()230g x x =+>时,即32x >-时,()()3231610f g x x x ⎡⎤=++=+⎣⎦, 当()230g x x =+≤时,即32x ≤-时,[]()2()23f g x x =-+, 故()()23610,2323,2x x f g x x x ⎧+>-⎪⎪⎡⎤=⎨⎣⎦⎪-+≤-⎪⎩; 当0x >时,()31f x x =+,则[]()(31)2(31)365g f x g x x x =+=++=+, 当0x ≤时,2()f x x =-,则[]22()()23g f x g x x =-=-+,故[]265,0()23,0x x g f x x x +>⎧=⎨-+≤⎩. 【点睛】关键点点睛::要讨论分段函数的自变量所在的取值区间确定对应的关系式,进而代入,以突破难点.15.已知函数()f x 的解析式为()()()()350501281x x f x x x x x ⎧+≤⎪=+<≤⎨⎪-+>⎩,(1)求12f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭; (2)若()2f a =,求a 的值;(3)画出()f x 的图象,并求出函数的值域;【答案】(1)3-;(2) 1a =-或3;(3)答案见解析,值域为(],6-∞;【分析】(1)先求出12f ⎛⎫ ⎪⎝⎭,进而可求出12f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭. (2)按0a ≤,01a <≤,1a >三种情况进行讨论,分别由()2f a =列出关于a 的方程,进而可求出a 的值.(3)画出分段函数的图象后,由图象可求出函数的值域.【详解】(1)解:因为1012<<,所以111122f ⎛⎫=> ⎪⎝⎭,则11111283222f f f ⎛⎫⎛⎫⎛⎫==-⨯+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. (2)解:当0a ≤时,()352f a a =+=,解得1a =-;当01a <≤时,()52f a a =+=, 解得3a =-,不符合题意;当1a >时,282a -+=,解得3a =,综上所述,1a =-或3.(3)解:如图所示,当1x =时,函数最大值为6,无最小值,所以值域为(],6-∞.【点睛】考查了分段函数函数值的求解,考查了分段函数图象.。

高中数学必修一第五讲 函数的表示方法

高中数学必修一第五讲 函数的表示方法

第五讲 函数的表示方法1、 能根据不同需要选择恰当的方法(如图像法、列表法、解析法)表示函数;2、 了解简单的分段函数,并能简单应用;一、函数的常用表示方法简介: 1、解析法如果函数()()y f x x A =∈中,()f x 是用代数式(或解析式)来表达的,则这种表达函数的方法叫做解析法(公式法)。

例如,s =602t ,A =π2r ,2S rl π=,2)y x =≥等等都是用解析式表示函数关系的。

特别提醒: 解析法的优点:(1)简明、全面地概括了变量间的关系;(2)可以通过解析式求出任意一个自变量的值所对应的函数值;(3)便于利用解析式研究函数的性质。

中学阶段研究的函数主要是用解析法表示的函数。

解析法的缺点:(1)并不是所有的函数都能用解析法表示;(2)不能直观地观察到函数的变化规律。

2、列表法:通过列出自变量与对应函数值的表格来表示函数关系的方法叫做列表法。

例如:初中学习过的平方表、平方根表、三角函数表。

我们生活中也经常遇到列表法,如银行里的利息表,列车时刻表,公共汽车上的票价表等等都是用列表法来表示函数关系的.特别提醒:列表法的优点:不需要计算就可以直接看出与自变量的值相对应的函数值。

这种表格常常应用到实际生产和生活中。

列表法的缺点:对于自变量的有些取值,从表格中得不到相应的函数值。

3、图象法:用函数图象表示两个变量之间的函数关系的方法,叫做图像法。

例如:气象台应用自动记录器描绘温度随时间变化的曲线,工厂的生产图象,股市走向图等都是用图象法表示函数关系的。

特别提醒:图像法的优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势,这样使得我们可以通过图象来研究函数的某些性质。

图像法的缺点:不能够精确地求出某一自变量的相应函数值。

二、函数图像:1、判断一个图像是不是函数图像的方法:要检验一个图形是否是函数的图像,其方法为:任作一条与x 轴垂直的直线,当该直线保持与x 轴垂直并左右任意移动时,若与要检验的图像相交,并且交点始终唯一的,那么这个图像就是函数图像。

人教版数学必修一函数的含义及表达形式

人教版数学必修一函数的含义及表达形式

二、函数及其表示(一)函数的概念1.函数的概念(1)函数的传统定义设在一个变化过程中,有两个变量x和y,如果给定了一个函数值,相应的就有唯一确定的一个y值与之相对应,那么我们就称y是x的函数,其中x是自变量,y是因变量(2)函数的近代定义一般地,设A,B是非空的数集,如果按照某种确定的对应关系f使对于集合A中的任意一个数x在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A。

其中x是自变量,x的取值范围A叫做函数的定义域,与x的值相对应的y叫做函数值,函数值的集合{f(x)|x∈A} 叫做函数的值域就不是函①A,B都是非空的数集,因此定义域或值域为空集的函数不存在,例如,y=x−1x+1数②集合A是函数的定义域,给定A中一个x值有唯一的y值与之对应;集合B不一定是函数的值域,因为B中的元素可以没有x与之对应,即{f(x)|x∈A}⊆B③符号y=f(x)表示“x对应的函数值”,f表示对应关系,“f(x)”是一个整体,不可分开,也不能理解成“f·x”④f(a),a∈A与f(x)的区别⑤函数的实质是集合A,B的对应关系,可以一对一、多对一,但不能一对多,而且集合A中的元素必须要用完,而集合B中的元素可以不用完例1:设集合M={x|0≦x≦2},N={y|0≦y≦2},给出的下列四个图形中,其能够表示集合M 到集合N的函数关系的是()2.函数的构成要素与函数相等一个函数构成要素为定义域、对应关系、值域值域是由定义域和对应关系决定的,所以确定一个函数就只需要确定定义域和对应关系,即定义域和对应关系使“y是x的函数”的而两个基本条件要检验给定的两个变量之间是否具有函数关系,只需检验(1)定义域和对应关系是否给出;(2)根据给出的对应关系,自变量x在其定义域中的每一个值,是否都有唯一的函数值和它对应如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数相等①函数的定义域和对应关系一旦确定,值域就确定了,所以判断两个函数是否相等只需要判断他们的定义域和解析式是否相等就可以了,不需要在判断值域②满足定义域和值域相同的两个函数,不一定是相等的函数,例如:函数f(x)=x²与函数f(x)=(x-3)²例2:判断下列各组中的函数是否表示同一个函数(1)f(x)=|x-1|与g(x)=x−1,x≧1 1−x,x<1(2)f(x)=x与f(t)=(33)在判断对应关系是否相同时,两个函数可能表现形式不同,但经过适当地变形,可以化为相同的形式,这是也可以说它们具有相同的对应关系3.函数的定义域函数的定义域是自变量x的取值范围,有时可以省略,如果未加特殊说明,那么函数的定义域就是指能使函数式有意义的所有实数x构成的集合在实际问题中,喊必须考虑自变量x所代表的具体量的允许范围求函数的定义域:①如果f(x)是整式,那么其定义域是实数R②如果f(x)是分式,那么其定义域是使分母不为0的实数集合③如果f(x)是二次根式(偶次根式),那么其定义域是使根号内的式子不小于0的实数集合④如果f(x)是由以上几个部分式子构成的,那么其定义域是使各部分式子都有意义的实数集合⑤f(x)=x0的定义域是{x∈R|x≠0}例3:求下列函数的定义域(1)f(x)=x+1+12−x(2)f(x)=x−2+233x+7(3)f(x)=4.函数的值域函数的值域是在对应法则f的作用下,自变量x在定义域内取值是相应的函数的集合求函数的某个函数值是,可以直接代入解析式,求的相应的函数值;求函数的值域时,可以采取不同的方法求解(1)观察法:对所求的函数解析式进行简单变形,通过观察,得出所求函数的值域如:函数y=11+x(2)配方法:若函数是二次函数,或可以化为二次函数形式,则可以通过配方法求出其值域,但是要注意自变量的取值范围如:求y=x-2x+3的值域(3)判别式法:将函数化为因变量y的二次方程,利用判别式∆≥0求函数的值域,常用于分母是二次函数的分式函数的值域如:求y=x+1x²+2x+2(4)换元法:对函数解析式进行适当换元,将复杂的函数化为几个简单的函数,从而利用基本函数取值范围来求函数的值域如:求y=2x-3+13−4x的值域的函数的值域,舱采用分离常数法(5)分离常数法:用于求形如y=cx+dax+b的值域如:求y=3x−2x−1(6)图像法:做出函数的图像,有图像直观的得出函数值域5.区间设a,b是两个实数,且a<b,区间的定义、名称、符号及数轴表示如下表:①区间的左端点必小于右端点②用数轴表示区间是,要特别注意包括在这个区间内的端点用实心圆点表示,不包括在这个区间内的端点用空心圆点表示③无穷大∞是一个符号,不是一个数,它不具备数的已瞎性质和运算法则④以“+∞”或“- ∞”为区间的一端时,这一端必须是小括号⑤单元素集合不能用区间表示,如集合{0}不能表示为[0]或[0,0]的定义域可用区间表示为__________例4:函数y=1−1−x例5:已知集合A={x|5-x≥0},集合B={x||x|-3≠0},求A∩B,并用区间表示考点1:函数的求值问题1.已知函数f(x)=3x 3+2x,求f(f(1))的值2.已知f(x)=1-2x ,则f(12)=______3.已知f(x)=11+x (x ∈R ,且x ≠-1),g(x)=x ²+2(x ∈R )(1)求f (2),g (2)的值(2)求f(g(2)) 的值考点2:求函数定义域1.求已知解析式的函数定义域1.求下列函数的定义域(1)y= −x 2x²−3x −2(2)y=4x+83 3x −2(3)y= x ²−3· 5−x ²(4)y= x +2+13−x。

人教高中数学必修1课件:1.2.2函数的表示法第1课时函数的表示法精讲优练课型

人教高中数学必修1课件:1.2.2函数的表示法第1课时函数的表示法精讲优练课型

1.2. 2函数的表示法第1课时函数的表示法【即时小测】1 •思考下列问题: ⑴所有的函数都能用列表法来表示吗?提示:并不是所有的函数都能用列表法来表示,如函数y二2x+l f xe R.因为自变量X w R不能一一列出,所以不能用列表法来表示•(2)用解析法表示函数是否一定要写出自变量的取值范围?提示:函数的走义域是函数存在的前提,写函数解析式的时候L般要写出函数的定义域.2・已知函数f(x)由下表给出:则f(f(2))= ____________【解析】由表格可知十⑵二4所以f(f⑵)=f⑴二0・答案:03・CU咨 f (x —l)"(x —l)2』=f(X)3晝聖【sm ffiXIlHbpMIXHt+l、s u w (t T t 2・0H (x T x 2・嘯4.已知函数y=f (x)的图象如图所示,则其定义域是3~~03^【解析】因为函数y二f(x)图象上所有点的横坐标的取值范围是[23],所以其定义域为[么3]・答案:[23]5.已知f (n) =2f (n+1), f (1) =2,则f (3)= 【解析】f(n) = 2f(n + l),f(l) = 2, 所以俭)= 2f(2)=4f⑶,故f⑶二( 答案:2 2【知识探究】知识点函数的三种表示方法观察如图所示内容,回答下列问题:(函数的表示方法)——(图象法)问题1 :应用三种方法表示函数时应注意什么问题?问题2:函数的三种表示方法各有什么优缺点?【总结提升】1 •对函数三种表示法的说明列表法、图象法和解析法是从三个不同的角度刻画自变量与函数值的对应关系,同一个函数可以用不同的方法表示•在应用三种方法表示函数时要注意:⑴解析法:必须注明函数的定义域(2)列表法:选取的自变量要有代表性,应能反映定义域的特征.⑶图象法:是否连线.2.函数三种表示方法优缺点比较"能形象、直观地表示壓函数的变化情况点 小、 只能近似求出自变量所对应的函数值,而 R 有时误差较大 K ____________ /【题型探究】类型一待定系数法求函数解析式【典例】1.已知f(X)是一次函数,且f (f (x)) =4x+3,则函数f(X)的解析式为_____________ ■2.已知二次函数y=f (x)的最大值为13,且f(3)=f(-l)=5,求f (x)的解析式.【解题探究】1•典例1中一次函数解析式的形式是什么? 提示:一次函数解析式的形式为f(x)二ax+b (a工0) •2.典例2中二次函数的一般形式是什么?提示:二次函数的一般形式是f(x)二ax?+bx+c (a H 0) •【s s】l ・ffi f (x T ax +b (a H O )・ m=f (fH +b T爾糊f s H 2X +一烘f (X)H —w x —w2•方法一:利用二次函数的一般式求解.设f(x)=ax2+bx+c(a^0).由条件知,点⑶5),(也5),("3)在f(x)的图象上9a+3b+c = 5, fa = -2所以a — b+c = 5,所以f的斤邂时x+lg = ii方法二:利用二次函数的顶点式求解.由f(3)=f(・l),可知:对称轴为x“,又最大值为D故可设f(x)二a(x・l)2+13.将f⑶=5代入得a=2・所以f(x) = -2(x-l)2+13jpf(x) = -2x2+4x+ll.【方法技巧】待定系数法求函数解析式(1)适用范围:已知所要求的解析式f(x)的类型,如是一次函数、二次函数等等,即可设出f(x)的解析式,然后根据已知条件确定其系数.(2)待定系数法求函数解析式的步骤:①设出所求函数含有待定系数的解析式;③解方程或方程组,得到待定系数的值;④将所求待定系数的值代回所设解析式.【变式训练】已知二次函数f (X )的图象过点A(0, -5), B (5, 0),其对称 轴为x=2,求其解析式.【解析】因为抛物线的对称轴为x=2, 所以设二次函数的解析式为f(x)=a(x-2)2+k(a^O).把(0,-5),(5,0)分别代入上式得丽劇嗨斛*9・ 龈敲MX 』",类型二换元法(或配凑法)、方程组法求函数解析式【典例】求满足下列条件的函数f(x)的解析式.(1)函数f(X)满足f ( +l)=x+2 .(2)函数f (x)满足2f 占)+f (x) =x《HO).1X【解题探究】1.典例⑴中的5 +1)中的低+1与x+2低能否建立联系?提示:典例⑴中的X+2 =( +1)2-1.2 •典例(2)中x和有越关爲1提示:互为倒数关黍・(1£)「益(3欝“人1:埠只Ig lx V ^.J (T :+r (T +)J M £ V0+x只因:(+s2e H +s g(一丄jpex) J XH (X )J E5£ rH」u z +z(I £H e 4M £"(IeHxliio 存g芥企 叟+W IK ®l 4W 运(I⑵由题意知f(x) + 2f( i=x f令X二(tHO) fx t则i=t f则f(卅2f(t)二a即班?+2f(x)・(于是得剧关于f(肯f(x)的方程自—i ■x X Xf(x) + 2f』) =xf(-) + 2f(x) = I 2 x1解得f(x)拄-°)・XXX【延伸探究】1.(变换条件)典例(1)中若将条件“f(+l)=x+2 “f(2x-l)p2+x+l”,则f(x)的解析式是什么?【解析】设2x-l=t f则X二t+1所以f(t)二亍Q nX/、t+1 ° t+1 7即f(x)二一r+一+i 二一+t+—.2 2 4 41 97一x~+x -一・4 42.(变换条件)典例(1)中若将条件“f (低+ l)=x+2低”变为“f(l+ 1 )=i+x21 ”,则f(x)的解析式是什么?【解析】平(1 + * X1+?]因為寻岂占诫溜胡析幽)+hf(x)=x24c+ 1 , XG(-OO f 1) U (1 , +8).X【方法技巧】换元法(或配凑法)、方程组法求函数解析式的思路⑴已知f (g (x)) =h (x),求f (x),常用的有两种方法:①换元法,即令t=g (x),解出禺代Ah(x)中,得到一个含t的解析式,即为函数解析式,注意:换元后新元的范围②配凑法,即从f (g(X))的解析式中配凑出即用g(x)来表示h (x),然后将解析式中的g (x)用x代替即可.(2)方程组法:当同一个对应关系中的含有自变量的两个表达式之间有互为相反数或互为倒数关系时,可构造方程组求解.【补偿训练】已知f(x-l)=xMx-5,则f(x)的解析式是()【解析】选A.方法一:设t 二则x=t+l,因为f(x-l)=x2+4x ・5, 所以 f(t) = (t+l)2+4(t+l)-5=t 2+6t ff (x)的解析式是f (x)=x 2+6x.方法二:因为 f (x-1)=x 2+4x- 5=(x-1)2+6 (x-1),所以 f(x)=x 2+6x. 所以f (X )的解析式是f (X )二x2+6x.A. f (x) =x 2+6xC. f (x) =x 2+2x-3 B. f (x) =x 2+8x+7 D. f (x) =x 2+6x-10类型三函数的图象及其应用【典例】作出下列函数的图象:(1)y=2x+l, x G [0, 2]・(2)y=x2-2x, x E [0, 3) •(3)y=.【解题探究】典例中可以使用什么方法来画函数图象? 提示:典例中函数的图象可通过描点法来画.1X【解析】⑴当x=0时"二1;当x=2时"二5・所画图象如图(1)所示.⑵因为0<x<3f所以这个函数的图象是抛物线y=x2-2x介于0«xv3 之间的一部分,如图(2)所示.⑶函数图象如图⑶所示・图(1)----------- i―I——>0 2 X图⑵图⑶【方法技巧】描点法作函数图象的步骤及关注点(1)步骤:①列表:取自变量的若干个值,求出相应的函数值,并列表表示;②描点:在平面直角坐标系中描出表中相应的点;③连线:用平滑的曲线将描出的点连接起来,得到函数图象・(2)关注点:①画函数图象时首先关注函数的定义域,即在定义域内作图;②图象是实线或实点,定义域外的部分有时可用虚线来衬托整个图象;③要标出某些关键点,例如图象的顶点、端点、与坐标轴的交点等•要分清这些关键点是实心点还是空心点.【变式训练】作出函数尸x2-2x-2, xG [0, 3]的图象并求其值域.【解析】因为y=(x-l)2-3f所以函数y二x^2x・2的对称轴为x=4顶点为(1厂3)涵数过点(0厂2)®),具图象如图所示.由图象知函数的值域为[乜1]・• -1 - •【补偿训练】画出函数图象:y=x2-2, xWZ且|x| W2・【解析】因为y=x2・2,xwZ且|x|s2,所以x二・2厂:L,0丄2;对应y的值为2・—2厂12图象如图:\y■-2 -1 0 1 2*■2r • -1 - •易错案例换元法求函数解析式【典例】已知f (x 2+2) =x 4+4x 2,则f (x)的解析式为_严识$【失误案例】 【错解分析】分析解题过程,你知道错哪里吗?)专牛十44,d'化力十? mt"提示:错误的根本原因是忽略了函数f(x)的走义域上面的解法看上去似乎是无懈可击撚而从具结论间f(x)二x?・4来看,并未注明f(x)的走义域,那么按一般理解,就应认为直走义域是全体实数.但是f(x)=x2・4 的定义域不是全体实数.【自我矫正】因为f(x2+2)=x4+4x2=(x2+2)2・4, 令t=x2+2(tn2),则f (t)=t2-4(t>2)f所以f(x)=x2・4(xn2).答案:f(x)=x2-4(x>2)【防范措施】关注换元法求函数解析式时对定义域的要求任何一个函数都由定义域、值域和对应关系f三要素组成•所以, 当函数f (g (x)) 一旦给出,则其对应关系f就已确定并且不可改变,那么f的“管辖范围”(即g(x)的值域)也就随之确定•因此,我们由f (g (x))求f (x)时,求得的f (x)的定义域就理应与f (g (x))中的f的“管辖范一致才妥. 围”课时撮井作此/点击进入Word版可编辑套题。

高一数学上册第一章函数及其表示知识点及练习题(含答案)

高一数学上册第一章函数及其表示知识点及练习题(含答案)

函数及其表示(一)知识梳理1.映射的概念设B A 、是两个非空集合,如果按照某种对应法则f ,对A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,则称f 是集合A 到集合B 的映射,记作f(x).2.函数的概念(1)函数的定义:设B A 、是两个非空的数集,如果按照某种对应法则f ,对A 中的 任意数 x ,在集合B 中都有 唯一确定 的数y 和它对应,则这样的对应关系叫做从A 到B 的一个函数,通常记为___y=f(x),x ∈A(2)函数的定义域、值域在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值, 对于的函数值的集合所有的集合构成值域。

(3)函数的三要素: 定义域 、 值域 和 对应法则3.函数的三种表示法:图象法、列表法、解析法(1).图象法:就是用函数图象表示两个变量之间的关系;(2).列表法:就是列出表格来表示两个变量的函数关系;(3).解析法:就是把两个变量的函数关系,用等式来表示。

4.分段函数在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。

(二)考点分析考点1:判断两函数是否为同一个函数如果两个函数的定义域相同,并且对应关系完全一致,称这两个函数相等。

考点2:求函数解析式方法总结:(1)若已知函数的类型(如一次函数、二次函数),则用待定系数法;(2)若已知复合函数)]([x g f 的解析式,则可用换元法或配凑法;(3)若已知抽象函数的表达式,则常用解方程组消参的方法求出)(x f1.2函数及其表示练习题(2)一、选择题1. 判断下列各组中的两个函数是同一函数的为( ) ⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x =()F x = ⑸21)52()(-=x x f ,52)(2-=x x f .A. ⑴、⑵B. ⑵、⑶C. ⑷D. ⑶、⑸2. 函数()y f x =的图象与直线1x =的公共点数目是( )A. 1B. 0C. 0或1D. 1或23. 已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈ 使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( )A. 2,3B. 3,4C. 3,5D. 2,54. 已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A. 1B. 1或32C. 1,32或 D.5. 为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移, 这个平移是( )A. 沿x 轴向右平移1个单位B. 沿x 轴向右平移12个单位 C. 沿x 轴向左平移1个单位 D. 沿x 轴向左平移12个单位 6. 设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( ) A. 10 B. 11 C. 12 D. 13二、填空题1. 设函数.)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是 . 2. 函数422--=x x y 的定义域 . 3. 若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,则这个二次函数的表达式是 .4.函数0y =_____________________. 5. 函数1)(2-+=x x x f 的最小值是_________________.三、解答题1.求函数()f x =.2. 求函数12++=x x y 的值域.3. 12,x x 是关于x 的一元二次方程22(1)10x m x m --++=的两个实根,又2212y x x =+,求()y f m =的解析式及此函数的定义域.4. 已知函数2()23(0)f x ax ax b a =-+->在[1,3]有最大值5和最小值2,求a 、b 的值.参考答案(2)一、选择题 1. C 2. C 3. D 4. D∴2()3,12,f x x x x ===-<<而∴ x =5. D 平移前的“1122()2x x -=--”,平移后的“2x -”, 用“x ”代替了“12x -”,即1122x x -+→,左移 6. B [][](5)(11)(9)(15)(13)11f f f f f f f =====.二、 1.(),1-∞- 当10,()1,22a f a a a a ≥=-><-时,这是矛盾的; 当10,(),1a f a a a a<=><-时; 2. {}|2,2x x x ≠-≠且 240x -≠3. (2)(4)y x x =-+- 设(2)(4)y a x x =+-,对称轴1x =, 当1x =时,max 99,1y a a =-==-4. (),0-∞ 10,00x x x x -≠⎧⎪<⎨->⎪⎩ 5. 54- 22155()1()244f x x x x =+-=+-≥-. 三、 1. 解:∵10,10,1x x x +≠+≠≠-,∴定义域为{}|1x x ≠-2. 解: ∵221331(),244x x x ++=++≥∴y ≥,∴值域为)+∞ 3. 解:24(1)4(1)0,30m m m m ∆=--+≥≥≤得或,222121212()2y x x x x x x =+=+-224(1)2(1)4102m m m m =--+=-+∴2()4102,(03)f m m m m m =-+≤≥或.4. 解:对称轴1x =,[]1,3是()f x 的递增区间,max ()(3)5,335f x f a b ==-+=即min ()(1)2,32,f x f a b ==--+=即∴3231,.144a b a b a b -=⎧==⎨--=-⎩得。

高中数学必修一-第三章-3.1 函数的概念及其表示

高中数学必修一-第三章-3.1 函数的概念及其表示

第三章函数3.1 函数的概念及其表示知识点一:函数的概念1.函数的有关概念2.函数的三要素一个函数的构成要素:定义域、对应关系和值域.因为值域是由定义域和对应关系决定的,所以两个函数的定义域和对应关系相同时,它们是同一个函数.3.区间的概念:设a,b∈R,a<b.实数集R可以用区间表示为(-∞,+∞).知识点二:函数的表示法1.函数的三种表示法2.分段函数已知函数y=f(x),x∈A,如果自变量x在不同的取值范围内,函数有着不同的对应关系,那么我们称这样的函数为分段函数.【思考】1.函数的定义域和值域是否一定是无限集?2.区间是数集的另一种表示方法,是否任何数集都能用区间表示?3.根据函数的定义,任何一个自变量x是否都有唯一的函数值y与之对应?任何一个函数值y 是否都有唯一的自变量x与之对应?4.如何确定分段函数的定义域和值域?【解析】1.不一定.函数的定义域和值域也可能是有限集,如f(x)=1,x∈{1,2,3}.2.不是.如集合{0,1}就不能用区间表示.3.任何一个自变量x都有唯一的函数值y与之对应,但是函数值y不一定有唯一的自变量x 与之对应。

如f(x)=x2中,函数值4有两个自变量2、-2与之对应。

函数中x,y的对应关系是“一对一”或“多对一”,不能“一对多”.4.分段函数的定义域是每一段自变量取值范围的并集,值域也是每一段函数值取值范围的并集.3.1.1 函数的概念基础练一函数的概念1.(多选题)下面选项中,变量y是变量x的函数的是()A.x表示某一天中的时刻,y表示对应的某地区的气温B.x表示年份,y表示对应的某地区的GDP(国内生产总值)C.x表示某地区学生的某次数学考试成绩,y表示该地区学生对应的考试号D.x表示某人的月收入,y表示对应的个税2.下列四组函数中,表示同一个函数的是()3A.y=|x|与y=√x3B.y=√x2与s=(√t)2C.y=2t+1与y=2u+1D.y=1与y=x03.设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面的4个图形中,能表示以集合M为定义域,集合N为值域的函数关系的有()A.①②③④B.①②③C.②③D.②④二函数的定义域4.函数f(x)=√x−1的定义域为() x−2A.[1,+∞)B.[1,2)C.[1,2)∪(2,+∞)D.(1,2)∪(2,+∞)5.已知某矩形的周长为定值a,若该矩形的面积S是这个矩形的一边长x的函数,则这个函数的定义域是.6.已知函数y=f(x)的定义域为[-2,3],则函数y=f(2x+1)的定义域为.x+1三函数值及函数的值域7.已知集合P={x|y=√x−1},集合Q={y|y=√x−1},则()A.P=QB.P⫋QC.Q⫋PD.P∩Q=⌀8.函数y=√x2−2x+3的值域为.,则f(x)的值域为.9.已知函数f(x)=1x2−2x10.已知函数f(x)的定义域是[0,1],值域是[1,2],则这样的函数可以是f(x)=.11.已知函数f(x)=x2+x-1.);(1)求f(2), f(1x(2)若f(x)=5,求x的值.3.1.2 函数的表示法基础练一 函数的表示法及其应用 1.函数y =x x+1的图象大致是 ( )A B C D2.某同学从家里到学校,为了不迟到,先匀速跑一段时间,跑累了再匀速走余下的路,设在途中花费的时间为t ,离开家的距离为d ,则下面图象中,能正确表示d 与t 的关系的是( )A B C D3.已知函数y =f (x )的对应关系如表,函数y =g (x )的图象为如图所示的曲线ABC ,则g (f (3))的值为 .二 函数解析式的求法5.已知函数f (x +2)=x 2+6x +8,则函数f (x )的解析式为( ) A.f (x )=x 2+2x B.f (x )=x 2+6x +8 C.f (x )=x 2+4x D.f (x )=x 2+8x +66.函数f (x )满足f (1-2x )=-1x ,则f (2)=( )A.2B.-2C.12 D.-12 7.已知函数f (2x -1)=3x -5,若f (x 0)=4,则x 0= .8.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )= .9.(1)已知函数g (√x +1)=2x +1,求g (x )的解析式;(2)已知f (x )为二次函数,且f (0)=2, f (2)=f (-1)=0,求f (x )的解析式.三 分段函数问题10.已知函数f (x )={√x,x >0,|x +1|,x ≤0,则f (f (-3))=( )A.√3B.1C.2D.√2 11.已知f (x )={x +2,x ≤−1,x 2,−1<x <2,2x,x ≥2,若f (x )=3,则x 的值是( )A.1B.1或32C.1,32或±√3 D.√312.函数f (x )=x +|x |x 的图象是( )A B C D13.(2022山西大同期中)已知函数f (x )={x 2,x ≤0,4−2x,x >0.(1)画出函数f (x )的图象;(2)当f (x )≥2时,求实数x 的取值范围.。

高中数学必修一 第1讲函数及其表示

高中数学必修一 第1讲函数及其表示

第4讲 函数及其表示基础梳理1.函数的基本概念(1)函数的定义:设A 、B 是非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么称f :A →B 为从集合A 到集合B 的一个函数,记作:y =f (x ),x ∈A .(2)函数的定义域、值域在函数y =f (x ),x ∈A 中,x 叫自变量,x 的取值范围A 叫做定义域,与x 的值对应的y 值叫函数值,函数值的集合{f (x )|x ∈A }叫值域.值域是集合B 的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等;这是判断两函数相等的依据.2.函数的三种表示方法 表示函数的常用方法有:解析法、列表法、图象法.3.映射的概念一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射.两个防范(1)解决函数问题,必须树立优先考虑函数的定义域的良好习惯.(2)用换元法解题时,应注意换元后变量的范围.考向一 相等函数的判断【例1】下列函数中哪个与函数)0(≥=x x y 是同一个函数( )A y =( x )2B y=x x 2C 33x y =D y=2x 【例2】x x y 2=与⎩⎨⎧-∞∈-+∞∈=).0,(,);,0(,)(t t t t x f 是相同的函数吗? 考向二 求函数的定义域高中阶段所有基本初等函数求定义域应注意:(1)分式函数中分母不为0;(2)开偶次方时,被开方数大于等于0;(3)对数函数的真数大于0(如果底数含自变量,则底数大于0且不为1);(4)0次幂的底数不为0。

(5)正切函数2ππ+≠k x【例1】►求函数x x x x f -+--=4lg 32)(的定义域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1・2函数及其表示
§ 1.2.2品数的表丘怯1
教学目的:
1.掌握函数的解析法、列表法、图象法三种主要表示方法.
2.培养数形结合、分类讨论的数学思想方法,掌握分段函数的概念.
教学重点:解析法、图彖法.
教学难点:作函数图象.
教学过程:
一、复习引入:
1.函数的定义是什么?函数的图象的定义是什么?
2.在屮学数学小,画函数图象的基本方法是什么?
3.用描点法画函数图象,怎样避免描点前盲目列表计算?怎样做到描最少的点却能显示出图象的主要特征?
二、讲解新课:函数的表示方法
表示函数的方法,常用的有解析法、列表法和图象法三种.
⑴解析法:就是把两个变量的函数关系,用一个等式表示,这个等式叫做函数的解析表达式,简称解析式.
例如,s=6012, A=>T r2 , S=2Till ,y=ax2 +bx+c(a0),y= -Jx — 2 (x-2)等等都是用解析式表示函
数关系的.
优点:一是简明、全面地概括了变量间的关系;二是可以通过解析式求出任意一个H变量的值所对应的函数值•中学阶段研究的函数主要是用解析法表示的函数.
⑵列表法:就是列出表格來表示两个变量的函数关系.
例如,学生的身高单位:厘米
学号123456789
身高125135140156138172167158169
数学用表中的平方表、平方根表、三角函数表,银行里的利息表,列千时刻表等等都
是用列表法来表示函数关系的.公共汽车上的票价表
优点:不需要计算就可以直接看出与自变量的值相对应的两数值.
⑶图象法:就是用函数图象表示两个变量之间的关系.
例如,气象台应用自动记录器描绘温度随时间变化的曲线,课本中我国人口出
生率变化的曲线,工厂的生产图彖,股市走向图等都是用图彖法表示函数关系的.
优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势,这样使
得我们可以通过图象来研究函数的某些性质.
三、例题讲解
例1某种笔记本每个5元,买XG {123,4}个笔记本的钱数记为y (元), 试写出以
x为自变量的函数y的解析式,并画出这个函数的图像.
解:这个函数的定义域集合是{1,2,3,4},函数的解析式为y=5x, xe {1,2,3,4}. 点A(l,
5) B(2, 10) C(3, 15) D (4, 20)组成,如图所示.
例2国内投寄信函(外埠),每封信函不超过20g付邮资80分,超炊过20g而不超过40g付邮资160分,依次类推,每封x g(0<x< 100)的信函逊应付邮资为(单位:分),试写出以x为自变蜃的函数y的解析式,并也如
它的图象rfl 4个孤立
出这个函数的图像.
解:这个函数的定义域集合是0VXW100,函数的解析式为
80, XG (0,20], 160,XG (20,40|, y = J240,%G (40,60],
320, J € (60,80], 400,x G (80,100).
这个函数的图象是5条线段(不包括左端点),都平行于x 轴,如图所示. 这一种函数我们把它称为分段函数.
例3画出函数y=lxl=r A ~0,的图象
\-x 兀<0・
解:这个函数的图象是两条射线,分别是第一象限和第二象限的角平分线,如图所示. 说明:①再次说明函数图象的多样性;
② 从例4和例5看到,有些函数在它的定义域中,对于口变量x 的不同取值范围,对应法则不同,这样的函数通常称为分段函数.注意 分段西数是一个函数,而不是儿个函数.
③ 注意:并不是每一个函数都能作出它的图象,如狄利克雷
|| x 是冇理数
Z)函数D 啊°,濾无理数,我们就作不出它的图象
例4作出分段函数y =兀一 1十x + 2
的图像
—(2 兀 +1)
>?=x-l + x + 2= <
3 2x + l
作出图像如下
例5作出函数y = x +丄的图彖
X
歹lj 表描点:
K*
U
M
N*
G
0*
P 1
Q*
(•50, -5.2) (-4.0, -4.3)
(・30,・ 3.3)
(・20,・ 25)
(•1.0. -20) (-0.4, -3.0) (-0.3 > -4.0) (-0.2. -5.0)
Q P
G
N M L K (0.2, 5.0)
(0.3, 4.0)
(0.4, 3.0)
(1.0, 2.0)
(2.0, 2.5)
(3.0, 3.3)
(4.0, 4.3)
(50, 5.2)
5 1
C
解:根据“零点分段法”去掉绝对值符号,即: x<-2
-2<x<l
X > 1
补充:
1.作函数y=lx-2l(x+l)的图像
分析显然直接用已知函数的解析式列表描点有些困难,除去对其函数性质分析外,我们还应想到对已知解析式进行等价变形.
解:(1)当xN2时,即x-230时,r 1 r 9
y = (x-2)(x + l)=兀~ -x-2 =(x~2^ _才当x<2时,
即x-2<()时,
9 +
—.
4
r if X——
I 2丿
(1) ・x --- I 2丿9
4
9
+ -
4
x>2
x<2
这是分段函数,每段函数图象可根据二次函数图彖作出
2.作出函数>Mr-2r-3l的函数图像
1
/ — 2x - 3 n 0
x2— 2x — 3 v 0
步骤:(1)作出函数y=x2-2x-3的图象
(2)将上述图象x轴下方部分以x轴为对称轴向上翻折(上方部分不变),即得y=lx2-2x-3l的图象.
四、课后练习
一、选择题
1.已知一次函数的图象过点(1,0)和(0,1),则此一次函数的解析式为
A.f(x) = —x
B.f(x)=x-l
2.已知函数f (X -1)=X 2-3,则f (2)的值为 ................................. A. -2 B. 6 C. 1
D. 0
3. ................................................................................................................... 已
知 f(x)=±‘ g(x)=x+l,则 f(g(x))的表达式是
................................
6. 已知f (x)与g(x)分别由下表给出
三、解答题
A
* X 2+2X
X2
G X 2+2X
B.
D.
x 2
]
x‘一 1
4•己知函数y£m (n)+3,茴
则f ⑶等于
A. 0 C. 6
B. 3 D. 9
二.填空题
5.已知函数f(x)的图象如图所示, 则此函数的定义域是
那么 f (g(3))= ________
7.解答下列问题:
⑴若f (x+1) =2X2+1,求f (x);
&作卜•列各函数的图彖:
(1) y=2x 2—4x —3 (0<x<3);
9.已知函数
[2x, (xW —1)
f (x) =< 1, (—lVxWl)
、一2x, (x>l)
⑵若函数f(x )i
+b'
f(2) = l,又方程f(x)=x 有唯一解,求f(x)・
(2)y=|x-l|;
(1)求f(x)的定义域、值域; (2)作出这个函数的图象.
课后作业参考答案 一、 选择题
1・ D 2.B 3. A [ f(g(x)) =(x+:)2_ ]=;7^. ] 4. f (2) =f (1 +1) =f (1)+3 = 0 + 3 = 3,
・・・f(3)=f(2+l)=f(2)+3 = 3+3=6. 选 C
二、 填空题
5. [-3,3] [-2,2]
6.【答案】1 山表可得 g(3)=4, ・・・f(g(3))=f(4)=l.
三、 解答题
7.【解析】 ⑴令 t=x+l,则 x=t-l, Af (t) =2(t-l)2+l = 2t 2-4t+3. Af (x) =2x 2-4x + 3. 2
(2)由f ⑵=1得茲齐=1,即2a+b = 2;
v
1
I — h
由他)円得待尸变形得x (寸厂1)=0,解此方程得:x=0^x —. 乂因为方程有唯
1 —b
1 一解,所以——=0,解得b=l,代入2a+b = 2得a=R a
z
2x
所以所求解析式为f (x )=兀・
8. 【解析】(l )T0Wx<3,二这个函数的图象是抛物线 y = 2x 2-4x-3介于0Wx<3之间的一段弧(如图⑴).
X ——1 X > 1
⑵所给函数可写成分段函数尸一 xSl 为(1,0)的两条射线(如图(2))・
9. 【解析】(l)f(x)的定义域为{x|xW —1} U {x| —1 VxWl} U {x|x >1} = {X |X W-1 或一lVxWl 或 x>l}=R,
f (x)的值域为{y |yW —2} U {1} U {y |y<—2} = {y |yW —2 或 y = 1},
・・・f (x )的定义域为R,值域为{y|yW —2或y=l}・ ⑵ 根据解析式分段作图如图
是端点
⑴ ⑵。

相关文档
最新文档