平均值、方差、标准差
均值方差标准差

关于抽样分布我们要了解的:
Y 的均值是多少?
如果 E(Y ) =真实的 = .78, 则Y 是 of 的无偏
unbiased 估计量 Y 的方差是多少?
var(Y ) 如何依赖于 n (著名的 1/n 公式)
当 n 较大时 Y 是否靠近 ? 大数定律: Y 是 的相合 consistent 估计量
14
Y 的抽样分布(续)
例: 设 Y 取 0 或 1 ( Bernoulli 随机变量),服从概率分布,
Pr[Y = 0] = .22, Pr(Y =1) = .78 则
E(Y) = p1 + (1 – p)0 = p = .78
2 Y
=
E[Y
–
E(Y)]2
=
p(1
–
p)
= .78(1–.78) = 0.1716
24
Y E(Y )
相同例子:
的抽样分布:
var(Y )
25
总结: Y 的抽样分布
当
Y1,…,Yn
i.i.d.
满足
0
<
2 Y
<
时,
Y 的精确(有限样本)分布均值为Y (“Y 是Y 的无偏估
计量”)
方差为
2 Y
/n
除了其均值和方差, Y 的精确分布非常复杂取决于 Y 的分
布 (总体分布)
协方差是 X 和 Z 线性关联程度的度量; 其单位为 X 的单位
Z 的单位
cov(X,Z) > 0 表明 X 和 Z 正相关 若 X 和 Z 独立分布, 则 cov(X,Z) = 0 (反之不成立!!)
卡西欧计算器算平均数、方差、标准差按键使用方法

卡西欧计算器算平均数、方差、标准差
按键说明
1`按SHIFT+MODE,再按“下”,选3“STAT”,再按1“ON”;2·按MODE,选2“STAT”,再1“1-VAR”,出现两栏,左边是数,右边是频数,将要统计的数字逐一输入,注意每输入一个数据按一次等号,屏幕上相应显示出刚才输入的数据;输好后按“AC”返回,再按SHIFT+1(STAT),选4,Var,
如果选2,按“=”就是加权平均源自。如果选3∂ ,按”=”就是标准差,再按 就是方差。
(^_^),加油!!!
多练习几遍,相信你一定学会了吧!
均值与方差的关系公式

平均方差是标准偏差。
而方差和标准差都是一组(一维)数据的统计,反映的是一维数组的离散程度;协方差是对二维数据进行的,反映的是两组数据之间的相关性。
与标准差和均值的量纲(单位)一致,标准差比方差更方便描述一个波动范围。
方差可以看作是协方差的一个特例,即两组数据是相同的。
协方差只表示线性相关的方向,取值范围从正无穷大到负无穷大。
一、均方差公式均值方差的公式为:s=((x1-x的平均值)2(x2-x的平均值)2(x3-x的平均值)^2 ……(xn-x的xn-x平均值)2)/n的算术平方根,其中xn表示第n个元素。
均值方差,又称标准差,是指偏离均方的算术平均值的算术平方根。
均方差的定义均值方差,也称为标准差或标准差,是偏离均方的算术平均值的算术平方根。
均方差是概率统计中最常用的统计分布的度量基础。
标准差可以反映数据集的离散程度。
均值相同的两组数据的标准差可能不一样。
均方差反映了群体内个体间的分散程度。
原则上,测量分布程度的结果具有两个性质:1 .它是非负值,与测量数据具有相同的单位。
2.总量或随机变量的标准偏差与样本子集的标准偏差之间存在差异。
二、均方差怎么计算计算均方差,要看样本量是等概率还是概率。
如果没有概率,直接计算离差平方=(样本量-平均值),然后对样本量离差平方求和,除以(样本数-1),再开根号,就是标准差。
如果有概率,计算总数时只需要考虑加权平均,不用除以数-1,直接开根号即可。
三、什么是最小均方差准则最小均方误差准则是最小均方误差准则,即选取一组时域采样值,采用最小均方误差算法使均方误差最小,从而达到更优设计。
这种方法着眼于整个频率范围内总误差的全局最小,但不能保证局部频点的性能,有些频点可能会有较大的误差。
方差标准差标准离差率

方差标准差标准离差率
方差是一组数据的离散程度的度量,用来衡量数据与其平均值之间的差异程度。
标准差是方差的平方根,它表示数据的离散程度。
标准离差率是指标准差与平均值的比值,用来衡量数据的离散程度与平均值之间的关系。
它可以表示为标准差除以平均值的绝对值。
标准离差率越大,表示数据的离散程度越大。
方差的计算公式为:
方差 = [(x1-平均值)^2 + (x2-平均值)^2 + ... + (xn-平均值)^2] / n
标准差的计算公式为:
标准差= √方差
标准离差率的计算公式为:
标准离差率 = 标准差 / 平均值。
平均值、方差、标准差

平均值(Mean)、方差(Variance)、标准差(Standard Deviation) 对于一维数据的分析,最常见的就是计算平均值(Mean)、方差(Variance)和标准差(Standard Deviation)。
平均值平均值的概念很简单:所有数据之和除以数据点的个数,以此表示数据集的平均大小;其数学定义为:以下面10个点的CPU使用率数据为例,其平均值为。
14 31 16 19 26 14 14 14 11 13方差、标准差方差这一概念的目的是为了表示数据集中数据点的离散程度;其数学定义为:标准差与方差一样,表示的也是数据点的离散程度;其在数学上定义为方差的平方根:为什么使用标准差与方差相比,使用标准差来表示数据点的离散程度有3个好处:表示离散程度的数字与样本数据点的数量级一致,更适合对数据样本形成感性认知。
依然以上述10个点的CPU使用率数据为例,其方差约为41,而标准差则为;两者相比较,标准差更适合人理解。
表示离散程度的数字单位与样本数据的单位一致,更方便做后续的分析运算。
在样本数据大致符合正态分布的情况下,标准差具有方便估算的特性:%的数据点落在平均值前后1个标准差的范围内、95%的数据点落在平均值前后2个标准差的范围内,而99%的数据点将会落在平均值前后3个标准差的范围内。
贝赛尔修正在上面的方差公式和标准差公式中,存在一个值为N的分母,其作用为将计算得到的累积偏差进行平均,从而消除数据集大小对计算数据离散程度所产生的影响。
不过,使用N 所计算得到的方差及标准差只能用来表示该数据集本身(population)的离散程度;如果数据集是某个更大的研究对象的样本(sample),那么在计算该研究对象的离散程度时,就需要对上述方差公式和标准差公式进行贝塞尔修正,将N替换为N-1:经过贝塞尔修正后的方差公式:经过贝塞尔修正后的标准差公式:公式的选择是否使用贝塞尔修正,是由数据集的性质来决定的:如果只想计算数据集本身的离散程度(population),那么就使用未经修正的公式;如果数据集是一个样本(sample),而想要计算的则是样本所表达对象的离散程度,那么就使用贝塞尔修正后的公式。
数理统计平均数、中位数、众数,极差、标准差、方差

平均数、中位数和众数的知识归纳与梳理:(一)平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
即x=(x1+x2+……+xn)÷n中位数:将一组数据按大小顺序排列,处在最中间位置的一个数或最中间的两个数的平均数叫做这组数据的中位数。
众数:在一组数据中出现次数最多的数叫做这组数据的众数。
平均数:一组数据的平均值平均水平平均数是描述一组数据的一种常用指标,反映了这组数据中各数据的平均大小。
平均数的大小与一组数据里的每个数据都有关系,其中任何数据的变动都会引起平均数的相应变动平均数一般的计算方法为:用一组数据的总和除以这组数据的个数.平均数的优点。
反映一组数的总体情况比中位数、众数更为可靠、稳定.平均数的缺点。
平均数需要整批数据中的每一个数据都加人计算,因此,在数据有个别缺失的情况下,则无法准确计算,计算的工作量也较大。
平均数易受极端数据的影响,从而使人对平均数产生怀疑。
中位数:在有序排列的一组数据中最居中的那个数据中等水平中位数是描述数据的另一种指标,如果将一组数按从小到大排列那么中位数的左边和右边恰有一样多的数据。
中位数仅与数据的大小排列位置有关,某些数据的变动对它的中位数没有影响.中位数是将数据按大小顺序依次排列(相等的数也要全部参加排序)后“找”到的.当数据的个数是奇数时,中位数就是最中间的那个数据;当数据的个数是偶数时,就取最中间的两个数据的平均数作为中位数.中位数的优点。
简单明了,很少受一组数据的极端值的影响。
中位数的缺点。
中位数不受其数据分布两端数据的影响,因此中位数缺乏灵敏性,不能充分利用所有数据的信息。
当观测数据已经分组或靠近中位数附近有重复数据出现时,则难以用简单的方法确定中位数。
众数一组数据中出现次数最多的那个数据。
集中趋势众数告诉我们,这个值出现次数最多,一组数据可以有不止一个众数,也可以没有众数。
众数着眼于对各数据出现的频数的考查,其大小只与这组数据中的部分数据有关.一组数据中的众数不止一个.当一组数据中有相同数据多次出现时,其众数往往是我们关心的.众数的优点比较容易了解一组数据的大致情况,不受极端数据的影响,并且求法简便。
平均值 方差 标准差

平均值方差标准差平均值、方差和标准差是统计学中常用的三个重要概念,它们分别用来描述数据的集中趋势和离散程度。
在实际应用中,平均值、方差和标准差经常被用来分析数据的特征,从而帮助我们更好地理解数据的分布规律和特点。
本文将对平均值、方差和标准差进行详细介绍,并且说明它们之间的关系和应用。
平均值是一组数据中所有数据值的总和除以数据的个数。
它是描述数据集中趋势的最基本统计量之一,通常用符号“μ”表示。
计算平均值的公式为,μ = (x1 + x2 + ... + xn) / n,其中x1, x2, ..., xn为数据值,n为数据的个数。
平均值可以直观地反映出数据的集中趋势,对于对称分布的数据来说,平均值是一个很好的代表。
然而,对于存在极端值或者偏态分布的数据来说,平均值可能并不是一个很好的描述统计量。
方差是一组数据与其平均值之差的平方和的平均值,它用来描述数据的离散程度。
方差的计算公式为,σ² = Σ(xi μ)² / n,其中xi为数据值,μ为平均值,n为数据的个数。
方差的单位是数据值的平方,所以在实际应用中,通常会使用标准差来度量数据的离散程度。
方差的大小反映了数据的离散程度,方差越大表示数据的离散程度越高,反之则数据的离散程度越低。
标准差是方差的平方根,它用来度量数据的离散程度。
标准差的计算公式为,σ = √(Σ(xi μ)² / n),其中xi为数据值,μ为平均值,n为数据的个数。
标准差与方差一样,可以反映数据的离散程度,但是由于标准差的单位与数据值一致,因此更容易理解和解释。
在实际应用中,标准差经常被用来度量数据的波动性,例如股票收益率的标准差可以用来衡量投资风险的大小。
平均值、方差和标准差之间存在着密切的关系。
平均值是数据的集中趋势的度量,方差和标准差则是数据的离散程度的度量。
在统计学中,方差和标准差是用来衡量数据的离散程度的重要指标,它们可以帮助我们更好地理解数据的分布规律和特点。
标准差 方差 平均值

标准差方差平均值标准差、方差和平均值是统计学中常用的三个概念,它们在描述和分析数据分布特征时起着重要的作用。
在实际应用中,我们经常会用到这些概念来衡量数据的离散程度、波动程度和集中趋势。
本文将分别对标准差、方差和平均值进行详细介绍,并说明它们在统计学和实际生活中的重要性。
首先,我们来介绍标准差。
标准差是一组数据离散程度的度量,它衡量的是数据点相对于平均值的离散程度。
标准差越大,数据点相对于平均值的离散程度就越大,反之亦然。
标准差的计算公式为,标准差=√(∑(Xi-μ)²/n),其中Xi代表每个数据点,μ代表平均值,n代表数据的个数。
标准差的大小可以直观地反映数据的波动程度,对于分析数据的稳定性和可靠性具有重要意义。
其次,我们来介绍方差。
方差也是衡量数据离散程度的指标,它是各个数据与其平均数之差的平方的平均数。
方差的计算公式为,方差=∑(Xi-μ)²/n,其中Xi 代表每个数据点,μ代表平均值,n代表数据的个数。
方差的大小直接反映了数据的波动程度,它是标准差的平方。
在实际应用中,方差常常用来衡量数据的稳定性和可靠性,对于比较不同数据集的波动程度具有重要意义。
最后,我们来介绍平均值。
平均值是一组数据集中趋势的度量,它是所有数据之和除以数据的个数。
平均值可以直观地反映数据的集中趋势,对于比较不同数据集的中心位置具有重要意义。
在实际应用中,平均值常常用来代表一组数据的集中位置,是统计分析中最基本的指标之一。
综上所述,标准差、方差和平均值是统计学中常用的三个概念,它们分别衡量了数据的离散程度、波动程度和集中趋势。
在实际应用中,我们经常会用到这些概念来分析数据的特征和规律,从而做出合理的决策。
因此,深入理解和熟练运用标准差、方差和平均值是统计学学习的重要内容,也是我们在实际工作和生活中需要掌握的基本技能。
希望本文对读者对这三个概念有更深入的理解和应用提供帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平均值(Mean)、方差(Variance)、标准差(Standard Deviation) 对于一维数据的分析,最常见的就是计算平均值(Mean)、方差(Variance)和标准差(Standard Deviation)。
平均值
平均值的概念很简单:所有数据之和除以数据点的个数,以此表示数据集的平均大小;其数学定义为:
以下面10个点的CPU使用率数据为例,其平均值为。
14 31 16 19 26 14 14 14 11 13
方差、标准差
方差这一概念的目的是为了表示数据集中数据点的离散程度;其数学定义为:
标准差与方差一样,表示的也是数据点的离散程度;其在数学上定义为方差的平方根:
为什么使用标准差?
与方差相比,使用标准差来表示数据点的离散程度有3个好处:
表示离散程度的数字与样本数据点的数量级一致,更适合对数据样本形成感性认知。
依然以上述10个点的CPU使用率数据为例,其方差约为41,而标准差则为;两者相比较,标准差更适合人理解。
表示离散程度的数字单位与样本数据的单位一致,更方便做后续的分析运算。
在样本数据大致符合正态分布的情况下,标准差具有方便估算的特性:%的数据点落在平均值前后1个标准差的范围内、95%的数据点落在平均值前后2个标准差的范围内,而99%的数据点将会落在平均值前后3个标准差的范围内。
贝赛尔修正
在上面的方差公式和标准差公式中,存在一个值为N的分母,其作用为将计算得到的累积偏差进行平均,从而消除数据集大小对计算数据离散程度所产生的影响。
不过,使用N 所计算得到的方差及标准差只能用来表示该数据集本身(population)的离散程度;如果数据集是某个更大的研究对象的样本(sample),那么在计算该研究对象的离散程度时,就需要对上述方差公式和标准差公式进行贝塞尔修正,将N替换为N-1:
经过贝塞尔修正后的方差公式:
经过贝塞尔修正后的标准差公式:
公式的选择
是否使用贝塞尔修正,是由数据集的性质来决定的:如果只想计算数据集本身的离散程度(population),那么就使用未经修正的公式;如果数据集是一个样本(sample),而想要计算的则是样本所表达对象的离散程度,那么就使用贝塞尔修正后的公式。
在特殊情况下,如果该数据集相较总体而言是一个极大的样本 (比如一分钟内采集了十万次的IO数据) ——在这种情况下,该样本数据集不可能错过任何的异常值(outlier),此时可以使用未经修正的公式来计算总体数据的离散程度。
R中平均值、方差与标准差的计算
在R中,平均值是通过mean()函数来计算的:
x <- c(14, 31, 16, 19, 26, 14, 14, 14, 11, 13)
mean(x)
方差则通过var()函数来计算:
x <- c(14, 31, 16, 19, 26, 14, 14, 14, 11, 13)
var(x)
标准差则通过sd()函数来计算:
x <- c(14, 31, 16, 19, 26, 14, 14, 14, 11, 13)
sd(x)
值得一提的是,R中所计算的方差和标准差是经过贝塞尔修正的;如果需要计算未经修正的结果,可以在R的计算结果上乘以(N-1)/N。
平均值与标准差的适用范围及误用
大多数统计学指标都有其适用范围,平均值、方差和标准差也不例外,其适用的数据集必须满足以下条件:中部单峰:
数据集只存在一个峰值。
很简单,以假想的CPU使用率数据为例,如果50%的数据点位于20附近,另外50%的数据点位于80附近(两个峰),那么计算得到的平均值约为50,而标准差约为31;这两个计算结果完全无法描述数据点的特征,反而具有误导性。
这个峰值必须大致位于数据集中部。
还是以假想的CPU数据为例,如果80%的数据点位于20附近,剩下的20%数据随机分布于30~90之间,那么计算得到的平均值约为35,而标准差约为25;与之前一样,这两个计算结果不仅无法描述数据特征,反而会造成误导。
遗憾的是,在现实生活中,很多数据分布并不满足上述两个条件;因此,在使用平均值、方差和标准差的时候,必须谨慎小心。
结语
如果数据集仅仅满足一个条件:单峰。
那么,峰值在哪里?峰的宽带是多少?峰两边的数据对称性如何?有没有异常值(outlier)?为了回答这些问题,除了平均值、方差和标准差,需要更合适的工具和分析指标,而这,就是中位数、均方根、百分位数和四分差的意义所在。