第五章--自由基溶液聚合原理及生产工艺
第5章_自由基溶液聚合

5. 聚合工艺
(1)引发剂 剂
a. 根据溶液聚合所用溶剂、反应条件和引发剂半衰期选择引发剂。 b. 偶氮化合物引发剂的分解不受溶剂的影响,应用较广泛。过氧 化物的分解速度受极性溶剂的影响,而且分解产生的氧化物,可 能进一步参加反应生成交联结构,因而可能产生凝胶。 c. 引发剂的用量通常为单体量0.01-2%。
二、以丙烯腈为主要单体的水相沉淀聚合
1. 水相沉淀聚合的优点 采用氧化-还原引发剂,聚合温度较低, ① 采用氧化-还原引发剂,聚合温度较低,产物色 泽较白。 泽较白。 反应热容易导出,容易控制,分子量分布窄。 ② 反应热容易导出,容易控制,分子量分布窄。 ③ 加入活化剂FeSO4以提高聚合速率,聚合物粒子 加入活化剂FeSO 以提高聚合速率, 均匀,单体转化率较高;产物容易处理, 均匀,单体转化率较高;产物容易处理,溶剂回 收工序略简单。 收工序略简单。 产物的流通和运输方便;若用硫酸盐作氧化剂, ④ 产物的流通和运输方便;若用硫酸盐作氧化剂, 可减少第三单体的用量,降低成本。 可减少第三单体的用量,降低成本。
反应体系中有溶剂时,则可降低向大分子进行链转移反应。
(2)溶剂的选择应注意的问题 溶剂的选择应注意的问题
a. 考虑单体在所选择的溶剂中的溶解性。 b. 溶剂的活性:应当无阻聚或缓聚等不良影响以及考虑对引 发剂的诱导分解作用。 c. 溶剂对聚合物溶解性能和对凝胶效应的影响:选用良溶剂 时为均相聚合,有可能消除凝胶效应。选用沉淀剂时为沉淀 聚合,凝胶效应显著。 d. 溶液聚合选择溶剂时应考虑溶剂的Cs值。 e. 溶剂的毒性、安全性和生产成本。
第5章聚合方法

良溶剂,为均相聚合,[M]不高时,可消除凝胶效应
沉淀剂,凝胶效应. 丙烯腈连续溶液聚合
聚丙烯腈是重要的合成纤维,其产量仅次于涤纶和聚酰胺,
居第三位。 丙烯腈均聚物中氰基极性强,分子间力大,加热不熔融,
另外溶解性差,难以形成纤维,而且性脆不柔软,难以染
1、乳化剂和乳化作用
乳化剂是分子中既含有亲水(极性)基团,又含有亲油 (非极性)基团的表面活性剂中的一种。可分为阴离子型、 阳离子型和非离子型三种。 阴离子型:极性基团为—COO-、—SO3-、—SO4-等,非极 性基团为C11~C17的直链烷基或烷基与苯基的组合基团 。阴 离子乳化剂在碱性溶液中比较稳定,乳化能力强。典型例子: 十二烷基硫酸钠、二丁基萘磺酸钠、硬脂酸钠等。 阳离子型:极性基团为—N+R3等。因乳化能力不足,并对 引发剂有分解作用,故在自由基聚合中不常用。
优点:体系粘度低,混合和传热容易,温度易控制,较少
凝胶效应。
缺点:聚合速率低,设备利用率低,链转移使分子量低,
需溶剂回收。 在工业上一般多用于聚合物溶液直接使用场合,如油漆、 粘合剂、涂料、合成纤维纺丝液等。
溶剂对聚合的影响:
溶剂的加入可能影响聚合速率、分子量分布
溶剂导致笼蔽效应使 f 降低, 溶剂的加入降低了[M],使 Rp 降低 向溶剂链转移的结果使分子量降低 溶剂对聚合物的溶解性能与凝胶效应有关
2)成核机理
一般包括胶束成核、水相成核、液滴成核。 当胶束内进行链增长时,单体不断消耗,溶于水中的单体 断补充进来,单体液滴又不断溶解补充水相中的单体。因此, 单体液滴越来越小、越来越少。而胶束粒子越来越大。同时 单体液滴上多余的乳化剂转移到增大的胶束上,以补充乳化 剂的不足。这种由胶束内单体聚合形成聚合物颗粒的过程,
第五章聚合方法

第五章聚合方法一、名称解释1. 自由基聚合实施方法(Process of Radical Polymerization):主要有本体聚合,溶液聚合,乳液聚合,悬浮聚合四种。
2. 离子聚合实施方法:主要有溶液聚合,淤浆聚合。
3. 逐步聚合实施方法:主要有熔融聚合,溶液聚合,界面聚合。
4. 本体聚合:本体聚合是单体本身、加入少量引发剂(或不加)的聚合。
5. 悬浮聚合:悬浮聚合一般是单体以液滴状悬浮在水中的聚合,体系主要由单体、水、油溶性引发剂、分散剂四部分组成。
6. 悬浮作用:某些物质对单体有保护作用,能降低水的表面张力,能使水和单体的分散体系变为比较稳定的分散体系,这种作用称为悬浮作用。
7. 本体聚合:本体聚合是单体本身、加入少量引发剂(或不加)的聚合。
8. 溶液聚合:是指单体和引发剂溶于适当溶剂的聚合。
9. 乳液聚合:是单体在水中分散成乳液状而进行的聚合,体系由单体、水、水溶性引发剂、水溶性乳化剂组成。
10. 分散剂:分散剂大致可分为两类,(1)水溶性有机高分子物,作用机理主要是吸咐在液滴表面,形成一层保护膜,起着保护人用,同时还使表面(或界面)张力降低,有利于液滴分散。
(2)不溶于水的无机粉末,作用机理是细粉吸咐在液滴表面,起着机械隔离的作用。
11. 乳化剂:常用的乳化剂是水溶性阴离子表面活性剂,其作用有:(1)降低表面张力,使单体乳化成微小液滴,(2)在液滴表面形成保护层,防止凝聚,使乳液稳定,(3)更为重要的作用是超过某一临界浓度之后,乳化剂分子聚集成胶束,成为引发聚合的场所。
12. 胶束:当乳化剂浓度超过临界浓度(CMC)以后,一部分乳化剂分子聚集在一起,乳化剂的疏水基团伸身胶束回部,亲水基伸向水层的一种状态。
13. 临界胶束浓度:乳化剂开始形成胶束时的浓度称为临界胶束浓度,简称CMC。
14. 亲水亲油平衡值(HLB):该值用来衡量表面活性剂中亲水部分和亲油部分对水溶性的贡献,该值的大小表表亲水性的大小。
高分子化学第5章

• 主要有聚乙烯醇等合成高分子,及纤维素衍生物、明胶等
–(2)不溶于水的无机粉末
• 主要有碳酸镁、滑石粉、高岭土等
水溶性有机高分子
• 高分子分散剂的作用机理主要是:
–吸附在液滴表面,形成一层保护膜,起着保 护胶体的作用;
–介质的粘度增加,有碍于两液滴的粘合;
–明胶、部分醇解的聚乙烯醇等的水溶液,还 使表面张力和界面张力降低,使液滴变小。
第五章 聚合方法
5.1 引言
聚合反应工程考虑的三个层次:
• 聚合机理和动力学(mechanism and kinetics)
–连锁:自由基、阴、阳离子、配位 –逐步:缩聚、聚加成、开环等
• 聚合过程(polymerization process)
–实施方法:本体、溶液、悬浮、乳液 –相态变化:分散性质、是否沉淀、是否存在界面等
• 丙烯腈连续溶液聚合 ; • 醋酸乙烯酯溶液聚合;
• 丙烯酸酯类溶液聚合。
例1. 聚丙烯腈(PAN)连续溶液聚合
• 连续均相溶液聚合:以51-52%的硫氰化钠(NaSCN)水 溶液为溶剂,AIBN为引发剂,pH5±0.2,温度75~85 ˚C,转化率70~75%。进料单体浓度17%,出料聚合 物浓度13%,脱除单体后直接用于纺制腈纶纤维。 • 连续沉淀聚合:以水为溶剂,过硫酸盐类氧化还原引 发体系,温度40~50 ˚C,转化率80%。聚合产物从反应 体系中沉淀出来,经洗涤、分离、干燥后重新配制成纺 丝溶液用于腈纶纺丝。
–沉淀聚合机理与均相聚合有些不同,主要反 映在凝胶效应上,影响因素和生产控制也有 差异。
• 液相聚合; • 气相聚合; • 固相聚合。
从工程角度考虑(需重视操作方式)
聚合物合成工艺学-自由基悬浮聚合生产工艺讲解

(3) 聚合后期:单体减少,在聚合物间隙间反应, 形成硬而透明的粒子,粒子的形成过程可简示如下。
危险期 粘度增大
2、非均相离子形成过程 Heterogeneous Particle Formation
三、成粒机理
悬浮聚合过程中的成粒示意图
1、均相粒子的形成过程
Homogeneous Particles Formation
(1) 聚 合 初 期 : 单 体 在 搅 拌 下 形 成 直 径 为 0.5~5mm的小液滴,在悬浮剂的保护和适当的 温度下引发分解。
(2)聚合中期:20~70%聚合物增多,粘度增大, PMMA 20%自加速,PST 45%自加速。
(1) 聚合釜的传热 悬浮聚合用聚合釜一般是带 有夹套和搅拌的立式聚合釜。夹套帮助聚合过程中 产生的大量的聚合热及时、有效的传出釜外。
(2) 搅拌 搅拌作用:釜内物料混合均匀,温度均一;单体分散成液滴 搅拌与粒径:剪切力越大,形成的液滴越小,聚合物粒子的 规整性差。 临界速度:当搅拌速度增加到某一数值时,物料产生强烈的 涡流,导致物料粒子严重粘结,也称危险速度。
②合成高分子化合物:部分水解的聚乙烯醇、聚丙烯 酸及其盐、磺化聚苯乙烯、顺丁烯二酸酐-苯乙烯共 聚物、聚乙烯吡咯烷酮等。
◢ 保护胶的分散稳定作用
降低体系的表面张力。当两液滴相互接近到可能产生 凝结的距离时,两液滴之间的水分子被排出而形成了 高分子薄膜保护层,从而阻止了两液滴凝结,或两个 相互靠近的液滴之间的液体薄层移动延缓,以致在临 界凝结的瞬时内两液滴不能发生凝结。
溶有引发剂的一个单体小液滴,相当 于本体聚合的一个小单元,因此,悬浮 聚合也称为小本体聚合。
第五章自由基溶液聚合原理及生产工艺

醋酸甲酯,醋酸钠较少,生产效率高、产品能满足 生产 PVF 纤维的要求,工业上一般采取此法。
六、生产工艺流程简述
1、准备:将醋酸乙烯酯、溶剂甲醇、引发剂 ABIN 分别计量、备 用。 2、聚合:由两釜连续操作,两釜连用考虑到生产周期、物料粘度 等因素,配有双层螺带式搅拌器和回流冷凝装置。
将醋酸乙烯酯(80分)、溶剂甲醇(20分)、引发剂 ABIN 依 次加入第一聚合釜, 65℃ ±0.5 ℃ ,常压,聚合大约 1hr,转化约 20%时, 根据釜内液面下降指示控制连续出料时间;
机会减少; 自动加速现象和向溶剂链转移的共同作用,使分子量分布
变宽。 四、溶剂的选择 ka ≈ kp ,仅为链转移剂,不影响聚合速率; kp >> ktr, s , 链增长反应为主; 产品为溶液,选择良溶剂;产品为固体,选择非溶剂; 成本低,毒性低。
五、向溶剂链转移的应用-----调节聚合 通过链自由基向溶剂或链转移剂的转移,可制备分子量
(2)非均相溶液(沉淀)聚合:单体溶于溶剂,而聚合物不溶 于溶剂。例如,丙烯腈 ---- 水;丙烯酰胺 ---- 丙酮;苯乙 烯-马来酸酐 ---- 甲苯。
二、溶液聚合的优缺点 1、优点 科学研究上,可选用 Cs 较小的溶剂,控制低转化率,容
易建立聚合速率、数均聚合度和单体浓度、引发剂浓度 的定量关系,方便动力学研究。 生产工艺上,散热控温容易,可避免局部过热,体系粘 度较低,可推迟自动加速现象出现,控制较低转化率可 消除自动加速现象,接近匀速反应,分子量分布窄。
VAc 与甲醇蒸汽经冷凝器冷却后进入萃 取塔,加水萃取;
甲醇水溶液经塔底进入甲醇蒸出塔、回 收甲醇、排放废水;
单体经萃取塔顶部经冷凝器冷凝再水洗 进一步除去残留甲醇,含少量甲醇的废水 排放;
自由基聚合生产工艺

分子量调节剂
新鲜乙烯
引发剂
25MPa
0.1MPa
25MPa
一次 压缩机
高压分离器
低压分离器
平均聚合度随温度升高而降低
严格控制引发剂用量
选择适当的分子量调节剂
严格控制反应温度 和其它反应条件
产品平均 分子量
合成聚酯的路线
某些物质同自由基作用,可能形成非自由基物质,或形成活性低、不足以再引发的自由基。根据对反应的抑制程度,可将这类物质粗略分为阻聚剂和缓聚剂。
使部分自由基终止,使聚合减慢。
有机玻璃生产工艺
单体
配料
制浆
模板 清洗
裁切 包装
脱模
聚合
封合
排气
灌浆
入库
制模
新模板
第三步聚合: 把封合的模框吊入热水箱(或烘房),根据板厚分别控制温度在25~52℃,经过10~160小时,到取样检查料源硬化为止,用接蒸汽加热水箱内水至沸腾,保持二小时,通水慢慢冷却到40℃,吊出模具,取出中间有机玻璃板材,去边,裁切后包装。
发泡剂
(a) 过氧化氢-亚铁盐氧化-还原体系
Fe+2 + H2O2 Fe+3 + OH- + ·OH
H2O2 H+ + HO2-
Fe+3 + HO2 - Fe+2 + H-O-O·
聚合方法的选择
原始颗粒粒径只有1微米左右,适于生产聚乙烯糊。
例如:聚氯乙烯树脂的生产工艺
Hale Waihona Puke 溶液聚合方法乳液聚合方法悬浮聚合方法
本体聚合方法
2.自由基聚合机理
烯类单体的加聚基本属于连锁聚合。在适当条件下价键有均裂和异裂两种方式。
高分子化学第五章_聚合方法

1
聚合物生产实施的方法,称为聚合方法。
气相聚合
在单体沸点以上聚合
单体形态
固相聚合
在单体熔点以下聚合
聚合物—单体不溶
沉淀聚合 均相聚合
聚合物—单体互溶
非均相聚合
溶解性
聚合物—单体部分互溶
2
本体聚合
悬浮聚合
物料起始状态
乳液聚合
溶液聚合
5.1 引言
自由基聚合有四种基本的实施方法。 • 本体聚合: 不加任何其它介质, 仅是单体在引发剂(甚至不 加)、热、光或辐射源作用下引发的聚合反应。 • 溶液聚合: 单体和引发剂溶于适当溶剂中进行的聚合反应。
溶剂对聚合度的溶解性能与凝胶效应有关 良溶剂,为均相聚合,[M]不高时,可消除凝胶效应 沉淀剂,凝胶效应显著,Rp 劣溶剂,介于两者之间
20
4、应用实例
多用于自由基聚合、离子聚合、配位聚合、逐步聚合等。
表4
单体
溶液聚合工业生产实例
溶剂 硫氰化钠 水溶液 水 甲醇 聚合机理 自由基聚合 自由基聚合 自由基聚合 产物特点与用途 纺丝液 配制纺丝液 制备聚乙烯醇、 维尼纶的原料
聚合物—单体—溶剂体系 均相聚合 乙烯高压聚合、苯乙烯、丙 烯酸酯 苯乙烯—苯、丙烯酸—水、 丙烯腈—二甲基甲酰胺 苯乙烯、甲基丙烯酸甲酯 苯乙烯、丁二烯、丙烯酸酯 沉淀聚合 氯乙烯、丙烯腈、丙 烯酰胺 氯乙烯—甲醇、丙烯 酸—己烷、丙烯腈— 水 氯乙烯 氯乙烯
均相体系
非均相体系
6
如何选择聚合方法: 根据产品性能的要求与经济效益,选用一种或几种方
PMMA为非晶体聚合物,Tg=105 ℃,机械性能、耐 光耐候性均十分优异,透光性达90%以上,俗称“有机 玻璃”。广泛用作航空玻璃、光导纤维、标牌、指示灯 罩、仪表牌、牙托粉等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
要制备相对分子质量较低的聚合物就要选择适当的单 体浓度和选择Cs值大的溶剂。 2.进行调节聚合,制备所需的低聚物 调节聚合是通过自由基型溶液聚合而得到低聚物的一 种反应,也是链转移反应的一种实际应用。 调节聚合可用下式表示
单体 调聚剂 例如:
调聚物
单体乙烯、调聚剂CCl4在引发剂过氧化二苯甲酰的引 发下,调节聚合过程可用下式表示。
(3)链终止
四、溶剂的选择 溶剂的选择原则:
①溶剂对自由基聚合不能有缓聚和阻聚等不良影响, 即应使Kps≈Kp。 ②溶剂的链转作用几乎是不可避免的,为了得到一定 相对分子喷量的囊合物.溶剂的Cs不能太大,即应使 kp>>ktr,s。 ③如果要得到聚合物溶液,则选择聚合物的良溶剂,而 要得到固体聚合物,则应选择聚合物的非溶剂。 ④尚需考虑毒性和成本等问题。 五、链转移作用的应用 1.调节聚合物的相对分子质量 采用溶液聚合方法若要生产高相对分子质量的聚合物, 就要选择Cs值小的溶剂。
三、溶剂的作用 1.溶剂对引发剂分解速率的影响
溶剂对有机过氧类引发剂分解速率产生影响。
不同溶剂使有机过氧类引发剂分解速率增加的顺序为 芳香类 醇类 酚类 醚类 胺类 溶剂对偶氮类引发剂分解速率一般不产生影响,偶氮 类引发剂中只有偶氮二异丁酸甲酯可被溶剂诱导而加速 分解。 2.溶剂的链转作用及其对聚合速率和聚合物相对分子 质量的影响 若Kps≈Kp,则SH为链转移剂,不影响聚合速率, 但使聚合物的相对分子质量降低。 若Kps<Kp ,则SH为缓聚剂,使聚合速率和聚合物 的相对分子质量降低。 若Kps«Kp ,则SH为阻聚剂,使聚合反应终止并使 聚合物的相对分子质量降低。
(2)非均相溶液(沉淀)聚合 非均相溶液聚合:单体溶于溶剂中,而聚合物不溶于 溶剂中,形成固体聚合物沉淀出来,这种溶液聚合体 系称为非均相溶液聚合。 如:丙烯腈以水为溶剂的溶液聚合、丙烯酰胺以丙酮 为溶剂的溶液聚合以及苯乙烯-顺丁烯二酸酐以甲苯为 溶剂的溶液聚合均为非均相溶液(沉淀)聚合。 二、溶液聚合的优缺点 1.溶液聚合的优点 ①由于使用了溶剂,降低了体系的黏度,推迟了自 动加速现象的到来,如果控制适当的转化率可以基本 上消除自动加速现象,聚合反应接近匀速反应,聚合 反应容易控制,聚合物的相对分子质量分布较窄。
第一节 自由基溶溶液聚合是指单体和引发剂溶于适当的溶剂中 聚合为高聚物的过程。溶液聚合体系的组分主要为单体、 溶剂和引发剂。 2.溶液聚合分类 根据聚合物是否溶于溶剂中,可将溶液聚合分为均相溶 液聚合和非均相溶液(沉淀)聚合。 (1)均相溶液聚合 单体溶于溶剂中,聚合物也溶于溶剂中,形成聚合物 溶液,这种溶液聚合体系称为均相溶液聚合。 丙烯酰胺以水为溶剂的溶液聚合特称为水溶液聚合。
②如果选用Cs(链自由基向溶剂转移常数)较小的溶剂, 控制低转化率结束反应,容易建立正常聚合速率Rp与单 体浓度c(M)和引发剂浓度c(I)的定量关系以及Xn与单体 浓度c(M)和引发剂浓度c(I)的定量关系,这对实验室做 动力学研究有独到之处。 2.溶液聚合的缺点 ① 由于引入了溶剂,溶剂的回收和提纯使工艺过程复 杂化,从而使生产成本增加。 ② 由于链自由基向溶剂的转移反应使聚合物的平均聚 合度Xn降低。
其中Kps代表新生的自由基与单体加成的增长反应速 率常数,SH代表溶剂。 3.溶剂对聚合物大分子的形态和相对分子质量分布的 影响 溶剂能控制生长着的链自由基的分散状态和形态。 如使用良溶剂,链自由基在其中处于伸展状态,将形 成直链型大分子。 如使用不良溶剂,由于链自由基在其中处于卷曲状态 或球型,在高转化率时会使链自由基沉淀,以溶胀状态 析出,形成无规线团。 自动加速现象使聚合物的相对分子质量增加;而链 自由基向溶剂的链转移作用又可能使聚合物的相对分子 质量降低。但由于在反应中,这两种作用常常同时发生, 因而聚合物分子量分布变宽。