磷酸果糖激酶1
临床医学西医学生物化学模拟题与参考答案

临床医学西医学生物化学模拟题与参考答案一、单选题(共74题,每题1分,共74分)1.肌糖原不能分解为葡萄糖直接补充血糖是因为( )。
A、肌肉组织缺乏葡萄糖-6-磷酸酶B、肌肉组织是储存糖原的器官C、肌肉组织缺乏葡萄糖激酶D、肌糖原分解的产物是乳酸正确答案:A2.基因表达调控是多级的,其主要环节是( )。
A、基因活化B、转录起始C、翻译D、转录后加工正确答案:B3.下列反应中不能被6-巯基嘌呤抑制的是( )。
A、AMP→ADPB、G→GMPC、IMP→AMPD、IMP→GMP正确答案:A4.下列哪一种氨基酸是亚氨基酸?( )A、脯氨酸B、组氨酸C、赖氨酸D、谷氨酸正确答案:A5.基因工程的特点是( )。
A、在分子水平上操作,在分子水平上表达B、在分子水平上操作,回到细胞水平上表达C、在细胞水平上操作,在分子水平上表达D、在细胞水平上操作,在细胞水平上表达正确答案:B6.真核生物染色质DNA的三级结构是( )。
A、超螺旋B、结构域C、锌指结构D、核小体正确答案:D7.胆固醇可以转变成( )。
A、胆红素B、CO2和H2OC、胆汁酸D、甲状腺素正确答案:C8.真核生物转录调控占主导地位的是( )。
A、负反馈调节B、阻遏调节C、正性调节D、负性调节正确答案:C9.蛋白质生物合成的部位是( )。
A、内质网B、细胞核C、核糖体D、线粒体正确答案:C10.肝中与胆红素结合的最主要基团是( )。
A、硫酸根B、葡萄糖醛酸基C、甲基D、乙酰基正确答案:B11.下列关于DNA结构的不正确叙述是( )。
A、碱基配对发生在嘌呤和嘧啶之间B、鸟嘌呤和胞嘧啶形成3个氢键C、DNA两条多聚核苷酸链的方向相反D、腺嘌呤与胸腺嘧啶之间形成3个氢键正确答案:D12.可导致体内胆固醇合成增加的因素为( )A、饥饿B、乙酰CoA减少C、甲状腺素D、胆固醇正确答案:C13.目前下列哪类疾病基因治疗效果最确切?( )A、多基因遗传病B、单基因遗传病C、感染性疾病D、恶性肿瘤正确答案:B14.下列关于间接胆红素的叙述,正确的是( )。
糖异生反应过程

糖异生反应过程糖异生反应过程糖异生反应过程基本上是糖酵解反应的逆过程。
由于糖酵解过程中由己糖激酶、6-磷酸果糖激酶1及丙酮酸激酶催化的三个反应释放了大量的能量,构成难以逆行的能障, 因此这三个反应是不可逆的。
这三个反应可以分别通过相应的、特殊的酶催化,使反应逆行完成糖异生反应过程。
一、丙酮酸转变为磷酸烯醇式丙酮酸丙酮酸生成磷酸烯醇式丙酮酸的反应包括丙酮酸羧化酶和磷酸烯醇式丙酮酸羧激酶催化的两步反应,构成一条所谓“丙酮酸羧化支路”使反应进行。
这个反应是糖酵解过程中丙酮酸激酶催化的磷酸烯醇式丙酮酸生成丙酮酸的逆过程。
1、丙酮酸羧化生成草酰乙酸此反应由丙酮酸羧化酶催化,辅酶是生物素, ATP、Mg2+(Mn2+)参与羧化反应, CO2通过生物素使丙酮酸羧化生成草酰乙酸。
此酶存在于线粒体中,故丙酮酸必须进入线粒体才能被羧化为草酰乙酸,这也是体内草酰乙酸的重要来源之一。
2、草酰乙酸脱羧生成磷酸烯醇式丙酮酸(PEP)磷酸烯醇式丙酮酸羧激酶在人体的线粒体及胞液中均有存在。
存在于线粒体中的磷酸烯醇式丙酮酸羧激酶,可直接催化草酰乙酸脱羧生成PEP,PEP从线粒体转运到细胞质,通过糖酵解逆行过程生成1,6-二磷酸果糖。
存在于细胞质中的磷酸烯醇式丙酮酸羧激酶,首先要使草酰乙酸从线粒体转运到细胞质中:由于草酰乙酸不能自由进出线粒体内膜,因此草酰乙酸先要在线粒体内还原生成苹果酸或经转氨基作用生成天冬氨酸;苹果酸、天冬氨酸都能自由进出线粒体内膜,可从线粒体到达细胞质;在细胞质中苹果酸可脱氢氧化、天冬氨酸可再经转氨基作用生成草酰乙酸,完成了将草酰乙酸从线粒体转运到细胞质的过程。
二、1,6-二磷酸果糖转变为6-磷酸果糖此反应由1,6-二磷酸果糖酶1催化进行。
这个反应是糖酵解过程中1,6-二磷酸果糖酶1催化6-磷酸果糖生成1,6-二磷酸果糖的逆过程。
三、6-磷酸葡萄糖转变为葡萄糖此反应由葡萄糖-6-磷酸酶催化进行。
这个反应是糖酵解过程中己糖激酶催化葡萄糖生成6-磷酸葡萄糖的逆过程。
生物化学试题及答案(期末用)

生物化学试题及答案(期末用)生物化学试题及答案维生素一、名词解释1、维生素二、填空题1、维生素的重要性在于它可作为酶的组成成分,参与体内代谢过程。
2、维生素按溶解性可分为和。
3、水溶性维生素主要包括和VC。
4、脂脂性维生素包括为、、和。
三、简答题1、简述B族维生素与辅助因子的关系。
【参考答案】一、名词解释1、维生素:维持生物正常生命过程所必需,但机体不能合成,或合成量很少,必须食物供给一类小分子有机物。
二、填空题 1、辅因子;2、水溶性维生素、脂性维生素;3、 B族维生素;4、 VA、VD、VE、VK;三、简答题 1、V 需要该因子的酶生化作用有机辅因子名称及符号 B 1脱羧酶转移羧基 TPP(焦磷酸硫胺素) B 2FMN(黄素单核苷酸)氧化酶传递氢(电子) FAD(黄素腺嘌呤二核苷酸) CoA-SH(CoA) B 3酰化酶转移酰基 acylcarrier protein (ACP) (酰基载体蛋白) +NAD(烟酰胺腺嘌呤二核苷酸、CoⅠ) B 5各种脱氢酶传递氢(电子) +NADP(烟酰胺腺嘌呤二核苷酸磷酸、CoⅡ) B 6转氨酶、脱羧酶转移氨基 PLP(磷酸吡哆醛/胺PMP) B 7各种羧化酶参与CO固定 2BCCP(生物素羧基载体蛋白) B 11转移甲基、亚甲基一碳单位代谢的各种酶类亚胺甲基、甲酰基 FH或THFA(四氢叶酸) 4B 12变位酶转移甲基脱氧腺苷钴胺素生物氧化一、名词解释1.生物氧化2.呼吸链3.氧化磷酸化4. P/O比值二、填空题1.生物氧化是____ 在细胞中____,同时产生____ 的过程。
3.高能磷酸化合物通常是指水解时____的化合物,其中重要的是____,被称为能量代谢的____。
4.真核细胞生物氧化的主要场所是____ ,呼吸链和氧化磷酸化偶联因子都定位于____。
5.以NADH为辅酶的脱氢酶类主要是参与____ 作用,即参与从____到____的电子传递作用;以NADPH为辅酶的脱氢酶类主要是将分解代谢中间产物上的____转移到____反应中需电子的中间物上。
(完整版)生物化学试题及答案(4)

生物化学试题及答案(4)第四章糖代谢【测试题】一、名词解释1.糖酵解(glycolysis) 11.糖原累积症2.糖的有氧氧化 12.糖酵解途径3.磷酸戊糖途径 13.血糖 (blood sugar)4.糖异生(glyconoegenesis) 14.高血糖(hyperglycemin)5.糖原的合成与分解 15.低血糖(hypoglycemin)6.三羧酸循环(krebs循环) 16.肾糖阈7.巴斯德效应 (Pastuer效应) 17.糖尿病8.丙酮酸羧化支路 18.低血糖休克9.乳酸循环(coris循环) 19.活性葡萄糖10.三碳途径 20.底物循环二、填空题21.葡萄糖在体内主要分解代谢途径有、和。
22.糖酵解反应的进行亚细胞定位是在,最终产物为。
23.糖酵解途径中仅有的脱氢反应是在酶催化下完成的,受氢体是。
两个底物水平磷酸化反应分别由酶和酶催化。
24.肝糖原酵解的关键酶分别是、和丙酮酸激酶。
25.6—磷酸果糖激酶—1最强的变构激活剂是,是由6—磷酸果糖激酶—2催化生成,该酶是一双功能酶同时具有和两种活性。
26.1分子葡萄糖经糖酵解生成分子ATP,净生成分子ATP,其主要生理意义在于。
27.由于成熟红细胞没有,完全依赖供给能量。
28.丙酮酸脱氢酶复合体含有维生素、、、和。
29.三羧酸循环是由与缩合成柠檬酸开始,每循环一次有次脱氢、- 次脱羧和次底物水平磷酸化,共生成分子ATP。
30.在三羧酸循环中催化氧化脱羧的酶分别是和。
31.糖有氧氧化反应的进行亚细胞定位是和。
1分子葡萄糖氧化成CO2和H2O净生成或分子ATP。
32.6—磷酸果糖激酶—1有两个ATP结合位点,一是 ATP作为底物结合,另一是与ATP亲和能力较低,需较高浓度ATP才能与之结合。
33.人体主要通过途径,为核酸的生物合成提供。
34.糖原合成与分解的关键酶分别是和。
在糖原分解代谢时肝主要受的调控,而肌肉主要受的调控。
35.因肝脏含有酶,故能使糖原分解成葡萄糖,而肌肉中缺乏此酶,故肌糖原分解增强时,生成增多。
磷酸果糖激酶-1和atp的作用

磷酸果糖激酶-1和atp的作用磷酸果糖激酶-1(Phosphofructokinase-1,简称PFK-1)是糖解途径中的一个关键酶,其主要作用是催化果糖-6-磷酸(fructose-6-phosphate)转化为果糖-1,6-磷酸(fructose-1,6-bisphosphate)。
这个反应是糖解途径中一个重要的调节步骤,同时也是糖酵解过程中产生ATP的关键环节。
PFK-1的催化反应需要ATP作为辅助因子参与其中。
ATP首先与PFK-1结合,形成一个复合物。
在复合物形成后,ATP会转移其磷酸基团到果糖-6-磷酸的羟基上,生成磷酸果糖二磷酸酯中间体。
随后,磷酸果糖二磷酸酯会与另一个分子的磷酸果糖二磷酸酯结合,产生两个分子的果糖-1,6-磷酸。
最后,ATP被磷化成ADP,从而完成反应。
PFK-1和ATP的作用可以从以下几个方面进行解释:1.催化糖解途径中的关键步骤:PFK-1是糖酵解途径中的一个关键酶,它催化果糖-6-磷酸转化为果糖-1,6-磷酸,从而推动糖分子的进一步代谢。
这个转化步骤是糖解途径中的一个重要的调控点,决定了细胞内是否进行糖酵解以及ATP的产生量。
2.调节能量代谢:PFK-1和ATP的结合会抑制PFK-1的活性,从而限制果糖-6-磷酸向果糖-1,6-磷酸的转化。
当ATP浓度较高时,说明细胞内燃料供应充足,不需要进一步进行糖酵解和ATP的产生。
此时,PFK-1受到ATP的抑制,减少催化反应速率,节约能量。
3.调节糖酵解速率:PFK-1和ATP的结合还会受到其他调节因子的影响。
例如,当细胞内ADP浓度较高时,ADP会竞争性地与PFK-1结合,从而减弱ATP的抑制作用。
这样,当能量供应不足,ADP浓度较高时,PFK-1的活性会增加,促进果糖-6-磷酸转化为果糖-1,6-磷酸,增加ATP的合成。
4. 调节肌肉糖原分解:PFK-1活性的调控还涉及腺苷酸水平对磷酸糖异构酶(Phosphoglucose isomerase)活性的调节。
关键酶

糖酵解的关键酶——己糖激酶Hexokinase ,磷酸果糖激酶-1 PFK-1,丙酮酸激酶regulative factor:Insulin promotes the synthesis of three key enzymes磷酸果糖激酶-1 PFK-1:1)6- 磷酸果糖、1,6-二磷酸果糖、2,6-二磷酸果糖、ADP、AMP是变构激活剂。
2)ATP、柠檬酸及长链脂肪酸是变构抑制剂。
丙酮酸激酶:1)1,6-二磷酸果糖、ADP是变构激活剂2)ATP,乙酰CoA及长链脂肪酸是变构抑制剂。
丙酮酸氧化脱酸的关键酶——丙酮酸脱氢酶复合体E1 TPP VitaminB1E2 硫辛酸硫辛酸coenzyme A 泛酸E3 FAD Vitamin B2NAD+ Vitamin PPRegulation:受催化产物ATP、乙酰CoA的抑制。
AMP 、CoA 、NAD+增加乙酰CoA减少,酶激活三羧酸循环的关键酶——1)柠檬酸合酶2)异柠檬酸脱氢酶(高能状态-ATP多-的情况下受抑制,and vice verse ),3)α-酮戊二酸脱氢酶(类似丙酮酸脱氢酶复合体,3,5形式)产物堆积抑制TCA,主要是ADP 、ATP 的变化。
Ca+ 可促进TCA磷酸戊糖的关键酶——6-磷酸葡萄糖脱氢酶受NADPH 的反馈抑制性调节糖异生的关键酶——G-6-P酶,果糖二磷酸酶,磷酸烯醇式丙酮酸激酶(草酰乙酸磷酸烯醇丙酮酸)、丙酮酸羧化酶(丙酮酸草酰乙酸)途径Ⅰ:果糖二磷酸酶(1,6二磷酸果糖G-6-P)G-6-P酶(G-6-P Glucose )2,6-二磷酸果糖和AMP激活G-6-P酶,而抑制果糖二磷酸酶的活性而抑制糖异生途径Ⅱ:丙酮酸激酶(磷酸烯醇式丙酮酸丙酮酸)1,6二磷酸果糖是丙酮酸激酶的变构激活剂增强糖异生,必要抑制糖酵解。
原料增加可促进糖异生,乙酰CoA可加强糖异生丙酮酸羧化酶,辅基:生物素。
需要Mg2+ 和Mn2+磷酸烯醇式丙酮酸有能量最高的高能磷酸键糖原合成的关键酶——糖原合酶激活剂:ATP,G-6-P(6-磷酸葡萄糖)抑制剂:AMP, cAMP无磷酸化,活性高糖原分解(非逆反应)的关键酶——糖原磷酸化酶激活剂:AMP, cAMP,ADP抑制剂: ATP,G-6-P(6-磷酸葡萄糖)磷酸化,活性高G-6-P酶可分解糖原,但只在肝脏和肾脏,肌肉无。
糖酵解的过程

糖酵解的过程:糖酵解过程可分为两个阶段第一阶段:一分子葡萄糖磷酸化转变为两分子3-磷酸甘油醛(消耗2分子ATP)(一)葡萄糖的磷酸化葡萄糖己糖激酶葡萄糖-6-磷酸-1 ATP(二)葡萄糖-6-磷酸异构化形成果糖-6-磷酸葡萄糖-6-磷酸磷酸葡萄糖异构酶果糖-6-磷酸(三)果糖-6-磷酸形成果糖1,6-二磷酸果糖-6-磷酸磷酸果糖激酶果糖1,6-二磷酸-1 ATP(四)果糖1,6-二磷酸裂解为甘油醛-3-磷酸和二羟丙酮磷酸果糖1,6-二磷酸醛缩酶甘油醛-3-磷酸+二羟丙酮磷酸(五)二羟丙酮磷酸转变为甘油醛-3-磷酸二羟丙酮磷酸丙糖磷酸异构酶甘油醛-3-磷酸(第四步产生的甘油醛-3-磷酸不变,而二羟丙酮磷酸转变为甘油醛-3-磷酸,故而第一阶段生成了两分子3-磷酸甘油醛)第二阶段:放能阶段(六)甘油醛-3-磷酸氧化成1,3-二磷酸甘油酸甘油醛-3-磷酸甘油醛-3-磷酸脱氢酶1,3-二磷酸甘油酸+ NADH×2小知识点:甘油醛-3-磷酸脱氢酶的活性部位含有一个游离的巯基(—SH),重金属离子和烷化剂如碘乙酸能抑制酶的活性,这成为推测酶的活性中心是否有巯基的有力证据。
(七)1,3-二磷酸甘油酸转移高能磷酸基团形成ATP这一步反应是糖酵解过程中的第7步反应,也是糖酵解过程开始收获的阶段。
1,3-二磷酸甘油酸磷酸甘油酸激酶3-磷酸甘油酸+ ATP×2(八)3-磷酸甘油酸转变为2-磷酸甘油酸3-磷酸甘油酸磷酸甘油酸变位酶2-磷酸甘油酸(九)2-磷酸甘油酸脱水生成磷酸烯醇式丙酮酸2-磷酸甘油酸烯醇化酶磷酸烯醇式丙酮酸(十)磷酸烯醇式丙酮酸转变为丙酮酸磷酸烯醇式丙酮酸丙酮酸激酶丙酮酸+ ATP×2能量总结:净生成2分子ATP和两分子NADH(共生成4分子ATP和2分子NADH,消耗了2分子ATP)在不同组织里,NADH氧化产生的能量是不同的。
情况一:在骨骼肌和脑组织中,NADH进入线粒体要经过甘油磷酸穿梭系统,最终产生1.5个ATP。
某大学生物工程学院《生物化学》考试试卷(483)

某大学生物工程学院《生物化学》课程试卷(含答案)__________学年第___学期考试类型:(闭卷)考试考试时间:90 分钟年级专业_____________学号_____________ 姓名_____________1、判断题(100分,每题5分)1. 嘧啶核苷酸的补救合成途径需要1磷酸核糖5焦磷酸。
()答案:错误解析:2. 嘧啶环和嘌呤环在分解代谢中均被水解开环,且降解产物均易溶于水。
()答案:错误解析:嘧啶环分解过程中开环,降解产物易溶于水。
但嘌呤环不同。
3. 己糖激酶的底物包括葡萄糖、甘露糖和半乳糖。
()答案:错误解析:半乳糖不是己糖激酶的底物。
4. DNA聚合酶Ⅰ、Ⅱ和Ⅲ都属于多功能酶。
()答案:错误解析:5. 脂肪酸活化为脂肪酰CoA时,需消耗两个高能磷酸键。
()答案:正确解析:脂肪酸的活化过程需消耗1molATP,但消耗2个高能磷酸键,也相当于消耗2molATP。
6. 抑制磷酸果糖激酶可导致果糖6磷酸的积累。
()答案:正确解析:7. 原核细胞中,构成RNA聚合酶的σ因子的浓度低于核心酶的浓度。
()答案:正确解析:原核细胞RNA聚合酶全酶中的σ因子只参与转录的起始,当起始完成以后即与核心酶解离,并可以重新利用参与新一轮的转录起始,因此它的浓度不需要与核心酶一样。
8. 在丙酮酸经糖异生作用代谢中,不会产生NAD+。
()答案:错误解析:9. 葡萄糖6磷酸和果糖6磷酸都是磷酸酯且不含高能键。
()答案:正确解析:10. DNA分子中没有修饰的C发生自发脱氨基引发突变的可能性比修饰后的5甲基胞嘧啶自发脱氨基引发突变的可能性低得多。
()答案:正确解析:DNA分子中没有修饰的C发生自发脱氨基后转变为U,很容易被细胞内的BER系统识别和修复。
5甲基胞嘧啶自发脱氨基后转变为T,而T是DNA分子中正常的碱基,不容易被识别和修复,经过一轮复制以后,将导致CG碱基对突变为TA碱基对。
11. 在原核细胞中,mRNA经RNA聚合酶从模板DNA链上转录后都不是成熟的mRNA,要转录加工后才能翻译。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(30%) (5%)
α-葡萄糖苷酶
α-临界糊精酶
葡萄糖 18
食物中含有的大量纤维素,因人体内无β-糖 苷酶而不能对其分解利用,但却具有刺激肠蠕动 等作用,也是维持健康所必需。
β-1,4-糖苷键 19
(二)糖的吸收
1、吸收部位 小肠上段
2、吸收形式 单糖
20
3、吸收机制
刷状缘 肠 腔
Na+
G
小肠粘膜细胞
2
第二篇:物质代谢及其调节
糖代谢 脂类代谢 生物氧化 氨基酸代谢 核苷酸代谢 物质代谢的联系与调节
3
第四章
糖代谢
Metabolism of Carbohydrates
糖代谢
第一节 概述 第二节 糖的无氧分解 第三节 糖的有氧氧化 第四节 磷酸戊糖途径 第五节 糖原的合成与分解 第六节 糖异生 第七节 血糖及其调节
➢ 第二阶段 由丙酮酸转变为乳酸
26
(一)糖酵解的第一阶段
27
糖酵解的第一阶段(1)
28
⑴ 葡萄糖磷酸化为6-磷酸葡萄糖
Step 1
己糖激酶
葡萄糖
6-磷酸葡萄糖
哺乳类动物体内已发现有4种己糖激酶同工酶,分别称
为Ⅰ至Ⅳ型。肝细胞中存在的是Ⅳ型,称为葡萄糖激酶
(glucokinase)。它的特点是:
完全氧化; 3. 通过磷酸戊糖途径进行代谢。
24
第二节
糖的无氧分解 Glycolysis
一、糖酵解的反应过程
糖酵解(glycolysis)的定义 在缺氧情况下,葡萄糖生成乳酸(lactate)的过程
称之为糖酵解。 糖酵解的反应部位:胞浆 糖酵解分为两个阶段
➢ 第一阶段 由葡萄糖分解成丙酮酸(pyruvate),称之为糖酵解途径 (glycolytic pathway)
乳 糖(lactose) 葡萄糖——半乳糖
12
3、多糖
能水解生成多个分子单糖的糖。
常见的多糖有:
淀 粉(starch)
糖 原(glycogen)
纤维素(cellulose)
糖原
淀粉颗粒
纤维素
13
4、结合糖
糖与非糖物质的结合物。 常见的结合糖有:
糖脂(glycolipid):糖与脂类的结合物。 糖蛋白(glycoprotein): 糖与蛋白质的结合物。 蛋白聚糖(proteoglycan):
门静脉 肝脏
GLUT
各种组织细胞
体循环
22
四、糖代谢的概况
糖原
糖原合成 肝糖原分解
核糖 +
磷酸戊糖途径
葡萄糖 酵解途径
NADPH+H+
消化与吸收
糖异生途径
ATP
有氧
丙酮酸
无氧
H2O及CO2 乳酸
淀粉 乳酸、氨基酸、甘油
23
糖的分解代谢 (catabolism of carbohydrate )
葡萄糖在体内分解有三种途径: 1. 在无氧条件下进行酵解; 2. 在有氧条件下进行有氧分解,通过三羧酸循环,
5
重点内容
糖酵解:细胞定位,主要代谢过程,关键酶 三羧酸循环:细胞定位,生理意义,关键酶
难点内容
糖酵解代谢过程 三羧酸循环代谢过程
6
第一节
概述
Introduction
一、 糖的基本概念
(一)什么是糖?
O
糖(carbohydrates) 是含多羟基的醛或 H
OH
HO
H
酮类化合物,由碳氢氧三种元素组成的,其分子 H OH
15
三、糖的消化与吸收
(一)糖的消化
人类食物中的糖主要有植物淀粉、动物糖 原以及麦芽糖、蔗糖、乳糖、葡萄糖等,其中 以淀粉为主。
消化部位:主要在小肠,少量在口腔
16
17
口腔 胃
肠腔
肠粘膜 上皮细胞 刷状缘
消化过程
淀粉
唾液中的α-淀粉酶
胰液中的α-淀粉酶
麦芽糖+麦芽三糖 α-临界糊精+异麦芽糖
(40%) (25%)
①对葡萄糖的亲和力很低
②受激素调控
29
⑵ 6-磷酸葡萄糖转变为 6-磷酸果糖
Step 2
磷酸己糖异构酶
6-磷酸葡萄糖
6-磷酸果糖
30
9
1、单糖——不能再水解的糖。
葡萄糖(glucose)
——己醛糖
半乳糖(galactose)
——己醛糖
OH
OH
H H
OH
HO
H
OH
H OH
OH
HO H
OH
H
H
OH
H OH
OH
-D-吡喃葡萄糖
-D-吡喃半乳糖
果糖(fructose)
——己酮糖
核糖(ribose)
——戊醛糖
OH
H H
OH
HO、糖的生理功能
1、氧化供能 这是糖的主要功能。 70%的能量来源于糖的分解。
2、碳源 糖分解过程中形成的中间产物可以提供合成脂类和蛋
白质等物质所需要的碳架。 3、机体组织细胞的重要组成部分 糖是糖蛋白、蛋白聚糖、糖脂等的组成部分 4、具有一些特殊的生理功能的糖蛋白和糖衍生物 如:激素、免疫球蛋白、DNA、NAD+
1
为什么我们吃了东西就能运动?是什么维 持我们生命的能量供给?
为什么剧烈运动以后肌肉会酸疼? 在我们饥饿时靠什么来维持血糖水平和能
量供给? 是什么导致了糖尿病患者血糖升高? 脂类有没有用?有什么用? 减肥的人为什么不仅仅要少吃脂肪类? 氰化钾什么有剧毒? 肝性脑病、痛风是怎么回事?
OH
OH
H
H
O OH H HO
OH OH H
-D-吡喃甘露糖
-D-呋喃果糖
10
2、寡糖
能水解生成几分子单糖的糖,各单糖之间借脱水 缩合的糖苷键相连。
CH2OH
CH2OH
O
1
4
O
3
O
1
2
OH
麦芽糖
α(1→4)糖苷键
11
常见的几种二糖有
麦芽糖(maltose) 葡萄糖——葡萄糖
蔗 糖(sucrose) 葡萄糖——果糖
ATP ADP+Pi Na+泵
细胞内膜 门静脉
K+
Na+依赖型葡萄糖转运体 (Na+-dependent glucose transporter ,SGLT) 21
4、吸收途径
SGLT
小肠肠腔
肠粘膜上皮细胞
GLUT : 葡 萄 糖 转 运 体 (glucose transporter), 已发现有5种葡萄糖转运 体(GLUT 1~5)
式通常以Cn(H2O)n 表示。由于一些糖分子中氢 H
OH
和氧原子数之比往往是2:1,与水相同,过去误
OH
认为此类物质是碳与水的化合物,所以称为“碳 CH2OH
水化合物”(Carbohydrate)。
HH
O H
HO OH H OH
H
OH 8
(二)糖的分类
根据其水解产物的情况,糖主要可分为以下 四大类: 单糖(monosacchride) 寡糖(oligosacchride) 多糖(polysacchride) 结合糖(glycoconjugate)