基于MATLAB求解最短路问题

合集下载

matlab floyd最短路算法例题

matlab floyd最短路算法例题

matlab floyd最短路算法例题摘要:一、Floyd 算法介绍二、MATLAB 实现Floyd 最短路算法的例题三、Floyd 算法的应用案例四、总结正文:一、Floyd 算法介绍Floyd 算法是一种经典的动态规划算法,用于求解加权连通图(有向图、无向图)中所有顶点之间最短路的长度。

该算法可以处理带有负权边的图,并且时间复杂度为O(n3)。

Floyd 算法的基本思想是:从任意节点i 到任意节点j 的最短路径不外乎2 种可能,1 是直接从i 到j,2 是从i 经过若干个节点k 到j。

所以,我们假设Dis(i,j) 为节点u 到节点v 的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) Dis(k,j) < Dis(i,j) 是否成立,如果成立,证明从i 到k 再到j 的路径比i 直接到j 的路径短,我们便设置Dis(i,j) Dis(i,k) Dis(k,j)。

二、MATLAB 实现Floyd 最短路算法的例题以下是一个使用MATLAB 实现Floyd 算法的例题:```MATLABfunction [T,pred] = floyd(adj_matrix)% 输入:邻接矩阵% 输出:最短路径矩阵,预测矩阵= size(adj_matrix, 1);T = zeros(n, n);pred = zeros(n, n);for i = 1:nfor j = 1:nfor k = 1:nif i ~= k && i ~= j && k ~= jT(i, j) = min(T(i, j), T(i, k) + T(k, j));pred(i, j) = T(i, k) + T(k, j);endendendendend```三、Floyd 算法的应用案例Floyd 算法在网络分析、社交网络、生物信息学等领域具有广泛的应用。

例如,在网络分析中,Floyd 算法可以用于寻找网络中的最短路径,以便快速传递信息或货物。

用MATLAB软件求最短路实例2

用MATLAB软件求最短路实例2

用MATLAB软件求最短路实例2试用MATLAB软件计算有向图中v1到v9的最短路。

vvvw=ones(9);w=inf*w;>> for i=1:9w(i,i)=0;end>> w(1,2)=3;w(1,4)=4;>> w(2,3)=3;w(2,5)=2;w(2,6)=3;>> w(3,9)=5;>> w(4,7)=3;>> w(5,6)=3;>> w(6,9)=1;w(6,7)=1;>> w(7,8)=2;w(7,9)=2;>> w(8,9)=4;>> p=log(8)/log(2) %向上(大的方向)取整p =3>> w1=w0 3 Inf 4 Inf Inf Inf Inf InfInf 0 3 Inf 2 3 Inf Inf Inf Inf Inf 0 Inf Inf Inf Inf Inf 5 Inf Inf Inf 0 Inf Inf 3 Inf InfInf Inf Inf Inf 0 3 Inf Inf InfInf Inf Inf Inf Inf 0 1 Inf 1Inf Inf Inf Inf Inf Inf 0 2 2Inf Inf Inf Inf Inf Inf Inf 0 4 Inf Inf Inf Inf Inf Inf Inf Inf 0>> w2=fld(9,w)w2 =0 3 6 4 5 6 7 Inf InfInf 0 3 Inf 2 3 4 Inf 4 Inf Inf 0 Inf Inf Inf Inf Inf 5 Inf Inf Inf 0 Inf Inf 3 5 5 Inf Inf Inf Inf 0 3 4 Inf 4 Inf Inf Inf Inf Inf 0 1 3 1Inf Inf Inf Inf Inf Inf 0 2 2 Inf Inf Inf Inf Inf Inf Inf 0 4 Inf Inf Inf Inf Inf Inf Inf Inf 0>> w3=fld(9,w2)w3 =0 3 6 4 5 6 7 9 7Inf 0 3 Inf 2 3 4 6 4 Inf Inf 0 Inf Inf Inf Inf Inf 5Inf Inf Inf 0 Inf Inf 3 5 5 Inf Inf Inf Inf 0 3 4 6 4 Inf Inf Inf Inf Inf 0 1 3 1 Inf Inf Inf Inf Inf Inf 0 2 2 Inf Inf Inf Inf Inf Inf Inf 0 4Inf Inf Inf Inf Inf Inf Inf Inf 0function[ci,cj,dij]=stlin(n,i,j,d) %求最短路的路径ci=d(i,j)-d(i,:);cj=d(:,j)';dij=d(i,j);function y=fld(n,x) %求最短路for r=1:nfor i=1:nfor j=1:np(j)=x(i,j)+x(j,r);endy(r,i)=min(p);endend>> [c1,c9,d19]=stlin(9,1,9,w3)c1 =7 4 1 3 2 1 0 -2 0c9 =745541240 d19 =7。

matlab dijkstra算法求解最短路径例题

matlab dijkstra算法求解最短路径例题

matlab dijkstra算法求解最短路径例题摘要:一、Dijkstra 算法简介1.Dijkstra 算法背景2.Dijkstra 算法原理二、MATLAB 实现Dijkstra 算法求解最短路径1.创建图对象2.计算最短路径3.可视化结果三、Dijkstra 算法应用示例1.例题描述2.解题步骤3.结果分析正文:一、Dijkstra 算法简介Dijkstra 算法是一种经典的图论算法,用于计算图中两个节点之间的最短路径。

它是由荷兰计算机科学家Edsger W.Dijkstra 于1956 年提出的,其基本思想是以起始点为中心向外层层扩展,直到扩展到终点为止。

Dijkstra 算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。

可以用堆优化来提高效率。

二、MATLAB 实现Dijkstra 算法求解最短路径1.创建图对象首先,我们需要使用MATLAB 的graph 函数创建一个图对象,指定节点和边的信息。

例如,我们创建一个简单的图,包含4 个节点和3 条边:```matlabG = graph(4, 3);```其中,4 表示图中有4 个节点,3 表示图中有3 条边。

2.计算最短路径接下来,我们可以使用MATLAB 的shortestpath 函数计算两个节点之间的最短路径。

例如,我们计算节点1 到节点3 的最短路径:```matlabSP = shortestpath(G, 1, 3);```3.可视化结果最后,我们可以使用MATLAB 的plot 函数将最短路径可视化。

例如,我们绘制节点和边以及最短路径:```matlabplot(G, SP);```三、Dijkstra 算法应用示例以下是一个使用Dijkstra 算法求解最短路径的例题:在一个图中,有4 个节点和3 条边,如下所示:```1 --2 -- 3| /| /| /| /|/4```请问,节点1 到节点4 的最短路径是多少?。

利用Matlab编程计算最短路径及中位点选址

利用Matlab编程计算最短路径及中位点选址

139§19. 利用Matlab 编程计算最短路径及中位点选址1、最短路问题两个指定顶点之间的最短路径。

例如,给出了一个连接若干个城镇的铁路网络,在这个网络的两个指定城镇间,找一条最短铁路线。

以各城镇为图G 的顶点,两城镇间的直通铁路为图G 相应两顶点间的边,得图G 。

对G 的每一边e ,赋以一个实数)(e w —直通铁路的长度,称为e 的权,得到赋权图G 。

G 的子图的权是指子图的各边的权和。

问题就是求赋权图G 中指定的两个顶点00,v u 间的具最小权的轨。

这条轨叫做00,v u 间的最短路,它的权叫做00,v u 间的距离,亦记作),(00v u d 。

求最短路已有成熟的算法:迪克斯特拉(Dijkstra )算法,其基本思想是按距0u 从近到远为顺序,依次求得0u 到G 的各顶点的最短路和距离,直至0v (或直至G 的所有顶点),算法结束。

为避免重复并保留每一步的计算信息,采用了标号算法。

下面是该算法。

(i) 令0)(0=u l ,对0u v ≠,令∞=)(v l ,}{00u S =,0=i 。

(ii) 对每个i S v ∈(i i S V S \=),用)}()(),({min uv w u l v l iS u +∈代替)(v l 。

计算)}({min v l iS v ∈,把达到这个最小值的一个顶点记为1+i u ,令140}{11++=i i i u S S 。

(iii). 若1||-=V i ,停止;若1||-<V i ,用1+i 代替i ,转(ii)。

算法结束时,从0u 到各顶点v 的距离由v 的最后一次的标号)(v l 给出。

在v 进入i S 之前的标号)(v l 叫T 标号,v 进入i S 时的标号)(v l 叫P 标号。

算法就是不断修改各项点的T 标号,直至获得P 标号。

若在算法运行过程中,将每一顶点获得P 标号所由来的边在图上标明,则算法结束时,0u 至各项点的最短路也在图上标示出来了。

matlab floyd最短路算法例题

matlab floyd最短路算法例题

感谢您为我指定了这个主题,让我有机会与您共享关于matlab floyd 最短路算法例题的深度和广度的文章。

在本文中,我将从浅入深地介绍这个主题,并给出相关的例题和解析,以便您能更好地理解这一算法。

1. matlab floyd最短路算法简介matlab floyd最短路算法是一种用于计算图中各顶点之间最短路径的算法。

它采用动态规划的思想,通过不断更新两点之间的最短距离来求解整个图中所有点之间的最短路径。

这个算法的时间复杂度为O(n^3),适用于有向图或者无向图。

2. 例题分析假设我们有一个有向图,包含5个点和7条边,我们需要使用matlab floyd算法来求解任意两点之间的最短路径。

- 我们首先需要构建图的邻接矩阵,表示各点之间的距离或者权值。

我们可以根据邻接矩阵使用matlab floyd算法来求解最短路径。

- 以图中任意两点之间的最短路径为例,假设我们需要求解点1到点4之间的最短路径。

我们可以在求解过程中使用动态规划的方法,通过不断更新点1到点4的最短距离来求解最终的最短路径。

3. 个人观点和理解对于matlab floyd最短路算法,我个人认为它是一种非常实用且高效的算法。

尤其是对于大规模的图,使用matlab floyd算法可以快速地求解各点之间的最短路径,为很多实际问题的求解提供了便利。

总结与回顾通过本文的介绍和例题分析,相信您对matlab floyd最短路算法已有了更深入的理解。

希望本文能够对您有所帮助,也欢迎您共享更多关于这个主题的想法和见解。

以上是本文对matlab floyd最短路算法的介绍和分析,希望能够带给您一些启发和帮助。

如果还有其他疑问或者需要进一步讨论,欢迎随时与我交流。

matlab floyd最短路算法是一种非常重要的图论算法,它能够在有向图或者无向图中高效地求解任意两点之间的最短路径。

在本文中,我们将更加深入地了解matlab floyd最短路算法的原理和实际应用,并通过详细的例题分析来加深对该算法的理解。

Matlab_Floyd算法求解最短路

Matlab_Floyd算法求解最短路

Matlab_Floyd算法求解最短路最短路问题(short-path problem)是⽹络理论解决的典型问题之⼀,可⽤来解决管路铺设、线路安装、⼚区布局和设备更新等实际问题。

基本内容是:若⽹络中的每条边都有⼀个数值(长度、成本、时间等),则找出两节点(通常是源节点和阱节点)之间总权和最⼩的路径就是最短路问题。

解决最短路问题的Floyd算法:Floyd算法:⼜称为插点法,是⼀种利⽤的思想寻找给定的中多源点之间的算法。

算法步骤:(1)从任意⼀条单边路径开始。

所有两点之间的距离是边的权,如果两点之间没有边相连,则权为⽆穷⼤。

(2)对于每⼀对顶点 u 和 v,看看是否存在⼀个顶点 w 使得从 u 到 w 再到 v ⽐已知的路径更短。

如果是,更新它。

把图⽤邻接矩阵G表⽰出来,如果从Vi到Vj有路可达,则G[i][j]=d,d表⽰该路的长度;否则G[i][j]=⽆穷⼤。

定义⼀个矩阵D⽤来记录所插⼊点的信息,D[i][j]表⽰从Vi到Vj需要经过的点,初始化D[i][j]=j。

把各个顶点插⼊图中,⽐较插点后的距离与原来的距离,G[i][j] = min( G[i][j], G[i][k]+G[k][j] ),如果G[i][j]的值变⼩,则D[i][j]=k。

在G中包含有两点之间最短道路的信息,⽽在D中则包含了最短通路径的信息。

例:已知有6个村⼦,相互间道路如图所⽰。

欲合建⼀所⼩学,已知A处有⼩学⽣50⼈,B处40⼈,C处60⼈,D处20⼈,E处70⼈,F处90⼈,问学校应建在哪个村⼦,使得学⽣上学最⽅便。

程序代码:(1)road函数的m⽂件:function minroad=road(u,s,begin_node,end_node)minroad=[];S=s;k=S(begin_node,end_node);if(k~=begin_node)&&(k~=end_node)minroad=[begin_node,k];endif(k==begin_node)||(k==end_node)fprintf('输⼊错误!');endwhile(k~=end_node)k=S(k,end_node);minroad=[minroad,k];endend(2)Floyd算法的m⽂件:d=[0 2 7 Inf Inf Inf2 0 4 6 8 Inf7 4 0 1 3 InfInf 6 1 0 1 6Inf 8 3 1 0 3Inf Inf Inf 6 3 0];n=length(d);U=d;S=zeros(n,n);for i=1:nfor j=1:nS(i,j)=j;endendfor i=1:nfor j=1:nfor m=1:nif U(i,j)>U(i,m)+U(m,j) S(i,j)=S(i,m);U(i,j)=U(i,m)+U(m,j);endendendendpeople=[50 40 60 20 70 90]; distance=[inf inf inf inf inf inf]; for i=1:ndistance(i)=U(i,:)*people';endSUpeopledistance[min_distance,village]=min(distance) begin_node=input('输⼊起始节点:begin=') end_node=input('输⼊终⽌节点:end=') minroad=road(U,S,begin_node,end_node)运⾏结果:>> FloydS =1 2 2 2 2 21 2 3 3 3 32 234 4 43 3 345 54 4 4 45 65 5 5 5 5 6U =0 2 6 7 8 112 0 4 5 6 96 4 0 1 2 57 5 1 0 1 48 6 2 1 0 311 9 5 4 3 0people =50 40 60 20 70 90distance =2130 1670 1070 1040 1050 1500 min_distance =1040village =4begin=1begin_node =1end=6end_node =6minroad =1 2 3 4 5 6综上所述,学校应建在D村,最短路为1040。

用matlab实现寻找最短路

用matlab实现寻找最短路

用matlab寻找赋权图中的最短路中的应用1引言图论是应用数学的一个分支,它的概念和结果来源都非常广泛,最早起源于一些数学游戏的难题研究,如欧拉所解决的格尼斯堡七桥问题,以及在民间广泛流传的一些游戏的难题,如迷宫问题,博弈问题等。

这些古老的难题,吸引了很多学者的注意。

1847年,图论应用于分析电路网络,这是它最早应用于工程科学,以后随着科学的发展,图论在解决运筹学,网络理论,信息论,控制论,博弈论以及计算机科学等各个领域的问题时,发挥出很大的作用。

在实践中,图论已成为解决自然科学,工程技术,社会科学,军事等领域中许多问题的有力工具之一。

最短路问题是图论理论中的经典问题,寻找最短路径就是在指定网络中两节点间找一条距离最小的路。

2 最短路2.1 最短路的定义(short-path problem)对最短路问题的研究早在上个世纪60年代以前就卓有成效了,其中对赋权图()0w≥的有效算法是由荷兰著名计算机专家E.W.Dijkstra在1959年首次提出的,该算法能ij够解决两指定点间的最短路,也可以求解图G中一特定点到其它各顶点的最短路。

后来海斯在Dijkstra算法的基础之上提出了海斯算法。

但这两种算法都不能解决含有负权的图的最短路问题。

因此由Ford提出了Ford算法,它能有效地解决含有负权的最短路问题。

但在现实生w≥的情况下选择Dijkstra算法。

活中,我们所遇到的问题大都不含负权,所以我们在()0ij若网络中的每条边都有一个数值(长度、成本、时间等),则找出两节点(通常是源节点和阱节点)之间总权和最小的路径就是最短路问题。

最短路问题是网络理论解决的典型问题之一,它不仅可以直接应用于解决生产实际的许多问题,如管路铺设、线路安装、厂区布局和设备更新等,而且经常被作为一个基本的工具,用于解决其他的做优化问题。

定义1:若图G=G(V,E)中个边[v i,v j]都赋有一个实数w ij ,则称这样的图G为赋权图,w ij 称为边[v i,v j]上的权。

MATLAb最短路问题

MATLAb最短路问题
称 为 G 的 由 E 1 导 出 的 子 图 , 记 为 G [ E 1 ] .
[ { v 1 , v 4 , v 5 } ] [ { e 1 , e 2 , e 3 } ]
MATLAb最短路问题
返回
关联矩阵
对 无 向 图 G , 其 关 联 矩 阵 M = ( m i) j , 其 中 :
G 的图解如图.
MATLAb最短路问题
定义 在 图 G 中 , 与 V 中 的 有 序 偶 ( v i , v j ) 对 应 的 边 e , 称 为 图 的 有 向
边 ( 或 弧 ) , 而 与 V 中 顶 点 的 无 序 偶 v i v j相 对 应 的 边 e , 称 为 图 的 无 向 边 . 每 一 条 边 都 是 无 向 边 的 图 , 叫 无 向 图 ; 每 一 条 边 都 是 有 向 边 的 图 , 称 为 有 向 图 ; 既 有 无 向 边 又 有 有 向 边 的 图 称 为 混 合 图 .
则称w(P) w(e)为路径P的权. eE(P)
(2) 在赋权图G中,从顶点u到顶点v的具有最小权的路
P*(u,v),称为u到v的最短路.
MATLAb最短路问题
返回
固定起点的最短路
最短路是一条路径,且最短路的任一段也是最短路. 假设在u0-v0的最短路中只取一条,则从u0到其 余顶点的最短路将构成一棵以u0为根的树.
称为相邻的边. (4)边和它的端点称为互相关联的. (5)既没有环也没有平行边的图,称为简单图. (6)任意两顶点都相邻的简单图,称为完备图,记为Kn,其中n
为顶点的数目.
( 7)若V=X Y,X Y= ,X 中任两顶点不相邻,Y 中任两顶
点不相邻,称G为二元图;若X 中每一顶点皆与Y 中一切顶点 相邻,称为完备二元图,记为Km,n,其中m,n 分别为X 与Y 的顶 点数目.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于MATLAB求解最短路问题1.引言MATLAB和Mathematica、Maple并称为三大数学软件。

它在数学类科技应用软件中在数值计算方面首屈一指。

通过本学期的学习了解和上机实践,已经初步掌握使用MATLAB工具解决实际问题的能力。

结合运筹学课程的学习,我考虑使用MATLAB求解最短路问题,而在所有求解最短路的方法中,Dijkstra算法是最为经典的一种,因此本文主要解决在MATLAB环境下使用Dijkstra算法求解最短路。

1.1 提出问题设6个城市v1,v2,......,v6之间的一个公路网(图1)每条公路为图中的边,边上的权数表示该段公路的长度(单位:百公里),设你处在城市v1,那么从v1到v6应选择哪一路径使你的费用最省。

1.2 分析问题这属于一个典型的求解最短路的问题,图中顶点代表六个城市,边上的权数表示该段公路的长度,题目所求为从v1到v6、的一条费用最省的路径,我们假设所需费用仅与路径长短有关,因此求费用最省的路径即求权值最小的路径。

网络图中各权值均为正,可以使用Dijkstra算法。

1.3 数据整理将网络图中各边的权作如下整理以方便程序运行W(1,2)=5; W(2,1)=5;W(1,3)=2; W(3,1)=2;W(2,3)=1; W(3,2)=1;W(2,4)=5; W(4,2)=5;W(2,5)=5; W(5,2)=5;W(3,4)=8; W(4,3)=8;W(3,5)=10; W(5,3)=10;W(4,5)=2; W(5,4)=2;W(4,6)=5; W(6,4)=5;W(5,6)=2; W(6,5)=2;2.数学原理2.1 Dijkstra算法介绍Dijkstra 算法思想为:设G=(V,E)是一个带权有向图(也可以是无向图,无向图是有向图的特例),把图中顶点集合V分成两组:第一组为已求出最短路径的顶点集合(用S 表示,初始时S 中只有一个源点,以后每求得一条最短路径,就将其加入到集合S 中,直到全部顶点都加入到S 中,算法就结束了);第二组为其余未确定最短路径的顶点集合(用U 表示),按最短路径长度的递增次序依次把第二组的顶点加入S 中。

在加入的过程中,总保持从源点v 到S 中各顶点的最短路径长度不大于从源点v 到U 中任何顶点的最短路径长度。

此外,每个顶点对应一个距离,S 中的顶点的距离就是从v 到此顶点的最短路径长度,U中的顶点的距离,是从v 到此顶点只包括S 中的顶点为中间顶点的当前最短路径长度。

其步骤主要有:第一,初始时,S 只包含源点,即S={顶点},v 的距离为0。

U 包含除v 外的其他顶点,U 中顶点u 距离为边上的权(若v 与u 有边)或(若u 不是v 的出边邻接点)。

第二,从U 中选取一个距离v 最小的顶点k,把k 加入S 中(该选定的距离就是v 到k 的最短路径长度)。

第三,以k 为新考虑的中间点,修改U 中各顶点的距离;若从源点v 到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u 的距离值,修改后的距离值的顶点k 的距离加上边上的权。

第四,重复步骤第二步和第三步直到所有顶点都包含在S 中。

3.程序设计function [c0,c,path0,path]=dijkstra(s,t,C,flag)s=floor(s);t=floor(t);n=size(C,1);label=ones(1,n)*inf;label(s)=0;S=[s];Sbar=[1:s-1,s+1:n];c0=0;path=zeros(n,n);path(:,1)=s;c=ones(1,n)*inf;parent=zeros(1,n);i=1; % number of points in point set S.while i<n% for each point in Sbar, replace label(Sbar(j)) by% min(label(Sbar(j)),label(S(k))+C(S(k),Sbar(j)))for j=1:n-ifor k=1:iif label(Sbar(j)) > label(S(k))+C(S(k),Sbar(j))label(Sbar(j))=label(S(k))+C(S(k),Sbar(j));parent(Sbar(j))=S(k);endendend% Find the minmal label(j), j \in Sbar.temp=label(Sbar(1));son=1;for j=2:n-iif label(Sbar(j))< temptemp=label(Sbar(j));son=j;endend% update the point set S and SbarS=[S,Sbar(son)];Sbar=[Sbar(1:son-1),Sbar(son+1:n-i)];i=i+1;% if flag==1, just output the shortest path between s and t.if flag==1 && S(i)==tson=t;temp_path=[son];if son~=swhile parent(son)~=sson=parent(son);temp_path=[temp_path,son];endtemp_path=[temp_path,s];endtemp_path=fliplr(temp_path);m=size(temp_path,2);path0(1:m)=temp_path;c_temp=0;for j=1:m-1c_temp=c_temp+C(temp_path(j),temp_path(j+1));endc0=c_temp;path(t,1:m)=path0;c(t)=c0;returnendend% Form the output resultsfor i=1:nson=i;temp_path=[son];if son~=swhile parent(son)~=sson=parent(son);temp_path=[temp_path,son];endtemp_path=[temp_path,s];endtemp_path=fliplr(temp_path);m=size(temp_path,2);path(i,1:m)=temp_path;c_temp=0;for j=1:m-1c_temp=c_temp+C(temp_path(j),temp_path(j+1));endc(i)=c_temp;c0=c(t);path0=path(t,:);endreturn4.结果分析4.1 运行程序clcs=1;t=6;flag=1;W=ones(9,9)*inf; %for i=1:9W(i,i)=0;endW(1,2)=5; W(2,1)=5;W(1,3)=2; W(3,1)=2;W(2,3)=1; W(3,2)=1;W(2,4)=5; W(4,2)=5;W(2,5)=5; W(5,2)=5;W(3,4)=8; W(4,3)=8;W(3,5)=10; W(5,3)=10;W(4,5)=2; W(5,4)=2;W(4,6)=5; W(6,4)=5;W(5,6)=2; W(6,5)=2;[c0,c,path0,path]=dijkstra(s,t,W,flag);c0path04.2 运行结果4.3 结果分析由运行结果可知,从V1到V6的最短路径长度为10,路径为:V1->V3->V2->V5->V6,结合网络图进行验证,所求即为最短路。

并且利用上述程序还可求得网络中任意两点之间的最短路径。

5.学习体会MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。

MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室)。

是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。

它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。

Matlab的学习是在运筹学之后开始的,虽然是作为选修课,也只安排了短短的10次课,但从一开始学习,我就抱着要掌握好这个工具的态度上课,因为不管是数学建模还是运筹学中,都可以用到它解决很多实际问题。

课堂上教员给我们讲解了软件的基本操作并介绍了大量常用的命令,通过理论学习和上机实践操作,慢慢的从开始的完全不懂渐渐能够编写一些简单的M文件解决一些应用题,其中的成就感是相当令人欣慰的。

虽然在此之前我们还学过C语言、C++和数据库,也可以用它们来编程解题,但相比之下,使用MATLAB要简单得多,同样的一个问题,用编程的方法可能需要编写很多条代码,在这个软件中却可以轻松实现。

“师傅领进门,修行靠个人”,受限于开课课时,教员不可能给我们做太过深入的教学,因此要想学好这个软件,最重要的还是靠自己课下的探索,任何工具性的东西都是这样,只有练熟才了生巧。

对提高matlab编程能力的方法,我想主要有以下三个:1、查help在第一节课教员就向我们介绍了help命令,在学习过程中,时常遇到一些不知道的关键字,这时候只要通过help命令就可以找到该关键字的介绍,并且还有部分举例,非常有助于理解程序。

2、多上论坛,搜索帖子、发帖询问网上有很多关于MATLAB的贴吧和论坛,许多学习这个程序的人都在这里交流,有初学者也有高手,上论坛的一个好处就是可以知道别人在学习过程中都遇到了一些什么问题,他们是怎么解决的,有什么好的学习经验和方法可以供自己借鉴,甚至也可以自己发帖和别人交流,请教高手解答自己的困惑等等。

3、阅读别人、特别是牛人的程序多阅读程序永远是编程类软件学习的必经途径,只有通过多阅读,才能理解算法的思想,熟悉代码的编写方法。

当然了,正如所有的程序语言一样,“3分课本7分上机”,一定要动手才行,不能光看。

多想、多思考、多尝试才是正路。

我所学的系统工程专业今后还有许多课程都要用到MATLAB这个工具,以后参加数学建模竞赛也少不了它,可以说学习才刚开始,还有很多方面需要去做更深的探索,只有一点一滴的不断积累,从一次次阅读程序中去学习代码的使用,掌握经典算法,并用以联系实际解决问题,才能最终真正掌握它。

相关文档
最新文档