水资源短缺风险评价
基于模糊数学的水资源短缺风险综合评价

基于模糊数学 的水资源短缺风险综合评价
陈宇翔 , 潘海泽
[ 摘
ห้องสมุดไป่ตู้
要 ] 文章将影响水 资源的因素划分为四个一级 因素 , 十六个二级 因素( 中五个定量 因素 、 其 十一个定性 因素 ) ,
建立 了水资源风 险评价指标体 系 ; 用层 次分析 法确 定 了各个指标的权重 ; 采 建立 了评价指标集 同时对评价指标进行量化 , 构造 了五 区间评价指标 集, 对每 个指 标进 行 了五 区间的定性描述 ; 用模糊数学的方法对所建立的水资源风险评价数 学模 运
近年来 ,我 国特别是北方地区水资源短缺问 发展战略的实施具有重要的意义 ,为此有必要研 题 日趋严重 ,水资源成为焦点话题。以北京市为 究水资源短缺问题 。 例, 北京位于华北平原西部 , 属暖温带半干旱半湿
润性季风气候 , 由于受季风影响 , 雨量年际季节分
一
、
指标体 系建立
( ) 一 水资源短缺影响因素集合
[ 作者简介] 陈字翔 , 上海工程技 术大学城 市轨道交通学院 , 交通工程专业本科 生 , 海 2 12 ; 上 0 60 潘海泽 , 上海工程技
术大学城 市轨道交通学院讲 师, 博士 , 究方向 : 下水环境效应研 究, 研 地 上海 212 060 [ 中图分类号 ] 24 F2 [ 文献标识码 ] A [ 文章编号 ] 07 72(010— 00 00 10— 732 1)9 01— 06
配极不均匀 , 夏季降水量约 占全年的 7 %以上 , 0 全
通过资料查阅以及现场调研将水资源短缺风
市多年平均降水量 55 m 属海河流域 , 7m 。 从东到西 险的因素概括为 4 因素集 : 个 自然地理 因素 I; 1 社
水资源短缺风险综合评价 (2)

水资源短缺风险综合评价引言随着全球人口的不断增长和经济的快速发展,水资源短缺问题日益严重。
水资源是人类生存和发展的基础,对于许多行业和地区来说都至关重要。
因此,评估水资源短缺的风险是非常重要的。
本文将介绍水资源短缺风险的综合评价方法,以帮助相关部门和组织更好地了解水资源短缺的风险,并采取相应的应对措施。
评价指标评价水资源短缺风险需要考虑多个指标,包括:1.水资源供求状况:评估水资源可利用量和需求量之间的平衡情况。
这可以通过收集和分析水资源的实际利用情况、供水量和人口增长情况来确定。
2.水资源质量:考虑到水资源的可利用性,需要评估水资源的质量,包括水源的化学成分、微生物污染程度等因素。
3.水资源管理政策:评估水资源管理政策的有效性和完善程度,包括水资源的分配和利用政策、水资源的保护和治理政策等。
4.环境敏感性:考虑到水资源的可持续利用和环境保护的需要,评估社会经济发展对水资源的影响程度。
综合考虑以上指标,可以更全面地评估水资源短缺的风险程度。
评估方法水资源短缺风险的综合评估方法可以采用以下步骤:1.数据收集:收集相关水资源数据,包括水资源供求状况、水资源质量、水资源管理政策等。
可以通过调查问卷、现场观察、统计数据等方式获取数据。
2.数据分析:对收集到的数据进行分析,计算水资源供需缺口、水资源利用率、水资源质量指标等。
3.指标权重确定:根据实际情况和需求,确定各个评估指标的权重。
不同指标对水资源短缺风险的影响程度可能不同,因此需要进行权重设置。
4.综合评估:根据所确定的指标权重,对各个指标进行综合评估,得出水资源短缺风险的综合评价结果。
应对措施综合评估水资源短缺风险后,需要针对评估结果采取相应的应对措施。
具体的应对措施可能包括:1.加强水资源保护:通过加强水源地的保护、减少水污染、提高水资源利用效率等方式来保护水资源。
2.改善供水设施:通过改善供水设施和提高供水网络覆盖率来缓解水资源短缺问题。
3.完善水资源管理政策:提出和实施更加完善的水资源管理政策,包括水资源的分配和利用、水资源的保护和治理等方面。
区域水资源安全风险评价模型构建

区域水资源安全风险评价模型构建说到水资源,大家可能都知道水是生命之源,没有水,我们的生活就像没有空气一样难以想象。
可是,随着全球变暖、人口激增,还有一些地方水资源的浪费,水的“存货”可真是越来越紧张了。
这不,就有那么一群人专门做水资源的风险评估,简直是“水情分析”的专家,研究的目标就是为了给大家预测未来水资源安全可能面临的风险,给大家一个警告,提醒咱们:“别到时候口渴了才知道后悔。
”比如你想想,如果突然间某个地方因为水资源短缺发生大规模的干旱,影响了农田、工业和家庭用水,那可真是祸从天降了。
这就引出了一个问题——如何评估区域水资源的安全风险?嘿,不要小看这个问题,它其实挺复杂的,不能仅仅看某个地方水源有多少,还得考虑很多因素。
你想象一下,如果一个地区水源充足,但旁边有一大堆污染源,水质差得让人不敢喝,那也不算水资源安全吧?再比如,地处干旱地区的某个城市,水源本来就少,再加上频繁的水资源浪费,水安全问题就更严重了。
所以,大家能理解,这个评估得多细致。
要想构建一个靠谱的水资源安全风险评价模型,得先了解啥是影响水资源的因素。
咱们不光是看水量,还得考虑水质、供水设施的健康程度、用水的方式等等。
想象一下,如果某地的水管老化,漏水严重,那水资源的损耗可真是大得惊人。
用水效率也很重要,大家可能觉得,哎,水用不完就可以不管了,但其实用水浪费也是一个大问题。
某些地方为了工业发展,把水源用得不计后果,结果等到干旱来了,水源反而吃紧,问题就来了,后悔都没用了。
在这个模型中,不仅要考虑这些直接影响因素,还得把一些间接影响也考虑进去。
比如,气候变化导致的降水量变化就成了不小的隐患,过去下雨多,现在可能下得少,或者说,雨水的分布不均匀,这样就增加了某些地区的风险。
想想看,如果某个地方原本靠降水养活农田,现在降水少了,农田就得靠地下水了,结果一来二去,地下水也用得差不多了,水资源的安全感就大打折扣。
至于评估模型的建立,大家可能会觉得有点枯燥,别急,咱来轻松聊聊。
水资源短缺风险综合评价

水资源短缺风险综合评价水资源短缺是当前全球面临的重要环境问题之一,其严重性对人类生存和发展产生了巨大的影响。
为了全面评估水资源短缺风险,可以从供需状况、水资源管理、环境变化以及社会经济因素等方面进行综合评价。
下面将对这些方面进行具体分析。
首先,供需状况是评价水资源短缺风险的重要指标。
供需状况的分析可以通过比较可用水资源与需求水资源的关系来进行。
可用水资源包括自然水源以及人工开发的水源,需求水资源则与人口增长、农业用水、工业用水以及生态环境需水等因素相关。
如果供需状况失衡,即需求超过了可用水资源,就会形成水资源短缺风险。
其次,水资源管理是影响水资源短缺风险的重要因素。
有效的水资源管理可以减少浪费,提升水资源利用效率。
评估水资源管理需要考虑水资源规划、水资源分配以及水资源利用效率等方面。
政府部门在水资源管理中扮演着关键的角色,有效的政策和法规可以促进水资源合理利用,降低水资源短缺风险。
第三,环境变化也是评价水资源短缺风险的重要指标。
环境变化包括气候变化、水文变化以及生态系统变化等方面。
气候变化会导致降水分布不均,进而影响水资源供应情况;水文变化则包括河流水量变化、地下水位下降等;生态系统变化会改变水资源的净化能力。
这些环境变化都会加剧水资源短缺风险。
最后,社会经济因素也对水资源短缺风险的评估有重要影响。
社会经济因素包括人口增长、经济发展、城市化以及农业发展等。
人口增长和经济发展会增加对水资源的需求;城市化的进行会导致水资源供应链的改变;农业发展则需要大量的水资源。
评估这些社会经济因素可以帮助我们更加全面地了解水资源短缺风险。
综上所述,评估水资源短缺风险需要综合考虑供需状况、水资源管理、环境变化以及社会经济因素。
完善的评估可以帮助我们更好地认识水资源短缺风险的形成机理,从而采取合理的措施来减少风险的发生。
只有科学合理地评估水资源短缺风险,才能更好地保护水资源,实现可持续发展。
水资源短缺风险综合评价

2013年惠州学院第四届数学建模竞赛承诺书我们仔细阅读了惠州学院第四届数学建模竞赛的竞赛规则。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B中选择一项填写): A 我们的参赛队号为: 1314参赛队员 (打印并签名) :1.2.3.日期: 2013 年 5月 24 日评阅编号(由数学系建模组委会评阅前进行编号):2013惠州学院第四届数学建模竞赛评分专用页评阅编号(由数学系建模组委会评阅前进行编号):监制: 数学系数学建模俱乐部水资源短缺风险综合评价摘要本文探讨的是北京市水资源短缺风险的综合评价及预测问题。
水资源短缺已成为目前大多数城市都面临的严峻问题,如何对水资源风险的主要因子进行识别,对风险造成的危害等级进行划分,对不同风险因子采取相应的有效措施规避风险或减少其造成的危害,这对社会经济的稳定、可持续发展战略的实施具有重要的意义。
本文主要从水资源短缺入手,来分析影响北京市水资源短缺风险的因素,建立数学模型,提取出主要风险因子,做出风险等级划分及预测未来影响趋势,并根据北京市自身特点,提出合理化建议来规避水资源短缺风险。
对于问题1,因为影响水资源的因素很多,例如:气候条件、水利工程设施、工业污染、农业用水、管理制度,人口规模等等,我们从中选取GDP、人口、森林覆盖率、降水量、污水处理率、地下水、工业用水、农业用水和城市生活用水的相关数据,利用主成分分析法,通过MATLAB软件最终筛选出人口、污水处理率、GDP、森林覆盖率和降水量5个主要风险因子。
水资源短缺风险综合评价模型

年份 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
×
风险(R)=风险发生概(P)
×
损失度(C)
其中损失度C是指当水资源短缺以一定程度发生时,对受 威胁对象所造成的损失程度。
风险发生概率的量化
由问题一得到的主要风险因子反映了水资源短缺发生的 可能性,即风险发生的概率P,采用权重模型(各因子乘以权 重后相加)得到P的定量评估值:
P = w1 x1 + w2 x2 + w3 x3 + w4 x4 + w5 x5
1.问题的重述
由于气候变化和经济社会不断发展,水资源短 缺风险始终存在。本题以北京市为例,给出水资源 短缺风险的定义:由于来水和用水两方面存在不确 定性,使区域水资源系统发生供水短缺的可能性以 及由此产生的损失。附表中给出了1979年至2000 年北京市水资源短缺的状况,要求利用《北京 2009统计年鉴》和市政统计资料及可获得的其他 资料,解决如下问题: 1.评价判定北京市水资源短缺风险的主要风险因子 是什么?
年份 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
风险发生概率值P
0.424619 0.584017 0.374631 0.645965 0.414541 0.781777 0.654099 0.633751 0.568789 0.500923 0.427311 0.396989 0.41308 0.344142 0.227994 0.361434
2.建立一个数学模型对北京市水资源短缺风险进行 综合评价, 作出风险等级划分并陈述理由。对 主要风险因子,如何进行调控,使得风险降低? 3.对北京市未来两年水资源的短缺风险进行预测, 并提出应对措施。 4.以北京市水行政主管部门为报告对象,写一份建 议报告。 5. 提示信息:影响水资源的因素很多,例如:气候条 件、水利工程设施、工业污染、农业用水、管 理制度,人口规模等。
水资源短缺风险综合评价

水资源短缺风险综合评价承诺书我们认真阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们明白,抄袭别人的成果是违反竞赛规则的, 假如引用别人的成果或其他公布的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公平、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公布展现(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(假如赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):2020高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):水资源短缺风险综合评判摘要水资源短缺问题是阻碍我国进展的重大问题,本文针对水资源短缺风险问题找出了要紧风险因子,建立了水资源短缺风险评判模型,对水资源短缺风险进行等级划分,并提出相应的有效措施规避风险。
关于问题一,我们建立主成分和灰色关联度分析模型,分析附表和相关资料,先确立了北京市水资源短缺风险的风险因素要紧包括自然因素,即降雨量和常住人口,和社会因素,即农业用水,工业用水,第三产业及生活其他用水,污水处理率,都市绿化覆盖率。
然后利用主成分分析得到个各个因子的奉献率,再利用灰色关联度分析,得到各个因子与缺水量的关联度的大小,差不多与主成分分析一致,最后得到要紧风险因子。
水资源短缺风险综合评价

水资源短缺风险综合评价水资源短缺是一个全球性问题,对人类社会和生态环境都带来了巨大的风险。
为了更好地评估水资源短缺的风险,需综合考虑多个方面的因素。
首先,水资源短缺的风险与水资源的总量和分布有关。
一些地区由于自然条件和地理位置限制,水资源总量较少,人口稠密的区域可能面临较大的水资源短缺风险。
此外,气候变化也会影响降水量和水资源的分布,增加了水资源短缺的风险。
其次,水资源短缺的风险与水资源利用效率有密切关系。
如果水资源利用率较低,即使水资源总量较丰富,也可能面临水资源短缺的风险。
因此,评估水资源短缺风险时需考虑水资源的开发利用情况,包括农业用水、工业用水和居民用水等各个方面。
此外,水资源短缺的风险还与经济发展和社会变迁有关。
经济的快速发展和人口的增加会导致对水资源的需求不断增加,从而增加了水资源短缺的风险。
同时,城市化进程也可能带来水资源管理和分配方面的挑战,增加了水资源短缺的风险。
最后,水资源短缺的风险与水资源管理和治理的能力有关。
合理的水资源管理和有效的治理可以减少水资源的浪费和污染,提高水资源的利用效率,降低水资源短缺的风险。
因此,在评估水资源短缺风险时,还需考虑相关管理和治理政策的实施情况。
综合考虑以上因素,可以进行水资源短缺风险的综合评价。
评估的结果可以为政府和决策者提供参考,制定相应的水资源管理和治理策略,以减少水资源短缺的风险,保障人类社会和生态环境的可持续发展。
同时,也需要加强国际合作,共同应对全球水资源短缺问题,确保世界各地人民都能够享受到充足的清洁水资源。
水资源短缺是一个全球性问题,对人类社会和生态环境都带来了巨大的风险。
为了更好地评估水资源短缺的风险,并采取有效的措施应对,需要综合考虑多个方面的因素,建立一个完整的水资源短缺风险评估模型。
首先,水资源总量和分布是评估水资源短缺风险的基础因素之一。
不同地区的水资源总量和分布差异巨大,一些地区由于自然条件和地理位置限制,水资源总量较少,人口稠密的区域可能面临较大的水资源短缺风险。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水资源短缺风险评价Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT水资源短缺风险评价体系摘要:目前,水资源短缺的问题越来越突出,而且成为制约我国社会经济可持续发展和水资源可持续利用的主要障碍,关于如何对水资源的短缺风险进行综合评价,目前没有统一定义和标准评价方法.如何建立科学的评价方法、建立一个规范化并和国际接轨的评价体系已成为一个亟待解决的重要课题.基于对水资源短缺风险评价的需要,本文以北京市为例,我们在原模糊综合评判模型的基础上改进模型.首先用层次分析法构建了北京市水资源短缺风险因子分析模型,通过计算,最终确定出导致风险的主要因子,为进一步进行风险评价奠定了基础.随后运用改进的模糊综合评判模型, 对北京市的水资源短缺程度、短缺原因及变化趋势进行了比较全面的分析,对风险等级进行了划分.同时,选取了短缺性、危险性、易损性、承险性作为水资源短缺风险的评价指标,通过建立隶属函数和评价矩阵,对水资源短缺风险进行了定量评价,以最大隶属原则为依据,得出北京市水资源短缺处于较高风险,同时也为制订风险的防范措施和对策提供了理论依据.在应用模糊综合评判模型的同时,我们为了准确的确定短缺性、危险性、易损性、承险性的权重,通过发放调查问卷,采用确定权重的统计方法,即加权统计方法,得到了其权重.在用该模型分析水资源短缺风险的分析过程中,通过计算发现该方法克服了以往假设模型中条件的限制,在目前信息收集不完整、数据质量不高的情况下有着独特的优势.该模型能使评估更加客观、准确、系统、有效.然后用MATLAB软件对北京市水资源状况的相关数据进行拟合,从用水量、用水结构、水资源总量几个方面对北京市未来五年水资源进行了预测,得到了可靠的预测结果.最后,在我们研究结论的基础上,提出了缓解北京市水资源短缺的对策和措施.关键词:水资源短缺风险;模糊综合评判模型;层次分析法;预测一、问题重述水资源是城市形成、发展的必要条件,在自然和人类活动影响下, 城市旱涝、缺水及水环境污染现象时有发生, 水资源问题已严重阻碍了当今城市发展水资源短缺、供需的失衡始终是我国社会经济可持续发展、水资源可持续开发利用和管理保护所面临的重大问题和难题.那么如何对水资源短缺风险的主要因子进行识别,以及在这些水资源短缺的风险因子中,哪些因子是主要的,这对于研究水资源短缺风险将是十分必要的,因此,对以上几个问题的分析将是必不可少的.那么能不能建立一个水资源短缺风险评价的数学模型由此分析,对于从用水量、用水结构、水资源存量几个方面对北京市未来几年的水资源进行预测也是必要的.这样,可以给有关部门写一份研究报告,提出水资源短缺成因、水资源风险控制以及水资源保护等方面提出一点建议,来降低水资源短缺风险.二、问题分析由于的数据属离散型,它们无法直接为数学模型所用.在统计数据中存在的人为误差,其属性变量的取值必然存在误差.基于上述原因,我们必须对数据进行处理;鉴于风险各层面的指标差异问题,我们必须对数据比较分析,得到统一的评价标准,最后进行评估.因此我们需要解决以下关键问题:1.如何对水资源风险的主要因子进行识别,然后对分险因子进行重要性分析2.搜集数据,然后对数据进行分析和计算.3.在原有模糊综合评价模型的基础上,如何进行改进和变化,建立一个更好的数学评价模型,使其更好地适应水资源短缺风险的评价.三、基本假设假设一: 我们对水资源短缺风险因子指标分层是合理的假设二: 我们所列的水资源短缺风险因子指标是全面的,其他因素对水资源的短缺风险的影响忽略不计假设三: 南水北调及其它工程正常运行假设四: 没有重大的自然灾害发生如干旱等其他因素假设五: 在数据的计算过程中,加设误差在合理的范围之内,对数据结果的影响可以忽略不计假设六: 所有收集到的数据均有效,即不考虑人为因素造成的无效数据假设七: 北京地区人口流动正常假设八: 风险等级是主要致险因子决定的四、符号说明a:表示项目C i与C j对目标的影响之比ijW:权重iC R:随机性指标....C I : 一致性指标i A : 分类指标CR : 一致性比率i N : 影响力评价指标值 i k : 分项指标值i U : 综合评判因素 i V : 评判等级i B : 等级i V 对综合评定所得模糊子集B 的隶属度i : 单因素i U 在总评定因素中所起作用的大小 B : V 上的模糊子集()i C x : 隶属函数五、模型建立水资源短缺风险,泛指在特定的时空环境条件下,由于来水和用水两方面存在不确定性,使区域水资源系统发生供水短缺的可能性以及由此产生的损失.为了较好地评价水资源短缺风险,首先,我们需要分析水资源短缺的风险因子,即分析水资源短缺的成因. 判定水资源短缺的主要风险因子根据北京市水资源资料,首先通过系统定性分析,列出了可能造成北京市水资源短缺风险的各方面因素,比如说降雨量、灌溉面积、水的价格等,然后在这些因素中选出一些主要的因素,其他一些次要因素则认为对北京市水资源短缺的影响较小可以忽略不计.概括来说,这些因素主要源于以下四方面:1.环境因素;2.工业因素;3.农业因素,4.社会经济因素.通过对水资源短缺风险因素的分析,我们建立起相应的风险指标体系.该指标体系分为3 个层次,共由15个指标组成.如表1所示,根据对问题的分析,为了定量分析水资源短缺因子的重要性,我们参考已有的层次分析法[8],这种方法是一种将定性分析与定量分析相结合的系统分析方法.层次分析法处理问题的基本步骤简述如下:(1)确定评价目标,再明确方案评价的准则.根据评价目标、评价准则构造递阶层次结构模型.递阶层次结构模型一般分为3 层:目标层、准则层和方案层;(2)应用两两比较法构造所有的判断矩阵.下表是建立判断矩阵的方法.表2.两两比较法的标度对本级的要素进行两两比较来确定判断矩阵A 的元素,ij a 是要素i a 对j a 的相对重要性其值是由专家根据资料数据以及自己的经验和价值观用判断尺度来确定判断尺度表示要素i a 对j a 相对重要性的数量尺度.采用的判断尺度见(表1)根据判断尺度建立n 阶的判断矩阵n n A ⨯:其中: 0ij a > ,1/ij ji a a =,ii a =1 ,(i ,j =1,2 ,, n ) 然后确定各要素的相对重要程度:(1)计算判断矩阵的特征向量W ,然后进行归一化处理即得到相对重要程度向量:111,2,...,nni ij j n W a i =⎛⎫= ⎪⎝⎭=∏, ()(2)一致性判断.为了检验判断矩阵的一致性,根据AHP 原理,可以利用max λ与n 之差来检验一致性,定义一致性计算指标为: ...C I CR C R= , () 其中max ..1nC I n λ-=-, ()max λ为判断矩阵A 的最大特征值...C R 为随机性指标,是通过构造最不一致的情况,对不同的n 阶比较矩阵中的元素,采取随机取数的方式进行赋值,并且对不同的n 取多个子样,先计算出..C I 的值,再求得其平均值,记为..C R ,见表2.表 3. 随机性指标..C R 数值当矩阵A 满足一致性时,..0C I =;当矩阵A 不满足一致性时,一般有max n λ>,因此..0C I >,故在一般情况下,当0.1CR <时就可以认为判断矩阵具有一致性,据此而计算的值是可以接受的;若不满足0.1CR <,则认为判断矩阵不符合一致性要求,需要专家重新按判断尺度表进行判断,建立判断矩阵进行相应计算,直到一致性检验通过.设环境因素指标、工业因素指标、农业因素指标、社会经济因素指标权重向量分别为1234,,,ωωωω,现在以社会经济因素为例,对其相关二级指标进行求解:(1) 求权重向量 它对应的判断矩阵1112122122412n n n n nn a a a a a a A a a a ⎛⎫⎪⎪= ⎪⎪⎝⎭= 9.379.379.37167.513.0358.467.567.567.519.3713.0358.413.0313.0313.0319.3767.558.458.458.458.419.3767.513.03⎛⎫ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭计算判断矩阵的特征向量W ,然后进行归一化处理即得到相对重要程度向量:11nni ij j W a =⎛⎫= ⎪⎝⎭∏, i =1、2、…、n ; ()最后得到的权重向量为:(2) 一致性检验max λ的计算过程如下:A 1 = 9.379.379.37167.513.0358.467.567.567.519.3713.0358.413.0313.0313.0319.3767.558.458.458.458.419.3767.513.03⎛⎫ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭0.06390.06320.05290.06310.45520.45560.45360.45560.08780.08790.08760.08770.39310.39320.38330.3935⎛⎫⎪ ⎪ ⎪⎪⎝⎭列向量归一化0.25281.82240.35121.5728⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭ 0.06320.45570.08780.3932⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭ 得4A ω=0.25291.82260.35141.5726⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭max λ=()0.25291.82260.3514 1.5728140.06320.45570.08780.3932+++= 根据公式max ..1nC I n λ-=-可得..0.0241,C I =此时,..0.9C R = ,由公式...C I CR C R=. 可算得..0.0241,C I =由于..0.1C R <则可以认为判断矩阵具有一致性,据此而计算的值是可以接受的;综合上面的计算,我们得到环境因素指标、工业因素指标、农业因素指标、社会经济因素指标的4个权重向量:设环境因素指标、工业因素指标、社会经济因素指标值分别是,,,A B C D N N N N ,它们的分项指标的权重为1i a ,2i a ,3i a ,…,ji a (i ,j =1,2 ,, n ),分项指标的值分别为1i k ,2i k ,3i k ,…,ji k (i ,j =1,2 ,, n ),总值为N ,所以有公式 11m j n imn mn m n N a k =====∑∑ ()根据这个公式及参考姜启源编的《数学模型》第二版[1]中的概念及计算原理得目标中的组合权重应该为它们相应的权向量和max λ归一化的特征向量两两乘积之和.则对于社会经济因素来说,它的评价指标值为:同理,对于水资源分险因子的其他三个层面,可得其评价指标值为:再根据它们各自的指标值算出权重向量,最后,由公式()得到水资源短缺风险因子的评价向量:由此可以看出,环境因素指标、工业因素指标、农业因素指标、社会经济因素指标各自的重要性分别为%,%,%,%,这说明随着北京人口的增多和第三产业的不断发展,社会经济因素对水资源造成短缺的作用越来越大.人口增长, 居民生活水平的提高带来的居按行求和归一化民生活用水的迅速增长, 城市建设、环境质量的提高以及服务业的蓬勃发展造成了公共用水的增加, 共同推动了北京市生活用水迅速增长.水资源短缺风险评价模型的建立基于上面的分析,我们已经得到了主要的水资源短缺风险因子,由此我们可以分析得出各风险因子与水资源短缺风险的关系,如图(1)所示.由此可以看出,水资源的短缺取决于供水和需水两方面,而这两方面都具有随机性和不确定性.因此,水资源短缺风险也具有随机性和不确定性.在进行风险评价时,要充分考虑风险的特点以及水资源系统的复杂性,要把存在风险的概率、风险出现的时间、风险造成的损失、风险解除的时间、缺水量的分布等一系列因素考虑在内.因此难以用某一种指标对其进行全面描述和评价,必须从多方面的指标综合考虑.评价指标选择的原则是:(1)能集中反映缺水地区的缺水风险;(2)能集中反映缺水风险的程度;图1.北京市水资源短缺风险因素分析(3)能反映水资源短缺风险发生后水资源系统的承受能力;(4)代表性好,针对性强,易于量化.依据上述原则,并参考文献,选取了短缺性、危险性、易损性、承险性作为水资源系统水资源短缺风险的评价指标.由此我们建立基于模糊综合评判方法的水资源短缺风险的评价模型.水资源短缺风险评价是在短缺风险分析的基础上,把短缺性、危险性、易损性、承险性综合起来考虑.借助调查问卷,以层次分析法为工具,采用模糊综合评判模型对水资源短缺风险进行评价,并用改进的模糊综合评判模型对评价结果进行检验.短缺性: 指水资源系统在自身运行过程中输入主体容易受到损害的性质, 表征系统输入主体抵抗风险的不完备性.短缺性体现在系统运行的供需不满足性以及系统已经受到损害的程度.危险性:指在特定的时空环境条件下,水资源系统发生的非期望事件及其发生的概论并由此产生的损失.易损性: 表征系统面临风险的潜在损害度, 即系统潜在输出抵抗风险的易损程度.承险性:水资源系统能通过自身的反馈调节来应对风险的能力.为了比较直观的说明北京市水资源短缺风险的程度,我们将其分成5级,分别叫做低风险、较低风险、中风险、较高风险和高风险,风险各级别按综合分值评判,其评判标准和各级别风险的特征下表.表5:水资源短缺风险等级划分设给定2 个有限论域()4321,,,U U U U U =和()54321,,,,V V V V V V =,其中U 代表综合评判的因素(短缺性、危险性、易损性、承险性)所组成的集合;V 代表评语(低、较低、中、较高、高)所组成的集合.则模糊综合评判即表示下列的模糊变换R A B =,式中A 为U 上的模糊子集.而评判结果B 是V 上的模糊子集,并且可表示为()4321,,,λλλλ=A ,)4,3,2,1(10=≤≤i i λ;()54321,,,,b b b b b B =,10≤≤i b .其中i λ表示单因素i U 在总评定因素中所起作用大小的变量,也在一定程度上代表根据单因素i U 评定等级的能力;i B 为等级i V 对综合评定所得模糊子集B 的隶属度,它表示综合评判的结果.表6:水资源短缺指标分析表关系矩阵R 可表示为⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧=4544434241353433323125242322211514131211r r r r r r r r r r r r r r r r r r r r R 式中:ij r 表示因素i U 的评价对等级i V 的隶属度,因而矩阵R 中第i 行为对第i 个因素i U 的单因素评判结果.在评价计算中()4321,,,λλλλ=A 代表了各个因素对综合评判重要性的权系数,因此满足∑==)4,3,2,1(1i iλ;同时,模糊变换R A 也即退化为普通矩阵计算,即取Min Max -合成运算,即用模型),(∨∧M 计算,可得综合评判R A B i =.通过模糊综合评判模型,我们又对水资源短缺风险进行了分析,建立起相应的风险指标体系.该指标体系分为3 个层次,共由16个指标组成.如表6所示,上述权系数的确定可用层次分析法(AHP)得到.由上述分析可以看出,评价因素集1234(,,,)U U U U U =对应评语集()54321,,,,V V V V V V =,而评判矩阵中 ij r 即为某因素i U 对应等级i V 的隶属度,其值可根据各评价因素的实际数值对照各因素的分级指标推求.六、模型的求解北京市水资源短缺风险的模糊综合评判模型求解:(1)因素集},,,{4321u u u u u =,其中1u 指短缺性,2u 指危险性,3u 指易损性,4u 指承险性. (2)评判集},,,,{54321v v v v v v =,其中1v :低;2v :较低;3v :中;4v :较高;5v :高. (3)单因素评判.依据我们的调查问卷的数据,利用层次分析法,我们计算出了短缺性对水资源短缺风险的影响程度},,,,{54321v v v v v v == ,危险性对水资源短缺风险的影响程度},,,,{54321v v v v v v == ) ,易损性对水资源短缺风险的影响程度},,,,{54321v v v v v v ==承险性对水资源短缺风险的影响程度},,,,{54321v v v v v v == ,便得到1u →2u → ) 3u → 4u →即得到一个U 到V 得模糊映射)(:V U f →由此单因素评判可诱导出模糊关系R R f =,即得单因素评判矩阵 (4)综合评判.同样利用层次分析法的到短缺性、危险性、易损性、承险性关于水资源短缺风险的权重分配)1269.0,1889.0,2879.0,3986.0(=A .如下图2:图2取Min Max -合成用算,即用模型Ⅰ:),(∨∧M (主因素决定型), 计算可求得综合评判为这表明水资源短缺危险程度较高,需要政府相关部门及全人类的高度注视.下面再用模糊综合评价的另一种方法即最大隶属原则,对北京市水资源短缺风险进行评价.我们将评语级分为5个级别,各评价因素分级指标见下表: 表7:水资源短缺风险评价分级指标我们在整理、分析调查问卷中用1表示水资源短缺低风险,2表示水资源短缺较低风险,3表示水资源短缺中风险,4表示水资源短缺较高风险,5表示水资源短缺高风险.通过求每个风险因子的风险等级的平均值,就得到短缺性、危险性、易损性、承险性的等级划分图如下表:依据上表可构造短缺性、危险性、易损性、承险性隶属函数分别为:将带入⎪⎪⎩⎪⎪⎨⎧><<<=2.13,12.130,2.130,0)(11111x x x x x C ,于是05.0136.011==r类似地,可算出其他指标的隶属度,得到单因素评价矩阵为 用),(∨⋅M (主因素突出型)计算可求得综合评判为 对B 进行归一化,得按最大隶属度原则北京市水资源风险处于较高风险等级,可见水资源供需状况极度危险.七、未来五年水资源状况的预测与分析根据对《北京统计年鉴》[4]中有关水资源情况的分析,本文采取趋势预测法:基于历史统计数据的分析,选取一定长度的、具有可靠性、一致性和代表性的统计数据作为样本,进行回归分析,并以相关性显着的回归方程进行趋势外延.为了使数据更加精确,采取了Excel 软件进行数据的描点作图(图3—图7),从图表中可以看出北京市水资源在各个阶段的总体变化趋势,为了对未来的水资源数据进行预测,又用MATLAB 软件进行了数据拟合,得到了拟合曲线的函数表达式. 图3:总用水变化趋势图4:农业用水变化趋势图5:工业用水变化趋势图6:第三产业及生活等其他用水变化趋势图7:水资源总量变化趋势以上是用Excel软件对1979—2008年从总用水量、农业用水量、工业用水量、第三产业及生活等其他用水量和水资源总量来描点,对它们总体的变化趋势进行分析,进而用MATLAB软件对它们未来五年的水资源情况进行预测.在MATLAB程序中,为了使拟合函数的表达式的误差最小,避免大数运算带来的截断误差,我们用1—30分别代表1979—2008(年),所用的程序如下(以工业用水数据为例):Format long;x=1:1:30y=[,26,24,,,,38,,,,,,,2,,,,,,,,,,,,,,,,]plot(x, y,'k.','markersize', 25)p4=polyfit(x,y,4)t=1:1:30s=polyval (p4, t)hold onplot (t, s,'r-','linewidth',2)plot (t, s,'b--','linewidth',2)grid;a=polyfit(t,y,4)(1)总用水量趋势预测所得四次多项式拟合曲线的函数表达式(这里用x表示年份,y表示水量,下同)为:y=4x3x2x -x(3)农业用水量趋势预测所得四次多项式拟合曲线的函数表达式为:y=4x3x+2x x+ (2)(3)工业用水趋势预测所得四次多项式拟合曲线的函数表达式为:y4x-3x2x -x (3)(4)第三产业及生活等其他用水趋势预测所得四次多项式拟合曲线的函数表达式为:y=4x3x+ 2x x+ (4)(5)水资源总量趋势预测所得三次多项式拟合曲线的函数表达式为:y=3x2x+x+ (5)由以上各函数表达式,将未来五年的年数对应在函数中,由于在前面我们用1—30来代表1979—2008年来减少误差,因此,这里用31—37来代表2009—2015年,将其带入函数中,可以算得到未来五年内各水资源的数据,如下表所示:表9 未来五年北京市水资源状况预测单位:亿立方米通过对以上数据的分析可以得到北京的用水量、用水结构、水资源存量的相关信息..用水量变化分析1980年到1990年, 北京市用水总量呈明显下降趋势, 年均减少总用水量亿立方米.进入1990年以来, 年用水总量间的变幅则急剧缩小, 介于稳定的亿立方米到立方米之间,今后五年内将稳步上升,具体数据如表8所示.用水结构变化分析北京市用水结构及其变化大体可按工、农业和第三产业及生活等其他用水等3个方面进行分析.(1)农业用水比重缩小, 呈继续缩减态势自1980年以来, 农业用水作为北京市的用水大户, 其用水量的减少趋势最为明显, 由1980年的亿立方米降至2000 年的亿立方米, 1980 年—1990 年、1990年—2000年和1996年—2000 年年均减少量分别为亿立方米、亿立方米和亿立方米.农业用水占全市总用水量的比重也呈下降趋势由1980年的% 降为2000年的% ,近五年则平均以% 的份额下降, 其下降趋势仍无停止迹象.(2)工业用水呈减少趋势, 近年趋于稳定工业用水亦呈负增长态势, 1980年用水量和占总用水量比重中分别为亿立方米及%, 到2000年下降为亿立方米和%, 年均递减亿立方米,但近年来这种下降趋势已明显减缓.1997年—2000年工业用水总量介于亿立方米—亿立方米之间, 变幅为%.未来五年用水量将逐步上升,但幅度会越来越小.(3)第三产业及生活等其他用水持续增加,与工、农业用水情况相反, 城市及生活用水量从1980年的亿立方米迅速递增为2000年的亿立方米,所占比重从% 增长到%,而且不同阶段的年均增加量呈逐步上升趋势.1980年—1990年、1990年—2000年和1996 年—2000年城市及生活用水量年均增加量分别为亿立方米、亿立方米和亿立方米,相应占总用水量比重的年均增加值分别为%、%和% .未来五年持续增加的状况不变.预计未来北京市用水结构总体趋势为:总用水量不会发生大的变化, 工业用水基本保持稳定或略有增加, 农业用水量和占总用水量的比重仍将呈下降趋势, 生活用水量与比重将持续递增..水资源存量变化分析水资源总量先呈减少趋势然后逐步上升, 水资源总量从1980年和1990年分别为26亿立方米和亿立方米,呈上升状况,1990年—2000水资源总量从亿立方米减少到亿立方米,进入2000年以后,由数据可知,水资源总量又稳步上升,在今后五年里,如果没有其他因素的干扰,水资源总量会逐步上升,但上升的幅度会越来越小.八、模型的评价与改进虽然,算子(,)∧∨有很好的代数性质,但也存在着缺陷,它常常出现综合评判的结果不易分辨的情况,因此,模型Ⅰ需要改进,下面介绍改进数学模型的方法,即将原模型中的算子(,)∧∨改用其他算子.模型Ⅰ:),(∨∧M 综合评判的着眼点是考虑主要因素,其他因素对结果影响不大,为了避免出现决策结果不易分辨的情况,以下对模糊综合评判决策模型进行改进. 模型Ⅱ:(,)M ⋅∨(主因素突出型))5,4,3,2,1)((1=•=∨=j r a b ij i ni j 计算可求得综合评判为 对2B 进行归一化,得通过观察,表明水资源短缺危险程度较高,这与模型Ⅰ:),(∨∧M 的结果是一致的,即表明水资源短缺风险突出,其水资源开采、利用、再生等治理迫在眉睫.但为了避免权重与主要因素有关而忽略次要因素,我们还可以对其进行改进.模型Ⅲ:),(⊕∧M (主因素突出型))5,4,3,2,1()(11=∧=∧=∑⊕==j r a r a b ni ij i ij i n i j 这里的⊕为有界和,即),1min(b a b a +=⊕ 计算可求得综合评判为我们能明显的看出水资源短缺危险程度较高,这与模型Ⅰ:),(∨∧M 和模型Ⅱ:),(∨⋅M 的结果是一致的,即表明水资源短缺风险突出,是不能被忽略的.模型Ⅲ:),(⊕∧M 在实际应用中,主因素(权重最大的因素)在综合评价中起决定作用,为了避免其带来的负面影响,我们用另外一种模型即模型Ⅳ进行检验.模型Ⅳ:),(+⋅M (加权平均模型))5,4,3,2,1(1=⋅=∑=j r a b ni ij i j 计算可求得综合评判为模型Ⅳ对所有因素以权重大小均衡兼顾,适用于考虑各因素起作用的情况.从模型Ⅳ可以检验出前三种模型在数据分析及用算过程中是适合的,并没有带来较大的偏差.九、结论(1)本文基于模糊综合评判模型建立了水资源短缺风险评价模型,同时考虑到水资源系统的模糊不确定性,可对水资源短缺风险的影响程度给予综合评价.社会经济因素是北京市水资源短缺的主要致险因子.(2)由模糊综合评价模型可以得出北京市水资源短缺风险处于较高水平,根据我们建立的北京市水资源系统风险评价指标体系及评价模型, 对北京市进行水资源系统风险评价, 得出北京市水资源短缺风险级别为较高风险, 从而为北京市水资源系统管理及水资源系统风险控制提供依据.对水资源采取有效的风险管理措施已刻不容缓.(3)北京市用水结构变化总的来说呈现以下趋势: 总用水量趋于平稳, 工业用水和农业用水从量上和占总用水量的比重上都有所下降, 而生活用水却迅速递增.下面是给北京市水资源管理相关部门的研究报告.北京市水资源短缺研究报告北京市水行政主管部门:由于北京市水资源短缺已经成为影响和制约首都社会和经济发展的主要因素.我们对北京市水资源资料的分析,对水资源短缺的风险因子进行了重要性分析.概括来说,造成水资源短缺的成因主要源于以下四方面:1.环境因素;2.工业因素;3.农业因素,4.社会经济因素.在这些因素中,社会经济因素对水资源造成短缺的作用越来越大,随着人口的增长,居民生活水平的提高带来的居民生活用水的迅速增长, 城市建设、环境质量的提高以及服务业的蓬勃发展造成了公共用水的增加, 共同推动了北京市生活用水迅速增长.经过我们对北京市水资源状况分析 , 北京市用水结构变化总的来说呈现以下趋势:总用水量趋于平稳, 工业用水和农业用水从量上和占总用水量的比重上都有所下降, 而生活用水却迅速递增; 预计今后境内自产水量变化不大.地表水资源可随调蓄和联合调度能力增加而有所增加, 但地下水资源已多年超采, 能够保持现有资源量不使地下水位继续下降已是最好的结果.密云、官厅两大水库目前和今后很长一段时间内都将是北京主要的水源, 但来水减少之势不可逆转.现在北京的出境水大部分是污水, 深度开发利用这部分水资源, 使之成为可能利用的新水源,是缓解北京市严重缺水的重要措施.因此, 北京市未来的水资源状况不容乐观, 在没有外来水源引入的条件下,供水量不会发生明显的变化.由以。