北师大版数学八年级上册全套ppt课件及复习

合集下载

北师大版数学八年级上册全册复习优质ppt

北师大版数学八年级上册全册复习优质ppt
线性回归分析
在统计学中,一次函数用于线性回归分析,以探 索变量之间的关系。
05
第五章:整式的乘除与 因式分解
整式的乘法与除法
整式乘法
掌握单项式与单项式、单项式与多项Байду номын сангаас、多项式与多项式的乘法法则,能够熟 练进行整式的乘法运算。
整式除法
理解整式除法的意义,掌握单项式除以单项式、多项式除以单项式的除法法则 ,能够熟练进行整式的除法运算。
否相等或相似。
综合应用
03
在实际问题中,等腰三角形和轴对称常常一起出现,需要综合
运用两者的性质和判定来解决实际问题。
03
第三章:实数
平方根和算术平方根
平方根的定义
一个非负数x的平方根是一个数y,满足y^2=x。正数的 平方根有两个,一正一负,互为相反数。0的平方根是0 。
平方根的性质
一个正数的算术平方根是正的,0的算术平方根是0,负 数没有实数平方根。
的图像。
图像性质
一次函数的图像是一条直线,其 斜率为$k$,与y轴的交点为 $(0,b)$。
增减性
当$k>0$时,函数为增函数;当 $k<0$时,函数为减函数。
一次函数的应用
实际问题建模
利用一次函数可以建立实际问题的数学模型,如 速度、时间、距离等问题。
最优化问题
通过一次函数可以解决最优化问题,如最大值、 最小值等。
北师大版数学八年级上册全册复习 优质
汇报人:可编辑 2023-12-24
目录
• 第一章:全等三角形 • 第二章:轴对称与等腰三角形 • 第三章:实数 • 第四章:一次函数 • 第五章:整式的乘除与因式分解
01
第一章:全等三角形

北师大版数学八年级上册全册复习优质ppt

北师大版数学八年级上册全册复习优质ppt
代数与几何的综合应用包括一元一次方程、平面直角坐标系、一次函数、三角形、 四边形等知识点,这些知识点相互联系,需要学生系统掌握。
学生需要通过练习大量的题目来巩固所学知识,并提高解题能力和思维能力。
函数与几何的综合应用
函数与几何的综合应用是数学中的重 要知识点,需要学生掌握函数和几何 的基本概念和性质,并能够灵活运用 。

方程式复习
总结词
掌握一元一次方程的解法
一元一次方程的标准形式
了解一元一次方程的标准形式,并能 够将其转化为一般形式。
一元一次方程的解法
掌握一元一次方程的解法,包括移项 、合并同类项、系数化为1等步骤。
一元一次方程的应用题
理解一元一次方程在实际问题中的应 用,能够根据实际问题建立一元一次 方程并求解。
理解单项式除以单项式、单项式除以多项 式、多项式除以单项式的运算方法,能够 进行整式的除法运算。
分式复习
01
02
03
04
总结词
掌握分式的约分、通分和四则 运算
分式的约分
了解分式约分的概念和方法, 能够将分式化简为最简形式。
分式的通分
理解分式通分的概念和方法, 能够将分式进行通分。
分式的四则运算
掌握分式的加、减、乘、除运 算,能够进行分式的四则运算
学生需要通过练习大量的题目来巩固 所学知识,并提高解题能力和思维能 力。
函数与几何的综合应用包括一次函数 、反比例函数、二次函数、直角三角 形等知识点,这些知识点相互联系, 需要学生系统掌握。
代数与函数的综合应用
代数与函数的综合应用是数学中的重要 知识点,需要学生掌握代有广泛的应用 ,如路程、速度和时间的关系等。
二次函数复习
二次函数定义

北师大版八年级数学上册第一章勾股定理复习与小结课件

北师大版八年级数学上册第一章勾股定理复习与小结课件

P
M
教学过程——典例精析
第一章 勾股定理
听一听
典例3 如图,长方形 ABCD 中,AB=3,AD=9,将此长方形折叠,使点 D与点B
重合,折痕为 EF,求△ABE 的面积。
A
B
E
D
F
C
教学过程——典例精析
第一章 勾股定理
听一听
A
解析:折叠问题中,要找到折叠前
后相等的线段或角,注意这些线段
与其他线段的关系,再利用勾股定
D. 若、、是的△ABC的三边,且 − = ,则∠A=90°
第一章 勾股定理
基础训练
第一章 勾股定理
2. 如图是商场的台阶的示意图,已知每级台阶的宽度都是20cm,每级台
阶的高度都是15cm,则连接AB的线段长为( B )
A. 100cm
B. 150cm
C. 200cm
D. 250cm
解:(1)供水站P的位置如图所示.
(2)过B作BM⊥,过A’作A’M⊥BM于M.
B
A
由已知可得A’M=8,BM=2+4=6.
在Rt△AMB中,
A’B2=AM2+BM2=82+62=100
解得A’B=10
5000×10+50000=100000.
故供水站修建完成后共计要花100000元.
∙∙
A’


是直角三角形.
知识梳理
第一章 勾股定理
内容:直角三角形两
直角边的平方和等于
斜边的平方.
探索勾
股定理
表达式:用
和分别表示直角三
角形的两直角边和斜
边,那么


验证方法:面积法

新北师大版八年级数学上册总复习课件

新北师大版八年级数学上册总复习课件
a2+b2=c2,那么这个三角形是直角三角形
B 符号语言: 在Rt△ABC中 a2+b2=c2 A C (4) 如果一个三角形一边上的中线等于这条边 的一半,那么这个三角形是直角三角形。
有四个三角形,分别满足下列条件: ①一个内角等于另两个内角之和; ②三个角之比为3:4:5; ③三边长分别为7、24、25 ④三边之比为5:12:13 其中直角三角形有( C ) A 、 1个 B 、 2个 C 、 3个 D 、 4 个
P M
B
60
E 60
D
N
80 100
30° 100
160
A
Q
有一棵树(如图中的CD)的10m高处B有两只猴子 ,其中一只猴子爬下树走到离树20m处的池塘A 处,另一只猴子爬到树顶D后直接跃向池塘的A处 ,如果两只猴子所经过的距离相等,试问这棵树 多高。 D x 解:设BD=xm 30-x B 由题意可知, BC+CA=BD+DA 10
a2+b2=c2 c a C
面积 两种计算面积的方法。 A
b
如何判定一个三角形是直角三角形呢? (1) 有一个内角为直角的三角形是直角三角形 (2) 两个内角互余的三角形是直角三角形 (3) 如果三角形的三边长为a、b、c满足
a2+b2=c2,那么这个三角形是直角三角形
符号语言:∵a2+b2=c2
2 2 2
a
C
b
2ab (a b) (a b ) 225 81 144
1 1 S ABC ab 144 36 2 4
已知Rt△ABC中,∠C=90°,若a+b=14cm, c=10cm,则Rt△ABC的面积是( A ) A.24cm2 B.36cm2 C.48cm2 D.60cm2

北师大版数学八年级上册全册复习ppt课件

北师大版数学八年级上册全册复习ppt课件
北师大版八年级上册 期末总复习典型题
CONTEN
目T录
第一章 勾股定理 第二章 实数
第三章 位置与坐标 第四章 一次函数
第五章 二元一次方程组
第六章 数据分析 第七章 平行线的证明
第一章 勾股定理
知识归纳
1.勾股定理
定义:如果直角三角形两直角边分别为 a、b,斜边为 c,那么a2+b2=c2
各种表达形式:在 RБайду номын сангаас△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分
找出格点C,使△ABC是面积为1个平方单位的直角三角形,这样
的点有____6____个.
图1-8 图1-9
[解析] 如图1-9,当∠A为直角时,满足面积为1的点是A1、 A2;当∠B为直角时,满足面积为1的点是B1、B2;当∠C为直角 时,满足面积为1的点是C、C1,所以满足条件的点共有6个.
3.已知三角形的三边为 a=34,b=54,c=1,这个三角形是 直角三角形吗?
6.B、C 是河岸边两点,A 为对岸岸上一点,测得∠ABC=45°, ∠ACB=45°,BC=50 m,则河宽 AD 为( )
B
A.25 2 m B.25 m
50 C. 3 3 m
D.25 3 m
图 1-10
7.如图1-11,已知△ABC中,∠C=90°,BA=15,AC=12,
以直角边BC为直径作半圆,则这个半圆的面积是__8_81_π____.
图1-19
15.一个棱长为6的木箱(如图1-20),一只苍蝇位于左面的壁 上,且到该面上两侧棱距离相等的A处.一只蜘蛛位于右面壁上 ,且到该面与上、下底面两交线的距离相等的B处.已知A到下 底面的距离AA′=4,B到一个侧面的距离BB′=4,则蜘蛛沿这 个立方体木箱的内壁爬向苍蝇的最短路程为多少?

北师大版八年级数学上册第一章全部课件

北师大版八年级数学上册第一章全部课件
总结
勾股定理的验证主要是通过拼图法利用面积的 关系完成的,拼图又常以补拼法和叠合法两种方式拼 图,补拼是要无重叠,叠合是要无空隙;而用面积法 验证的关键是要找到一些特殊图形(如直角三角形、 正方形、梯形)的面积之和等于整个图形的面积,从 而达到验证的目的.
(来自《点拨》)
知1-练
1 用四个边长均为a,b,c的直角三角板,拼成如
(来自《典中点》)
知2-导
知识点 2 勾股定理的应用
例2 我方侦察员小王在距离东西向公路400m处侦察,发现一 辆敌方汽车在公路上疾驰.他赶紧拿出红外测距仪,测得 汽车与他相距400m,10s后,汽车与他相距500m,你能 帮小王计算敌方汽车的速度吗?
分析:根据题意,可以画出右图, 其中点A表示小王所在位置, 点C、点B表示两个时刻敌方 汽车的位置.
弦 勾
股 图1
北师大版八年级数学上册
C A
B C
图2-1
A
B
图2-2
(图中每个小方格代表一个单位面积)
知1-导
(1)观察图2-1 正方形A中含有 9 个 小方格,即A的面积 是 9 个单位面积. 正方形B的面积是 9 个单位面积.
正方形C的面积是 18 个单位面积.
北师大版八年级数学上册
C A
B C
(来自《点拨》)
知1-讲
总结
勾股定理的验证主要是通过拼图法利用面积的 关系完成的,拼图又常以补拼法和叠合法两种方式拼 图,补拼是要无重叠,叠合是要无空隙;而用面积法 验证的关键是要找到一些特殊图形(如直角三角形、 正方形、梯形)的面积之和等于整个图形的面积,从 而达到验证的目的.
(来自《点拨》)
知1-讲
1 课堂讲解 2 课时流程

北师大版数学八年级上册全册复习优质ppt

北师大版数学八年级上册全册复习优质ppt
二次函数
二次函数是函数中的高级形式,需要掌握二次函 数的性质、图像、应用以及与实际问题的联系。
04
难点突破与提升
Chapter
代数难点突破与提升
整式与分式的运算
掌握整式与分式的加减乘除运算,理解其运算规则和技巧。
根式与根式的化简
理解根式的概念,掌握根式的化简方法,如合并同类项、提取公 因式等。
方程与不等式的解法
代数基础知识
代数式
代数式是由数字、字母通 过有限次的加、减、乘、 除、乘方和开方等代数运 算所得的式子。
方程与不等式
方程是含有未知数的等式 ,不等式是含有未知数的 不等关系。
函数
函数是两个变量之间的依 赖关系,一个变量随着另 一个变量的变化而变化。
几何基础知识
直线与角
直线是无限长的,角是两条射线 之间的夹角。
对北师大版数学八年级上册全册 的知识点进行了系例题,通过 解析和讨论,帮助学生掌握解题 方法和技巧。
展望未来
继续深化学习
建议学生在复习的基础上,继续 深化对数学知识的理解和掌握, 为后续的学习打下坚实的基础。
培养数学思维
通过数学学习,培养学生的逻辑 思维能力、抽象思维能力和创新 思维能力,为未来的学习和生活 打下良好的基础。
二元一次方程组
二元一次方程组是代数方程中的 重要形式,需要掌握方程组的解 法、应用以及与实际问题的联系

几何重点知识
三角形
三角形是几何中最基本的多边形,需要掌握三角形的性质、分类 、全等判定以及与实际问题的联系。
四边形
四边形是几何中常见的多边形,需要掌握四边形的性质、分类、全 等判定以及与实际问题的联系。

05
典型例题解析与练习

新版北师大版八年级数学上册全册课件共570张PPT

新版北师大版八年级数学上册全册课件共570张PPT

二、新课讲解
二、新课讲解
例 一个零件的形状如图1所示,按规定这个零件中
∠A和∠DBC都应为直角.工人师傅量得这个零件各边尺
寸如图2所示,这个零件符合要求吗?
图1
图2
解:∵在Rt△ABD中,AB2+AD2=9+16=25=BD2, ∴△ABD是直角三角形,∠A是直角. ∵在△BCD中,BD2+BC2=25+144=169=CD2, ∴△BCD是直角三角形,∠DBC是直角. 因此,这个零件符合要求.
一、新课引入
观察右边两图并填写下表(每个小正方形的面积为 单位1)
A 的面积 B 的面积 C 的面积
左图
9
9
右图
4
4
怎样计算正
方形C 的面积
呢?
一、新课引入
分析表中数据,你发现了什么? A的面积 B的面积 C的面积
9
9
18
4
4
8
SA SB SC
16
9
25
1
9
10
以直角三角形两直角边为边长的 小正方形的面积的和,等于以斜边为 边长的正方形的面积.
9,12,15
12,16,20
30,40,50
5,12,13
10,24,26
15,36,39
20,48,52
50,120,130
8,15,17 7,24,25
16,30,34 14,48,50
24,45,51 21,72,75
32,60,68 28,96,100
80,150,170 70,240,250
四、强化训练 5、已知:△ABC,AB=AC=17, BC=16,则高AD=15,S△ABC=120
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为a,b,斜边长为 c ,那么
a b c
2 2
2
即直角三角形两直角边的平方和等于 斜边的平方.
我国古代把直角三角形中较短的直 角边称为勾,较长的直角边称为股,斜 边称为弦,“勾股定理”因此而得名. (在西方称为毕达哥拉斯定理)
勾 弦 股
三、简单应用
例 如图所示,一棵大树在一次强烈 台风中于离地面10米处折断倒下,树顶 落在离树根24米处. 大树在折断之前高多 少米?
自学指导
• 1.动手画画、动手算算、动脑想想 • 在纸上任意作出两个直角三角形,分别测量它们的三边长,且动笔算一下,三 条边长的平方有什么样的关系,你能猜想一下吗? • 2.借图说明 • (1)观察课本第三页图1—2,思考在两个直角三角形ABC中,三边的平方分别 是多少?你是怎样得到的?它们满足上面的结论吗? • (2)在图1—3中的两个直角三角形中,是否仍满足这样的关系?若能,试说明 你是如何求出正方形的面积? • 3.想想办法 • 如果直角三角形的两直角边分别为5个单位长度和12个单位长度,上面所猜想 的数量关系还成立吗?请说明你的理由
填表(每个小正方形的面积为单位1):
A的面积 左图 右图 B的面积 C的面积
怎样计算 正方形C 的面积呢?
4
9
9
16

方法一:
方法二:
方法三:
“割”
分割为四个直 角三角形和一 个小正方形
“补”
补成大正方形, 用大正方形的面 积减去四个直角 三角形的面积
“拼”
将几个小块拼成 一个正方形,如 图中两块红色 (或绿色)可拼 成一个小正方形
四、课堂小结
1.这一节课我们一起学习了哪些知识
和思想方法?
2.对这些内容你有什么体会?请与你
的同伴交流.
知识:勾股定理
如果直角三角形两直角边长分别为a,b,斜
边长为 c ,那么 a b c .
2 2 2
方法:1. 观察—探索—猜想—验证—归纳—应用; 2. “割、补、拼、接”法. 思想:1. 特殊—一般—特殊; 2. 数形结合思想.
二、探索发现勾股定理
探究活动一:
观察下面地板砖示意图:
观察这三 个正方形
你发现图中三个正方形的面积之间 存在什么关系吗?
换个角度来看呢?
你发现了什么?
结论1 以等腰直角三角形两直角
边为边长的小正方形的面积的和,等 于以斜边为边长的正方形的面积.
探究活动二:
观察右边两 幅图:
A B B C A C
当堂训练
1.求下图中字母所代表的正方形的面积。
225 c
81 c
400
225
2.在Rt△ABC中,∠C=90°,AC=5,BC=12,求AB的长。 3.在Rt△ABC中,∠C=90°,AB=25,AC=20,求△ABC的面积。 4.若直角三角形的两直角边之比为3:4,斜边长为20㎝,则斜边上的高 为 。 5.在Rt△ABC中,∠C=90°,若c=8.5,b=7.5,则a= 。 6. 在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为( ) B A.42 B.32 C.42或32 D.37或33 7.一个直角三角形的三边长为12、5和a, A 则以a为半径的圆的面积是 。 C 8.如图,点C是以AB为直径的半圆上一点, ∠ACB=90°,AC=3,BC=4,则图中阴影部分的 第 4题 面积是 。 9.直角三角形两直角边的比为3:4,面积是24,求这个三角形的周长。
分析表中数据,你发现了什么?
A的面积 左图 右图 B的面积 C的面积
4 16
9 9
13 25
S A S B SC
结论2 以直角三角形两直角边为
边长的小正方形的面积的和,等于以
斜边为边长的正方形的面三角形的两直角边的长a,b和 斜边长c来表示图中正方形的面积吗?
自学指导:
学习目标:
• 经历直角三角形的判别条件的探究过程,进一步发展学生 的推理能力 • 直角三角形判别条件的应用 • 直角三角形判别条件的应用
2
思考
同学们你们知道古埃及人用什么方法得到直角?
古埃及人曾用下面的方法得到直角: 用13个等距的结,把一根绳子分成等长的12 段,一个工匠同时握住绳子的第1个结和第13个 结,两个助手分别握住第4个结和第8个结,拉紧绳 子就得到一个直角三角形, 其直角在第4个结处.
北师大版八年级上册 数学 优质课件
探索勾股定理
一、情境引入
2002年世界数学家大会在我国北京召开,下 图是本届数学家大会的会标:
会标中央的图案是赵爽弦 图,它与“勾股定理”有关, 数学家曾建议用“勾股定理” 的图来作为与“外星人”联系 的信号.
学习目标
• 1.探索直角三角形的三边关系,进一步发展学生的说理合 简单推理的意识合能力。 • 2.经历用测量合数格子的方法探索勾股定理的过程,进一 步提高学生的合情推理意识,培养主动探究的思想。 • 3.培养数形结合的思想,体会数学与现实的紧密联系,感 受其价值
基础巩固练习: (口答)求下列图形中未知正方形的面积 或未知边的长度:
100 225
x
17 15
?
已知直角三角形两边,求第三边.
生活中的应用: 小明妈妈买了一部29英寸(74厘米) 的电视机. 小明量了电视机的屏幕后,发现 屏幕只有58厘米长和46厘米宽,他觉得一 定是售货员搞错了. 你同意他的想法吗?你 能解释这是为什么吗?
五、布置作业
1.习题1.1. 2.阅读《读一读》——勾股世界. 3.观察下图,探究图中三角形的三边长是否满足 a 2 b 2 c 2?
a
c b
a c
b
能得到直角三角形吗?
1、回顾旧知: 三角形的内角和为: 勾股定理的内容是: 2、探索新知认真阅读教材P17-18页内容,并动手实践,归 纳总结已知下列每组数为三角形的三边长a、b、c,用尺规 作出三角形(图作在背面) (1)3cm、4 cm、5 cm (2)6 cm 、8 cm 、10 cm (3)5 cm 、12 cm 、13 cm 3、用量角器量出最大角的度数,它们是直角三角形吗? 分析三边长有何关系: 从而得出结论:
A a
c
C A
a c b
C
B
b
B
(2)你能发现直角三角形三边长度之间存在 什么关系吗? 2 2 2
a b c
(3)分别以5厘米、12厘米为直角边作出一 个直角三角形,并测量斜边的长度. (2)中的规 律对这个三角形仍然成立吗?
勾股定理
(gou-gu theorem)
如果直角三角形两直角边长分别
相关文档
最新文档