港澳台联考模拟数学试卷
2022-2023学年华侨、港澳、台联考高考数学模拟试卷(含解析)

2022-2023学年华侨、港澳、台联考高考数学模拟试卷(含解析)题号一二三总分得分一、单选题(本大题共12小题,共60.0分。
在每小题列出的选项中,选出符合题目的一项)1.已知集合且,则( )A. B. C. D.2.已知复数,则的共轭复数( )A. B. C. D.3.已知向量,若,则( )A. B. C. D.4.不等式的解集为( )A. B.C. D.5.以为焦点,轴为准线的抛物线的方程是( )A. B. C. D.6.底面积为,侧面积为的圆锥的体积是( )A. B. C. D.7.设与是函数的两个极值点,则常数的值为( )A. B. C. D.8.已知函数若,则( )A. B. C. D.9.函数的反函数是( )A. B.C. D.10.设等比数列的首项为,公比为,前项和为令,若也是等比数列,则( )A. B. C. D.11.若双曲线:的一条渐近线与直线垂直,则的离心率为( )A. B. C. D.12.在,,,,,,,,中任取个不同的数,则这个数的和能被整除的概率是( )A. B. C. D.二、填空题(本大题共6小题,共30.0分)13.曲线在点处的切线的方程为.14.直线被圆所截得的弦长为.15.若,则______.16.设函数,且是增函数,若,则______.17.在正三棱柱中,,,则异面直线与所成角的大小为______.18.设是定义域为的奇函数,是定义域为的偶函数.若,则______.三、解答题(本大题共4小题,共60.0分。
解答应写出文字说明,证明过程或演算步骤)19.本小题分记的内角,,的对边分别为,,,已知,,.求;求.20.本小题分设是首项为,公差不为的等差数列,且,,成等比数列.求的通项公式;令,求数列的前项和.21.本小题分甲、乙两名运动员进行五局三胜制的乒乓球比赛,先赢得局的运动员获胜,并结束比赛.设各局比赛的结果相互独立,每局比赛甲赢的概率为,乙赢的概率为.求甲获胜的概率;设为结束比赛所需要的局数,求随机变量的分布列及数学期望.22.本小题分已知椭圆的左、右焦点分别为,,直线交于,两点,,四边形的面积为.求;求的方程.答案和解析1.【答案】【解析】【分析】本题考查了集合的描述法的定义,交集及其运算,考查了计算能力,属于基础题.化简集合,然后根据即可求出的值.【解答】解:,且,,解得.故选:.2.【答案】【解析】【分析】本题考查了复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.直接利用复数代数形式的乘除运算化简,然后利用共轭复数的概念得答案.【解答】解:,则.故选:.3.【答案】【解析】解:,,.,,.故选:.由已知可得,计算即可.本题考查两向量共线的坐标运算,属基础题.4.【答案】【解析】【分析】本题主要考查了含绝对值不等式的解法,属于基础题.根据绝对值的性质去掉绝对值,然后求解即可.【解答】解:,或,即或解得:或或,不等式的解集为.故选D.5.【答案】【解析】解:以为焦点,轴为准线的抛物线中,所以顶点坐标为焦点与准线与轴的交点的中点的横坐标为,即该抛物线的方程为:,故选:.由抛物线的焦点坐标及抛物线的准线方程可得的值,进而求出顶点的坐标,可得抛物线的方程.本题考查抛物线的平移及抛物线的方程的求法,属于基础题.6.【答案】【解析】解:设圆锥的底面半径为,母线长为,由题意可得,解得,,圆锥的高.圆锥的体积是.故选:.设圆锥的底面半径为,母线长为,由已知列式求得与,再由勾股定理求圆锥的高,然后代入圆锥体积公式求解.本题考查圆锥体积的求法,考查运算求解能力,是基础题.7.【答案】【解析】【分析】本题考查了利用导数研究函数的极值,属于基础题.由题意知和是导函数的方程的两个根,解方程即可得出结果.【解答】解:,由题意,知和是方程的两个根,所以有解得,,,故选A.8.【答案】【解析】解:函数,,函数的一条对称轴为,即或,故或.不妨时,时,不成立;当时,成立,故,故选:.由题意,可得函数的一条对称轴为,即或再检验选项,可得结论.本题主要考查正弦函数的图象和性质,属于中档题.9.【答案】【解析】解:由可得:,因为,所以,则,所以原函数的反函数为.故选:.根据的范围求出的范围,再反解出,然后根据反函数的定义即可求解.本题考查了求解函数的反函数的问题,考查了学生的运算能力,属于基础题.10.【答案】【解析】解:由题意可知,,,,,若也是等比数列,,即,即,解得或舍去.故选:.由题意可知,,,,再结合等比数列的性质,即可求解.本题主要考查等比数列的性质,属于基础题.11.【答案】【解析】解:由双曲线:的方程可得渐近线方程为,由题意可得,所以双曲线的离心率,故选:.由双曲线的方程可得渐近线的方程,由题意可得渐近线的斜率,进而求出,的关系,再求离心率的值.本题考查双曲线的性质的应用及直线相互垂直的性质的应用,属于基础题.12.【答案】【解析】在,,,,,,,,中任取个不同的数,基本事件总数,,,被除余;,,被除余;,,刚好被除,若要使选取的三个数字和能被整除,则需要从每一组中选取一个数字,或者从一组中选取三个数字,这个数的和能被整除的不同情况有:,这个数的和能被整除的概率为.故选:.基本事件总数,,,被除余;,,被除余;,,刚好被除,若要使选取的三个数字和能被整除,则需要从每一组中选取一个数字,或者从一组中选取三个数字,由此能求出结果.本题考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.13.【答案】【解析】【分析】本题考查了利用导数研究在曲线上某点的切线方程,是基础题.求出原函数的导函数,得到函数在时的导数值,即切线的斜率,然后由直线的点斜式方程得答案.【解答】解:由,得,,即曲线在点处的切线的斜率为,则曲线在点处的切线方程为,整理得:.故答案为:.14.【答案】【解析】【分析】本题考查弦长的求法,考查圆、点到直线距离公式等基础知识,考查推理论证能力、运算求解,是基础题.圆的圆心,半径,圆心到直线的距离,直线被圆所截得的弦长为.【解答】解:圆的圆心,半径,圆心到直线的距离:,直线被圆所截得的弦长为:.故答案为:.15.【答案】【解析】解:由,得.故答案为:.由已知直接利用二倍角的正切求解.本题考查三角函数的化简求值,考查倍角公式的应用,是基础题.16.【答案】【解析】解:函数,且,,,或,函数,且是增函数,,故答案为:.先利用指数幂的运算化简求出,再利用指数函数的单调性求解即可.本题考查指数函数的单调性和指数幂的运算,属于基础题.17.【答案】【解析】解:如图所示,分别取、的中点、,由正三棱柱的性质可得、、,两两垂直,建立空间直角坐标系.则,,,,,,,异面直线与所成角的大小为.故答案为:.通过建立空间直角坐标系,利用两条异面直线的方向向量的夹角即可得出异面直线所成的角.本题考查异面直线所成角的求法,属中档题.18.【答案】【解析】解:由是定义域为的奇函数,可得;由是定义域为的偶函数,可得.若,则,又可得,即有.故答案为:.由函数的奇偶性的定义和指数的运算性质,解方程可得所求值.本题考查函数的奇偶性的定义和运用,体现了方程思想和数学运算等核心素养,属于基础题.19.【答案】解:,由正弦定理可得,,由余弦定理可得,,即,解得,.,,,.【解析】根据已知条件,结合正弦定理,以及余弦定理,即可求解.根据的结论,以及正弦定理,即可求解.本题主要考查正弦定理、余弦定理的应用,属于基础题.20.【答案】解:已知是首项为,公差不为的等差数列,又,,成等比数列,则,即,又,即,则;由可得:,则,则当为偶数时,,当为奇数时,,即.【解析】由已知条件可得:,求得,然后求通项公式即可;由可得:,则,然后分两种情况讨论:当为偶数时,当为奇数时,然后求和即可.本题考查了等差数列通项公式的求法,重点考查了捆绑求和法,属基础题.21.【答案】解:由已知可得,比赛三局且甲获胜的概率为,比赛四局且甲获胜的概率为,比赛五局且甲获胜的概率为,所以甲获胜的概率为.随机变量的取值为,,,则,,,所以随机变量的分布列为:则随机变量的数学期望为.【解析】由题意分别求得三局、四局、五局比赛甲获胜的概率,然后相加可得甲获胜的概率;由题意可知的取值为,,,计算相应的概率值可得分布列,进一步计算数学期望即可.本题主要考查事件的独立性,离散型随机变量及其分布列,分布列的均值的计算等知识,属于基础题.22.【答案】解:由对称性知,,不妨取点在第一象限,设,则,解得,,因为四边形的面积为,所以,所以.设椭圆的方程为,由知,,代入椭圆方程有,又,所以,,故椭圆的方程为.【解析】由对称性知,不妨取点在第一象限,先求得点的坐标,再利用四边形的面积为,可得的值;设椭圆的方程为,代入点的坐标,并结合,求得,的值,即可.本题考查椭圆的几何性质,椭圆方程的求法,考查逻辑推理能力和运算能力,属于中档题.。
澳门(新版)2024高考数学部编版模拟(综合卷)完整试卷

澳门(新版)2024高考数学部编版模拟(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知向量是两个单位向量,则“”是“为锐角”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件第(2)题锂电池在存放过程中会发生自放电现象,其电容量损失量随时间的变化规律为,其中Q(单位)为电池容量损失量,p是时间t的指数项,反映了时间趋势由反应级数决定,k是方程剩余项未知参数的组合,与温度T和电池初始荷电状态M等自放电影响因素有关.以某种品牌锂电池为研究对象,经实验采集数据进行拟合后获得,相关统计学参数,且预测值与实际值误差很小.在研究M对Q的影响时,其他参量可通过控制视为常数,电池自放电容量损失量随时间的变化规律为,经实验采集数据进行拟合后获得,相关统计学参数,且预测值与实际值误差很小.若该品牌电池初始荷电状态为,存放16天后,电容量损失量约为()(参考数据为:)A.100.32B.101.32C.105.04D.150.56第(3)题“曼哈顿距离”是十九世纪的赫尔曼•闵可夫斯基所创词汇,定义如下:在直角坐标平面上任意两点的曼哈顿距离为:.已知点在圆上,点在直线上,则的最小值为()A.B.C.D.第(4)题在中,,,,是内一点,,且的面积是的面积的倍,则()A.B.C.D.第(5)题投壶是从先秦延续至清末的汉民族传统礼仪和宴饮游戏,在春秋战国时期较为盛行.如图为一幅唐朝的投壶图,假设甲、乙、丙是唐朝的三位投壶游戏参与者,且甲、乙、丙每次投壶时,投中与不投中是等可能的.若甲、乙、丙各投壶1次,则这3人中至少有2人投中的概率为()A.B.C.D.第(6)题函数满足:对于任意都有,(常数,).给出以下两个命题:①无论取何值,函数不是上的严格增函数;②当时,存在无穷多个开区间,使得,且集合对任意正整数都成立,则()A.①②都正确B.①正确②不正确C.①不正确②正确D.①②都不正确第(7)题的展开式中项的系数为()A.B.C.D.第(8)题已知函数,记方程的最小的两个正实数解分别为,若,则()A.B.C.D .二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知函数的定义域均为是偶函数,且,若,则( )A.B .的图象关于点中心对称C.D .第(2)题已知双曲线()的左、右焦点分别为F 1(−c ,0),F 2(c ,0).直线与双曲线左、右两支分别交于A ,B 两点,M 为线段AB 的中点,且|AB |=4,则下列说法正确的有( )A .双曲线的离心率为B .C .D .第(3)题已知函数,则( )A .在上最大值为2B .有两个零点C .的图像关于点对称D .存在实数,使的图像关于原点对称三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题甲、乙两人独立地破译一份密码,若甲能破译的概率是,乙能破译的概率是,则甲、乙两人中至少有一人破译这份密码的概率是__________.第(2)题已知向量,,若,则实数________.第(3)题生物入侵是指生物由原生存地侵入到另一个新的环境,从而对入侵地的生态系统造成危害的现象.若某入侵物种的个体平均繁殖数量为,一年四季均可繁殖,繁殖间隔为相邻两代间繁殖所需的平均时间.在物种入侵初期,可用对数模型(为常数)来描述该物种累计繁殖数量与入侵时间(单位:天)之间的对应关系,且,在物种入侵初期,基于现有数据得出,.据此估计该物种累计繁殖数量比初始累计繁殖数量增加倍所需要的时间为(,)____________天.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数.(1)设,当时,求函数的单调减区间及极大值;(2)设函数有两个极值点,①求实数的取值范围;②求证:.第(2)题设是一个二维离散型随机变量,它们的一切可能取的值为,其中,令,称是二维离散型随机变量的联合分布列,与一维的情形相似,我们也习惯于把二维离散型随机变量的联合分布列写成下表形式;现有个球等可能的放入编号为的三个盒子中,记落入第1号盒子中的球的个数为,落入第2号盒子中的球的个数为.(1)当时,求的联合分布列,并写成分布表的形式;(2)设且,求的值.(参考公式:若,则)第(3)题已知函数.(1)求曲线在点处的切线方程;(2)证明:.第(4)题已知点、分别为椭圆的左顶点和上顶点,且坐标原点到直线的距离为,椭圆的离心率为.(1)求椭圆的标准方程;(2)已知点在椭圆上,过点作斜率存在的两条射线、,交椭圆于、两点,且,试判断直线是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.第(5)题已知函数,其中为自然对数的底数.(Ⅰ)当时,判断函数极值点的个数;(Ⅱ)若函数有两个零点,设证明:随着的增大而增大.。
2024年华侨、港澳、台联考高考数学试卷

2024年华侨、港澳、台联考高考数学试卷A.{3}B.{0,1}C.{-2,-1,2}D.{-2,-1,0,1,2,3}A.1-2i B.1+2i C.-1-2i D.-1+2i A.1B.C.2D.-2(2024•香港)已知集合A={-2,-1,0,1,2},B={-2,-1,2,3},则A∩B=( )答案:C解析:结合交集的定义,即可求解.解答:解:A={-2,-1,0,1,2},B={-2,-1,2,3},则A∩B={-2,-1,2}.故选:C.(2024•香港)计算=( )3+4i 1-2i答案:D解析:直接利用复数代数形式的乘除运算化简得答案.解答:解:===-1+2i .故选:D.3+4i 1-2i (3+4i )(1+2i )(1-2i )(1+2i )-5+10i 5(2024•香港)函数y=sinx+cosx的最大值是( )√3√6答案:C 解析:利用两角和的正弦公式即可化为asinx+bcosx=sin(x+θ),进而利用正弦函数的单调性、最值即可得出.√+a 2b 2解答:解:∵y=sinx+cosx=2(sinx+cosx)=2sin(x+).∵-1≤sin(x+)≤1,√312√32π3π3A.y=±3x B.y=±2x C.y =±x D.y =±x A.“x=1,y=-2”是“a ∥b ”的必要条件B.“x=1,y=-2”是“a ∥b ”的充分条件C.“x=1,y=-2”是“a ⊥b ”的必要条件D.“x=1,y=-2”是“a ⊥b ”的充分条件∴当sin(x+)=1时,函数y取得最大值2.故选:C.π3(2024•香港)已知双曲线C:-=1(a >0,b >0)的离心率为,则双曲线C的渐近线方程为( )x 2a 2y 2b 2√101312答案:A 解析:利用双曲线的离心率,得到a,b关系式,然后求解双曲线的渐近线方程.解答:解:双曲线C:-=1(a >0,b >0)的离心率为,可得=,即=10,可得=3.双曲线C的渐近线方程为:y=±3x.故选:A.x 2a 2y 2b 2√10c a √10+a 2b 2a 2b a (2024•香港)已知平面向量a =(1,1),b =(x+1,y),则( )→→→→→→→→→→答案:D解析:根据已知条件,结合向量平行、垂直的性质,即可求解.解答:解:对于A,若a ∥b ,则1•y=1•(x+1),即y=x+1,充分性不成立,错误,对于B,当x=1,y=-2时,则b =(2,-2),a ∥b 不成立,错误,→→→→→A.f(x)是奇函数,不是增函数B.f(x)是增函数,不是奇函数C.f(x)既是奇函数,也是增函数D.f(x)既不是奇函数,也不是增函数A.1B.C.-D.-1对于C,若a ⊥b ,则x+1+y=0,必要性不成立,故错误,对于D,当x=1,y=-2时,则b =(2,-2),a •b =2-2=0,a ⊥b ,充分性成立,故D正确.故选:D.→→→→→→→(2024•香港)已知函数f (x )=ln (+x ),则( )√+1x 2答案:C解析:结合基本初等函数及复合函数的单调性及函数奇偶性即可判断.解答:解:函数的定义域为R,f(-x)+f(x)=ln(-x)+ln(+x)=ln(1+x 2-x 2)=0,所以f(-x)=-f(x),所以f(x)为奇函数,B,D错误;当x≥0时,t=+x单调递增,根据奇函数的单调性可知,t=+x在R上单调递增,根据复合函数单调性可知,f(x)为增函数,A错误,C正确.故选:C.√1+x 2√1+x 2√1+x 2√1+x 2(2024•香港)若(a+x)4的展开式中x的系数是-,则a=( )121212答案:C解析:根据二项式定理,建立方程,即可求解.A.2x-3y+2=0B.3x+2y+2=0C.3x+2y-2=0D.2x-3y-2=0A.4B.2C.1D.解答:解:∵(a+x)4的展开式中x的系数是•=-,∴a=-.故选:C.C 41a 31212(2024•香港)圆x 2+(y+2)2=4与圆(x+2)2+(y-1)2=9交于A,B两点,则直线AB的方程为( )答案:D 解析:将两圆的方程相减,即可求解.解答:解:圆x 2+(y+2)2=4,即x 2+y 2+4y=0①,圆(x+2)2+(y-1)2=9,即x 2+4x+y 2-2y=4②,②-①可得,化简整理可得,2x-3y-2=0,故直线AB的方程为2x-3y-2=0.故选:D.(2024•香港)已知x =和x =都是函数f(x)=sin(ωx+φ)(ω>0)的极值点,则ω的最小值是( )π4π212答案:A 解析:根据x=和x=都是函数f(x)的极值点,得出函数的周期T≤2×(-),由此求解即可.π4π2π2π4解答:解:因为x=和x=都是函数f(x)=sin(ωx+φ)(ω>0)的极值点,所以周期为T≤2×(-)=,所以≤,所以ω≥4,即ω的最小值是4.故选:A.π4π2π2π4π22πωπ2A.2B.1C.D.A.2B.(2024•香港)抛物线C:y 2=2px(p>0)的焦点为F,C上的点到F的距离等于到直线x=-1的距离,则p=( )1214答案:A 解析:求得抛物线的焦点和准线方程,由抛物线的定义和点到直线的距离公式,解得p,可得抛物线的方程;解答:解:抛物线C:y 2=2px(p>0)的焦点F(,0),准线方程为x=-,C上的点到F的距离等于到直线x=-1的距离,可得=1,解得p=2,故选:A.p 2p 2p 2(2024•香港)正四棱柱的八个顶点都在一个半径为1的球O的球面上,O到该正四棱柱侧面的距离为,则该正四棱柱的体积是( )12√2√223答案:B解析:根据题意可正四棱柱的体对角线即为其外接球的直径2R=2,再建立方程求出正四棱柱的,最后代入体积公式,即可求解.解答:解:∵正四棱柱的八个顶点都在一个半径为1的球O的球面上,O到该正四棱柱侧面的距离为,∴正四棱柱的底面边长为1,设正四棱柱的高为h,则正四棱柱的体对角线即为其外接球的直径2R=2,∴(2R)2=12+12+h 2,即4=2+h 2,∴h=,∴该正四棱柱的体积为1×1×=.故选:B.12√2√2√2(2024•香港)已知偶函数f(x)的图像关于直线x=1对称,当0≤x≤1时,f(x)=x 2+2x,则当2≤x≤3时,f(x)=( )A.x 2+2xB.x 2-2x C.-x 2+2x D.-x 2-2x答案:B 解析:根据题意,分析可得f(x+2)=f(x),当2≤x≤3时,有0≤x-2≤1,结合函数的解析式分析可得答案.解答:解:根据题意,f(x)为偶函数,则f(-x)=f(x),又由f(x)的图像关于直线x=1对称,则f(-x)=f(2+x),则有f(x+2)=f(x),当2≤x≤3时,有0≤x-2≤1,则f(x-2)=(x-2)2+2(x-2)=x 2-2x,则有f(x)=f(x-2)=x 2-2x.故选:B.(2024•香港)用1,2,…,9这9个数字,组成没有重复数字的三位数,其中奇数共有 280个.答案:280.解析:根据排列数公式,先排个位,再排其余,即可求解.解答:解:∵1,2,…,9这9个数字中奇数共有5个,∴用1,2,…,9这9个数字,组成没有重复数字的三位数,其中奇数共有•=280个.故答案为:280.A 51A 82(2024•香港)记等差数列{a n }的前n项和为S n ,若S 2=16,S 4=24,则a 8=-5.答案:-5.解析:根据等差数列的前n项和公式即可得.解答:解:设等差数列{a n }的首项为a 1,公差为d,由S 2=16,S 4=24,得,即,解得.所以等差数列{a n }的通项公式为a n =11-2n,a 8=11-16=-5.故答案为:-5.⎧⎨⎩2+d =164+d =24a 12×12a 14×32{2+d =162+3d =12a 1a 1{=9d =-2a 1.答案:[-2,].23解析:将不等式两边同时平方,再结合一元二次不等式的解法,即可求解.解答:解:2|x|≤|x-2|,则4x 2≤x 2-4x+4,化简整理可得,(3x-2)(x+2)≤0,解得-2≤x ≤,故所求解集为[-2,].故答案为:[-2,].232323(2024•香港)函数f(x)=e x -2x的最小值为2-2ln2.答案:见试题解答内容解析:f′(x)=e x -2,令f′(x)=e x -2=0,解得x=ln2.利用单调性即可得出.解答:解:f′(x)=e x -2,令f′(x)=e x -2=0,解得x=ln2.可得:函数f(x)在(-∞,ln2)上单调递减,在(ln2,+∞)上单调递增.∴x=ln2时,函数f(x)取得极小值即最小值,f(ln2)=2-2ln2.故答案为:2-2ln2.(2024•香港)已知函数f(x)的定义域为R,若f(x-1)f(x+1)=x 2+4x+3,f(1)=3,则f(9)=11.答案:11.解析:利用函数的解析式,依次能求出f(3),f(5),f(7),f(9)的值.解答:解:函数f(x)的定义域为R,f(x-1)f(x+1)=x 2+4x+3,f(1)=3,∴f(1)f(3)=4+8+3=15,∴f(3)=5,f(3)f(5)=16+16+3=35,∴f(5)=7,f(5)(7)=36+24+3=63,∴f(7)=9,f(7)f(9)=64+32+3=99,则f(9)=11.故答案为:11.(2024•香港)已知二面角α-AB-β的大小为90°,正方形ABCD在α内,等边三角形ABF在β内,则异面直线AC与BF所成角的余弦值为 .√244解析:由题意建立空间直角坐标系,设正方形的边长,求出直线BF,AC的方向向量BF ,AC 的坐标,进而求出两个向量的夹角的余弦值,进而求出异面直线所成的角的余弦值.→→解答:解:过F作FO⊥AB,在平面α过O作y轴⊥AB,因为二面角α-AB-β的大小为90°,所以FO⊥平面α,设正方形的边长为2,由题意OF=,可得F(0,0,),B(1,0,0),A(-1,0,0),C(1,2,0),则BF =(-1,0,),AC =(2,2,0),所以BF •AC =-1×2+0×2+×0=-2,|BF |==2,|AC |==2,所以cos<BF ,AC >==所以异面直线AC与BF所成角的余弦值为|cos<BF ,AC故答案为:.√3√3→√3→→→√3→√(-1++()202√3)2→√++222202√2→→BF •AC →→|BF |•|AC |→→4→→4√24(2024•香港)已知△ABC中,A =,AC=ABtanB.(1)求B;(2)求sinA+sinB+sinC.π3答案:(1);(2).π12+√3√62解析:(1)由题设及正弦定理,可得cosB=sinC,再根据诱导公式进行代换,即可求得角B;(2)根据角A,B,C的值,利用两角和的正弦公式即可求解.解答:解:(1)由AC=ABtanB,可得tanB =,由正弦定理,可得=,又B∈(0,π),sinB≠0,所以cosB=sinC,由诱导公式,可得cosB=sin(A+B)=cos[-(A +B )],所以B =-(A +B )+2kπ或B =(A +B )-+2kπ,k∈Z,又A =,所以B =+kπ,k∈Z,又B∈(0,π),故B=;(2)由(1)知,A =,B=,则C =,sin +sin =+sin (-)+sin (+)=+2sin cos2=.b csinB cosB sinB sinC π2π2π2π3π12π12ππ127π122π127π12√3πππ3π4√32π3π4222+√3√62(2024•香港)在一个工作日中,某工人至少使用甲、乙两仪器中的一个,该工人使用甲仪器的概率为0.6,使用乙仪器的概率为0.5,且不同工作日使用仪器的情况相互独立.(1)求在一个工作日中该工人既使用甲仪器也使用乙仪器的概率;(2)记X为在100个工作日中,该工人仅使用甲仪器的天数,求E(X).答案:(1)0.1;(2)50.解析:(1)利用概率的性质求解;(2)利用二项分布的期望公式求解.解答:解:(1)设事件A表示“在一个工作日中该工人既使用甲仪器也使用乙仪器”,则P(A)=0.6+0.5-1=0.1;(2)因为在一个工作日中该工人仅使用甲仪器的概率为0.6-0.1=0.5,A.{3}B.{0,1}C.{-2,-1,2}D.{-2,-1,0,1,2,3}A.1-2i B.1+2i C.-1-2i D.-1+2i A.1B.C.2D.-2则X~B(100,0.5),所以E(X)=100×0.5=50.(2024•香港)已知集合A={-2,-1,0,1,2},B={-2,-1,2,3},则A∩B=( )答案:C解析:结合交集的定义,即可求解.解答:解:A={-2,-1,0,1,2},B={-2,-1,2,3},则A∩B={-2,-1,2}.故选:C.(2024•香港)计算=( )3+4i 1-2i答案:D解析:直接利用复数代数形式的乘除运算化简得答案.解答:解:===-1+2i .故选:D.3+4i 1-2i (3+4i )(1+2i )(1-2i )(1+2i )-5+10i 5(2024•香港)函数y=sinx+cosx的最大值是( )√3√6答案:C 解析:利用两角和的正弦公式即可化为asinx+bcosx=sin(x+θ),进而利用正弦函数的单调性、最值即可得出.√+a 2b 2A.y=±3x B.y=±2x C.y =±x D.y =±x A.“x=1,y=-2”是“a ∥b ”的必要条件B.“x=1,y=-2”是“a ∥b ”的充分条件C.“x=1,y=-2”是“a ⊥b ”的必要条件D.“x=1,y=-2”是“a ⊥b ”的充分条件解答:解:∵y=sinx+cosx=2(sinx+cosx)=2sin(x+).∵-1≤sin(x+)≤1,∴当sin(x+)=1时,函数y取得最大值2.故选:C.√312√32π3π3π3(2024•香港)已知双曲线C:-=1(a >0,b >0)的离心率为,则双曲线C的渐近线方程为( )x 2a 2y 2b 2√101312答案:A 解析:利用双曲线的离心率,得到a,b关系式,然后求解双曲线的渐近线方程.解答:解:双曲线C:-=1(a >0,b >0)的离心率为,可得=,即=10,可得=3.双曲线C的渐近线方程为:y=±3x.故选:A.x 2a 2y 2b 2√10c a √10+a 2b 2a 2b a (2024•香港)已知平面向量a =(1,1),b =(x+1,y),则( )→→→→→→→→→→答案:D解析:根据已知条件,结合向量平行、垂直的性质,即可求解.A.f(x)是奇函数,不是增函数B.f(x)是增函数,不是奇函数C.f(x)既是奇函数,也是增函数D.f(x)既不是奇函数,也不是增函数A.1B.D.-1解答:解:对于A,若a ∥b ,则1•y=1•(x+1),即y=x+1,充分性不成立,错误,对于B,当x=1,y=-2时,则b =(2,-2),a ∥b 不成立,错误,对于C,若a ⊥b ,则x+1+y=0,必要性不成立,故错误,对于D,当x=1,y=-2时,则b =(2,-2),a •b =2-2=0,a ⊥b ,充分性成立,故D正确.故选:D.→→→→→→→→→→→→(2024•香港)已知函数f (x )=ln (+x ),则( )√+1x 2答案:C解析:结合基本初等函数及复合函数的单调性及函数奇偶性即可判断.解答:解:函数的定义域为R,f(-x)+f(x)=ln(-x)+ln(+x)=ln(1+x 2-x 2)=0,所以f(-x)=-f(x),所以f(x)为奇函数,B,D错误;当x≥0时,t=+x单调递增,根据奇函数的单调性可知,t=+x在R上单调递增,根据复合函数单调性可知,f(x)为增函数,A错误,C正确.故选:C.√1+x 2√1+x 2√1+x 2√1+x 2(2024•香港)若(a+x)4的展开式中x的系数是-,则a=( )1212C.-A.2x-3y+2=0B.3x+2y+2=0C.3x+2y-2=0D.2x-3y-2=0A.4B.2C.1D.12答案:C解析:根据二项式定理,建立方程,即可求解.解答:解:∵(a+x)4的展开式中x的系数是•=-,∴a=-.故选:C.C 41a 31212(2024•香港)圆x 2+(y+2)2=4与圆(x+2)2+(y-1)2=9交于A,B两点,则直线AB的方程为( )答案:D 解析:将两圆的方程相减,即可求解.解答:解:圆x 2+(y+2)2=4,即x 2+y 2+4y=0①,圆(x+2)2+(y-1)2=9,即x 2+4x+y 2-2y=4②,②-①可得,化简整理可得,2x-3y-2=0,故直线AB的方程为2x-3y-2=0.故选:D.(2024•香港)已知x =和x =都是函数f(x)=sin(ωx+φ)(ω>0)的极值点,则ω的最小值是( )π4π212答案:A 解析:根据x=和x=都是函数f(x)的极值点,得出函数的周期T≤2×(-),由此求解即可.π4π2π2π4A.2B.1C.D.A.2B.解答:解:因为x=和x=都是函数f(x)=sin(ωx+φ)(ω>0)的极值点,所以周期为T≤2×(-)=,所以≤,所以ω≥4,即ω的最小值是4.故选:A.π4π2π2π4π22πωπ2(2024•香港)抛物线C:y 2=2px(p>0)的焦点为F,C上的点到F的距离等于到直线x=-1的距离,则p=( )1214答案:A 解析:求得抛物线的焦点和准线方程,由抛物线的定义和点到直线的距离公式,解得p,可得抛物线的方程;解答:解:抛物线C:y 2=2px(p>0)的焦点F(,0),准线方程为x=-,C上的点到F的距离等于到直线x=-1的距离,可得=1,解得p=2,故选:A.p 2p 2p 2(2024•香港)正四棱柱的八个顶点都在一个半径为1的球O的球面上,O到该正四棱柱侧面的距离为,则该正四棱柱的体积是( )12√2√223答案:B解析:根据题意可正四棱柱的体对角线即为其外接球的直径2R=2,再建立方程求出正四棱柱的,最后代入体积公式,即可求解.解答:解:∵正四棱柱的八个顶点都在一个半径为1的球O的球面上,O到该正四棱柱侧面的距离为,∴正四棱柱的底面边长为1,设正四棱柱的高为h,则正四棱柱的体对角线即为其外接球的直径2R=2,∴(2R)2=12+12+h 2,即4=2+h 2,∴h=,12√2A.x 2+2xB.x 2-2x C.-x 2+2x D.-x 2-2x∴该正四棱柱的体积为1×1×=.故选:B.√2√2(2024•香港)已知偶函数f(x)的图像关于直线x=1对称,当0≤x≤1时,f(x)=x 2+2x,则当2≤x≤3时,f(x)=( )答案:B解析:根据题意,分析可得f(x+2)=f(x),当2≤x≤3时,有0≤x-2≤1,结合函数的解析式分析可得答案.解答:解:根据题意,f(x)为偶函数,则f(-x)=f(x),又由f(x)的图像关于直线x=1对称,则f(-x)=f(2+x),则有f(x+2)=f(x),当2≤x≤3时,有0≤x-2≤1,则f(x-2)=(x-2)2+2(x-2)=x 2-2x,则有f(x)=f(x-2)=x 2-2x.故选:B.(2024•香港)用1,2,…,9这9个数字,组成没有重复数字的三位数,其中奇数共有 280个.答案:280.解析:根据排列数公式,先排个位,再排其余,即可求解.解答:解:∵1,2,…,9这9个数字中奇数共有5个,∴用1,2,…,9这9个数字,组成没有重复数字的三位数,其中奇数共有•=280个.故答案为:280.A 51A 82(2024•香港)记等差数列{a n }的前n项和为S n ,若S 2=16,S 4=24,则a 8=-5.答案:-5.解析:根据等差数列的前n项和公式即可得.解答:解:设等差数列{a n }的首项为a 1,公差为d,由S 2=16,S 4=24,得,即,解得.所以等差数列{a n }的通项公式为a n =11-2n,a 8=11-16=-5.故答案为:-5.⎧⎨⎩2+d =164+d =24a 12×12a 14×32{2+d =162+3d =12a 1a 1{=9d =-2a 1.答案:[-2,].23解析:将不等式两边同时平方,再结合一元二次不等式的解法,即可求解.解答:解:2|x|≤|x-2|,则4x 2≤x 2-4x+4,化简整理可得,(3x-2)(x+2)≤0,解得-2≤x ≤,故所求解集为[-2,].故答案为:[-2,].232323(2024•香港)函数f(x)=e x -2x的最小值为2-2ln2.答案:见试题解答内容解析:f′(x)=e x -2,令f′(x)=e x -2=0,解得x=ln2.利用单调性即可得出.解答:解:f′(x)=e x -2,令f′(x)=e x -2=0,解得x=ln2.可得:函数f(x)在(-∞,ln2)上单调递减,在(ln2,+∞)上单调递增.∴x=ln2时,函数f(x)取得极小值即最小值,f(ln2)=2-2ln2.故答案为:2-2ln2.(2024•香港)已知函数f(x)的定义域为R,若f(x-1)f(x+1)=x 2+4x+3,f(1)=3,则f(9)=11.答案:11.解析:利用函数的解析式,依次能求出f(3),f(5),f(7),f(9)的值.解答:解:函数f(x)的定义域为R,f(x-1)f(x+1)=x 2+4x+3,f(1)=3,∴f(1)f(3)=4+8+3=15,∴f(3)=5,f(3)f(5)=16+16+3=35,∴f(5)=7,f(5)(7)=36+24+3=63,∴f(7)=9,f(7)f(9)=64+32+3=99,则f(9)=11.故答案为:11.(2024•香港)已知二面角α-AB-β的大小为90°,正方形ABCD在α内,等边三角形ABF在β内,则异面直线AC与BF所成角的余弦值为 .√244解析:由题意建立空间直角坐标系,设正方形的边长,求出直线BF,AC的方向向量BF ,AC 的坐标,进而求出两个向量的夹角的余弦值,进而求出异面直线所成的角的余弦值.→→解答:解:过F作FO⊥AB,在平面α过O作y轴⊥AB,因为二面角α-AB-β的大小为90°,所以FO⊥平面α,设正方形的边长为2,由题意OF=,可得F(0,0,),B(1,0,0),A(-1,0,0),C(1,2,0),则BF =(-1,0,),AC =(2,2,0),所以BF •AC =-1×2+0×2+×0=-2,|BF |==2,|AC |==2,所以cos<BF ,AC >==所以异面直线AC与BF所成角的余弦值为|cos<BF ,AC√3√3→√3→→→√3→√(-1++()202√3)2→√++222202√2→→BF •AC →→|BF |•|AC |→→4→→44(2024•香港)已知△ABC中,A =,AC=ABtanB.(1)求B;(2)求sinA+sinB+sinC.π3答案:(1);(2).π12+√3√62解析:(1)由题设及正弦定理,可得cosB=sinC,再根据诱导公式进行代换,即可求得角B;(2)根据角A,B,C的值,利用两角和的正弦公式即可求解.解答:解:(1)由AC=ABtanB,可得tanB =,由正弦定理,可得=,又B∈(0,π),sinB≠0,所以cosB=sinC,由诱导公式,可得cosB=sin(A+B)=cos[-(A +B )],所以B =-(A +B )+2kπ或B =(A +B )-+2kπ,k∈Z,又A =,所以B =+kπ,k∈Z,又B∈(0,π),故B=;(2)由(1)知,A =,B=,则C =,sin +sin =+sin (-)+sin (+)=+2sin cos2=.b csinB cosB sinB sinC π2π2π2π3π12π12ππ127π122π127π12√3πππ3π4√32π3π4222+√3√62(2024•香港)记数列{a n }的前n项和为S n ,已知a 1=4,=(-1).(1)证明:数列{}是等比数列;(2)求{a n }的通项公式.a n +14(n +1)2n -1S n -1S n 2n -1答案:(1)证明见解答;(2)a n =4n•3n-1,n∈N *.解析:(1)根据数列的和与项的转化关系,等比数列的定义,即可证明;(2)根据数列的和与项的转化关系,分类讨论,即可求解.解答:解:(1)证明:∵=(-1),∴-=(-1),∴(2n-1)S n+1-(2n-1)S n =4(n+1)S n -4(n+1),∴(2n-1)S n+1=(6n+3)S n -4(n+1),∴(2n-1)(S n+1-1)=(6n+3)S n -(6n+3),∴(2n-1)(S n+1-1)=3(2n+1)(S n -1),∴=3(),又=a 1-1=3,∴数列{}是以首项为3,公比为3的等比数列;(2)由(1)可得=,∴-1=(2n -1)×①,当n≥2时,-1=(2n -3)×②,①-②可得=(2n -1)×-(2n -3)×=4n•3n-1(n≥2),又a 1=4,也满足上式,∴a n =4n•3n-1,n∈N *.a n +14(n +1)2n -1S n S n +1S n 4(n +1)2n -1S n -1S n +12n +1-1S n 2n -1-1S 12×1-1-1S n 2n -1-1S n 2n -13n S n 3n S n -13n -1a n 3n 3n -1(2024•香港)已知椭圆C :+=1(a >b >0)的左焦点为F,点A(-a,0),B(0,b),过F的直线x-y+1=0交C于B,P两点.(1)求P的坐标;(2)若点R(-2,y 0)在直线AB上,证明:FR是∠PFA的角平分线.x 2a 2y 2b 2答案:(1)P(-,-).(2)证明详情见解答.4313解析:(1)直线方程中x-y+1=0,分别令y,x为0,解得b,c,由a 2=b 2+c 2,解得a,即可得出椭圆的方程,联立直线x-y+1=0与椭圆的方程,即可得出答案.(2)由(1)知A(-,0),B(0,1),写出直线AB的方程,进而可得Q点坐标,推出tan2∠RFA=tan∠RFA,即可得出答案.√2解答:解:(1)因为直线x-y+1=0过焦点F和点B,所以令y=0,得x=-1,即-c=-1,则c=1,令x=0,得y=1,即b=1,又a 2=b 2+c 2=2,所以椭圆的方程为+y 2=1,联立,解得x=0或x=-,所以x P =-,y P =x P +1=(-)+1=-,所以P(-,-).(2)证明:由(1)知A(-,0),B(0,1),令x=-2,得y=1-,所以R(-2,1-),tan∠RFA==-1,tan2∠RFA==因为直线x-y+1=0的斜率为1,所以tan∠RFA=1,所以tan2∠RFA=tan∠RFA,所以FR是∠PFA的角平分线.x 22{x -y +1=0+=1x 22y 2434343134313√2√2√2|1-|√2-1-(-2)√22tan ∠RFA 1-ta ∠n 2√2。
港澳台华侨生联考试题:数学基础练习30套:第5套:集合(含答案)

9.设集合 A 1,2,则满足 A B 1,2,3的集合 B 的个数是( A.1 B.3 10.下列关系中正确的个数为( C.4 ) D.8
①0∈{0},②Φ {0},③ 0,1} {(0,1)} ,④{(a,b)}={(b,a)} A.1 B.2 C.3 D.4 ) D、{1,2,3} 网址:
26.已知集合 A {1, 2} , B x Z 0 x 2 ,则 A B =(
)
A. {0}
B. {2}
C. {0,1, 2}
D. )
27.设集合 A {4,5, 6,8}, B {3,5, 7,8} ,则 A B 中元素的个数为( A.8 B. 7 C.6 D. 5
A. B. 3 C. 3,3
) .
D. 3,2,0,1,2 )
39.设全集 U R ,集合 A {x | 1 x 4} ,集合 B { x | 2 x 5} ,则 A (CU B ) ( A. x |1 x 2 B. {x | x 2} C. { x | x 5} D. x |1 x 2 ) D、 1, 2,3,5,9
)
35.已知集合 A {1,3,5, 6} ,集合 B {2,3, 4,5} ,那么 A B ( A. {3,5} B. {1, 2,3, 4,5, 6} C. {7}
D. {1, 4, 7} ) D. {2,3, 4,5} )
36.设集合 A {1,3}, 集合 B {1, 2, 4,5} ,则集合 A B ( A.{1,3,1,2,4,5} B. {1} C. {1, 2,3, 4,5}
5.已知全集 U={0,1,2}且 CU A ={2},则集合 A 的真子集共有( A.3 个 B. 4 个 C.5 个 6.下列四个集合中,是空集的为 (A) {x | x 3 3} (B) {( x, y ) | y x , x, y R} (C) { x | x 0} (D) { x | x x 1 0} 7.已知集合 A A.8
澳门(新版)2024高考数学人教版模拟(综合卷)完整试卷

澳门(新版)2024高考数学人教版模拟(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知R为实数集,集合,,则图中阴影部分表示的集合为()A.B.C.D.第(2)题已知函数,在上随机取一个实数,则使得成立的概率为()A.B.C.D.第(3)题在三棱锥中,,中点为,,则此三棱锥的外接球的表面积为A.B.C.D.第(4)题对于平面和两条直线,下列说法正确的是()A.若,,则B.若与所成的角相等,则C.若,,则D.若,,n在平面α外,则第(5)题如图,在中,是的中点,与交于点,则()A.B.C.D.第(6)题已知集合,,则()A.B.C.D.第(7)题对比函数和的图象与性质,有下面四个结论:①它们的定义域不同,但值域相同;②它们在各自的定义域内都是增函数;③它们在各自的定义域内都是奇函数;④它们中一个是周期函数,另一个不是周期函数.其中所有正确结论的编号是()A.①②③B.①②④C.①③④D.②③④第(8)题已知复数(i为虚数单位),则在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知,分别为椭圆的左、右焦点,为椭圆上任意一点(不在轴上),外接圆的圆心为,半径为,内切圆的圆心为,半径为,直线交轴于点,为坐标原点,则()A.最大时,B.的最小值为2C.椭圆的离心率等于D.的取值范围为第(2)题已知抛物线的焦点为,准线为,过点且与坐标轴不垂直的直线与交于两点,过的中点作轴的平行线交于点.设的中点为,直线的斜率分别为,则()A.点在上B.过点且与相切的直线与直线平行C.D.第(3)题下列结论中,正确的是()A.若,,则的最小值为8B .若,则函数的最小值为C.已知正数a,b满足,则D.已知,,且,则三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知,,,则的大小关系为__________.第(2)题已知数列满足,,记数列的前n项和为,若存在正整数m,k,使得,则m的值是___________.第(3)题若函数,则______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题双曲线的左右焦点分别为,左右顶点分别为,点是上的动点.(1)若点在第一象限,且,求点的坐标;(2)点与不重合,直线分别交轴于两点,求证: ;(3)若点在左支上,是否存在实数,使得到直线的距离与之比为定值?若存在,求出的值,若不存在,说明理由.第(2)题已知椭圆的离心率为,长轴的左端点为.(1)求C的方程;(2)过椭圆C的右焦点的任一直线l与椭圆C分别相交于M,N两点,且AM,AN与直线,分别相交于D,E两点,求证:以DE为直径的圆恒过x轴上定点,并求出定点.第(3)题如图,在四棱锥中,,,,分别为,的中点,点在上,且为三角形的重心.(1)证明:平面;(2)若,,四棱锥的体积为,求直线与平面所成角的正弦值.第(4)题数列的前项和为,且满足,(1)设,求证:数列是等比数列;(2)设,求的最小值.第(5)题已知椭圆的焦距为2,点在C上.(1)求C的方程;(2)若过动点P的两条直线,均与C相切,且,的斜率之积为-1,点,问是否存在定点B,使得?若存在,求出点B的坐标;若不存在,请说明理由.。
2023年港澳台联考数学试卷

2023年中华人民共和国普通高等学校联合招收华侨、港澳地区、台湾省学生入学考试题目数学一、选择题(5*12=60分)L集合A={-2,-1,0,1,2}, B ={2klk EA},则A门B=( )(A){O}(B){0,2}(C){-2,0}(D){-2,0,2}2、已知(2+i)�=5+5i,则仁I=( )(A)✓5(B)而(C)5五(D)5✓53、设向星;= (2, x+1), b =(x -2, -1),若;上b,则( )(A)5(B)2(C)1(D)01 1x-14、不等式—>一的解集为( )(A)(0,+oo)(B)(1,位))(C)(0,1)(D)(畛]5、抛物线l=2px过点(l,司,求焦点( )(A)[音,0J (B l(亨,0l(C) (¾,o) (D)(%,0)6、长方体的对角线长为1,表面积为1,有一面为正方形,则其体积为( )(A)—5(B)— 五(C)— 5 (D)— 五/108 27 9 67、已知函数f(x)=x气矿+x+b在x=l处取得极小值1,则b=( )(A) -1(B)0 (C)1(D)28、已知函数/(x)=sin(2:rrx-:],则( )(A)(-—3 —7 ]上单调递增(B)(-1上)上单调递增20'20 5'10(C)(上卢]上单调递减(D)(上旦)上单调递增10 520'209、若log2(x2+2x+1)=4,且x>O,则x=( )(A)2(B)3(C)4(D)510、凡为等差数列的前n 项和,S 9= 81, a 2 = 3,则a lO =(A)2(B)11(C)1511、0为原点,P 在圆C (x -2)2+(y-1)2=l 上,OP 与圆C 相切,则IOPI = ()(A)1(B)2)3(C)而12、在2、3、5、6中任选2个不同数字,其乘积能被3整除的概率为(、丿CD)19(D)✓l4()1_6、丿A (1_7、丿B (1_3、丿c(5-6、丿D (二、填空题(5*6=30分)13、曲线y = 21n x +x 2在(1,1)处切线方程为$14、若双曲线C焦点在x轴上,渐近线为y =土—-X,则C离心率为21 廿冗3冗15、已知si n 20=-一,右一<0<—,则tan0=34 4 16、已知函数f(x )=2'广+2寸,则f(x )在区间[-员]的最大值为17、在t:,.ABC 中,A = 2B, a = 6, b = 4,则cosB=18、f(x )为R 上奇函数,f(x +4)= f (x ), f(l )+f (2)+ f (3)+ f (4)+ f (5)=6, f (-3)=三、解答题(15*仁60分)19、在直三棱柱ABC-AIB I C I中,AB=AC=L AA I =✓2,乙CAB=120°, (1)求直三棱柱ABC-AIB I C I的体积;(2)求直三棱柱ABC-A I B I C I的表面积20、已知{a n}为等比数列,其前n项和为S n,S3=2L S6=189(1)求包}的通项公式;(2)若凡=(-lf丸,求{丸}的前n项和T n21、盒中有4个球,分别标有数字1、1、2、3,从中随机取2个球(1)求取到2个标有数字1的球的概率;(2)设X为取出的2个球上的数字之和,求随机变呈X的分布列及数学期望X y 25.l22、已知椭圆C:一-+--=1Ca>b>O)的离心率为一—一,直线y=-交C于A、B两矿b2 3 2点,I AB I=3✓3(1)求C的方程;(2)记C的左、右焦点分别为仄、F2,过仄斜率为1的直线交C于G、H两点求c,.F2GH 的周长。
澳门(新版)2024高考数学人教版模拟(备考卷)完整试卷
澳门(新版)2024高考数学人教版模拟(备考卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题设x、,则“”是“且”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件第(2)题函数()的最小正周期为()A.B.C.D.第(3)题某国军队计划将5艘不同的军舰全部投入到甲,乙,丙三个海上区域进行军事演习,要求每个区域至少投入一艘军舰,且军舰必须安排在甲区域.在所有可能的安排方案中随机选取一种,则此时甲区域还有其它军舰的概率为()A.B.C.D.第(4)题已知正方体以某直线为旋转轴旋转角后与自身重合,则不可能为()A.B.C.D.第(5)题已知点A、B、C在圆上运动,且,若点的坐标为,则的最大值为()A.3B.5C.7D.9第(6)题已知复数(i为虚数单位),则()A.4B.C.D.第(7)题已知,则双曲线的( )A.实轴长相等B.虚轴长相等C.焦距相等D.离心率相等第(8)题若集合,,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知等差数列的前n项和为,且满足,,则()A.B.C.当且仅当时,取最小值D.第(2)题已知函数,则下列说法正确的是()A.函数有两个极值点B.若关于x的方程恰有1个解,则C.函数的图象与直线有且仅有一个交点D.若,且,则无最值第(3)题数列定义如下:,,若对于任意,数列的前项已定义,则对于,定义,为其前n项和,则下列结论正确的是()A.数列的第项为B.数列的第2023项为C.数列的前项和为D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题若双曲线的渐近线与圆相切,则_________.第(2)题,的最小值为___________.第(3)题已知函数,若存在实数对满足且,则使得成立的正整数的最大值为______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题如图,在四棱锥中,,,平面平面,平面与平面相交于直线.(1)证明:;(2)若,二面角是60°,点是直线上异于点的一点,且直线和平面所成角的正弦值是,求.第(2)题斜三角形的面积为,且,,且,求第(3)题甲、乙两选手进行象棋比赛,设各局比赛的结果相互独立,每局比赛甲获胜的概率为,乙获胜的概率为.(1)若采用5局3胜制比采用3局2胜制对甲更有利,求的取值范围;(2)若,已知甲乙进行了局比赛且甲胜了13局,试给出的估计值(表示局比赛中甲胜的局数,以使得最大的的值作为的估计值).第(4)题影响消费水平的原因是很多的,其中重要的一项是工资收入.下表是我国某地区2016年-2021年职工平均工资与城镇居民消费水平(单位:万元)的数据;年份201620172018201920202021职工平均工资 6.67.27.88.58.49.5城镇居民消费水平4.1 5.0 5.2 6.3 5.8 6.6以表示职工平均工资,以表示城镇居民消费水平,绘制如下散点图:(1)请写出从散点图发现的与之间关系的一般规律,并求出线性回归方程(精确到0.01);(2)请预测2022年的职工平均工资至少多少万元时,城镇居民消费水平才不少于8.11万元?附:线性回归方程,,,参考数据:,,第(5)题已知椭圆的左、右焦点分别为、,离心率为,其短轴的一个端点到焦点的距离为.(1)求椭圆的标准方程;(2)若为的中点,为椭圆上一点,过且平行于的直线与椭圆相交于,两点,是否存在实数,使得若存在,求出的值;若不存在,请说明理由.。
港澳台华侨生联考试题:数学基础练习30套:第1套:一元二次不等式1(含答案)
B. x | x 2或x 1 )
C. x |1 x 2
D. x |1 x 2
14.不等式 ( x )( x ) 0 的解集是(
1 3 或x } 2 2 1 3 C. {x | x } 2 2
A. { x | x 15.不等式 的解集为(
2
)
1 4
C. 4
D.
1 2
19.不等式 x 2 x 3 0 的解集是( A. (3,1) B. ( 1,3)
) D. ( ,3) (1, ) 网址:
C. ( ,1) (3, )
2
北京博飞华侨港澳台学校
23.不等式 3 x 2 x 1 0 的解集是( A. ,1
) C. , 1, ( )
1 3
B. 1,
1 3
D. ,
1 3
24.不等式(x—1)(2—x)≥0 的解集是 A. x x 1, 或x 2
3.A 11.A 19.B
4. B 12.D 20.B
5.C 13.C 21.A
参考答案 6. B 7.C 14.C 15.A 22.B 23.A
8.B 16.A 24.C
北京博飞华侨港澳台学校
3
网址:
北京博飞--华侨港澳台培训学校
北京博飞华侨港澳台学校
4
1 3 2 2
B. { x | x
1 3 或x } 2 2 1 3 D. { x | x } 2 2
)
A.
B.
C. 16.不等式 x ( x 2) 0 的解集为( A. {x | x 0或x 2} C. {x | 0 x 2}
港澳台联考模拟数学试卷
港澳台联考模拟数学试卷中华人民共和国普通高等学校联合招收华侨、港澳台地区入学考试模拟试卷(15)这份试卷共三个大题,共27小题.满分150分.考试时间为120分钟.考生注意:这份试卷共三个大题,所有考生做一、二题,在第三题(21、22、23)题中任选两题;理工考生做24、25题;文史考生做26、27题。
第一部分选择题(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1 .2i(1 i)=().A. 1 i B .-1 i C. -2 D. 22.已知I为实数集,M二{x|x2 -2x ::0},N={x | y = x -1},则M'(C I N)=( )A . {x |0 :: x ::B . {x |0 ::C. {x | x <1} D . 一3. “ a =2 ”是“函数f(x)二x-a在区间[2,;)上为增函数”的().A ?充分条件不必要B ?必要不充分条件C ?充要条件D ?既不充分也不必要条件4.下列命题是真命题的为A .若一=—,则x = yB .若x = 1,则x=1C .若x = y,则J x =、. yD .若x y2 2x y ,贝U x ::: y-x2_ 3x 亠45.函数y 的定义域为xA . [-4,1]B .0,0)C . (0,1]D . [-4,0)U(0,1]6. 50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名, 参加乙项的学生有25名,则仅参加了一项活动的学生人数为A ?50 B ? 45 C . 40 D ? 357 ?函数 f (x) =(1 ..3tan x)cos x 的最小正周期为2 二3兀n AB ?C .二D ?—22la, a Eb8?定义运算::a : b 二设 F(x)二 f (x) : g(x),若 f X) s ,x(g)x cs 二 xb, a a bx ? R ,贝U F (x )的值域为()?外接圆直径为A ?甲是乙的充分条件但不是必要条件B ?甲是乙的必要条件但不是充分条件C ?甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件12 ?已知a1>a2>a3>0,则使得(1 -ax)2 £ 1(i = 1,2, 3)都成立的x 取值范围是()1 21 2A. (0, —)B. (0, —)C.(0, —) D. (0,—a 1a 1a 3a 3A J.-1,11B.,2C.9 ?在ABC 中, 角A,B,C 的对边分别是a,b,c ,且 a =1, B =45 , S 出BC 2,则也ABC 的A. 4、、5B. 5C.622io 椭圆 y =1的两个焦点为4点为P ,则P 到F 2的距离为()?A ?乜B .32F 2,过卩舁乍垂直于x 轴的直线与椭圆相交,一个交7C .D . 422 211.若数列{a n }满足a n 1 -a n =d ( d 为正常数, 『),则称{a n }为“等方差数列”甲:数列{a n }是等方差数列;乙:数列{a n }是等差数列,则()?D. _1,第二部分非选择题(共110分)、填空题:本大题共 8小题,每小题4分,满分32分.213.已知双曲线—-y 2=1,则其渐近线方程为 4,离心率为14. (仮-2)6展开式中,常数项是.x15 .设数列仏门为公比q 1的等比数列,若 2a 4,a 5是方程4x -8x *3=0的两根,则a6' a 7 二 _________ .16. 已知函数f (x ) 41的定义域是 a,b 】(a,b 为整数),值域是0,1丨,则满足条件|x|+2的整数数对(a , b )共有___________ 个.17. 函数y =sinx + sinx 的值域是 ____________ .x = 2 cosB18在直角坐标系中圆 C 的参数方程为」(日为参数),则圆C 的普通方程为y = 2 +2si n 日,以原点0为极点,以x 轴正半轴为极轴建立极坐标系,则圆C 的圆心极坐标为 .佃若 f (x ) = (x + 3) + a (x + 1) + 6(x — 1)— 5 除以(x + 2 )的余式为 2 '求 a26、27题。
澳门(新版)2024高考数学部编版摸底(提分卷)完整试卷
澳门(新版)2024高考数学部编版摸底(提分卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知向量与向量共线,则实数x的值为()A.﹣B.或﹣C.D.或0第(2)题某广场的一个椭球水景雕塑如图所示,其横截面为圆,过横截面圆心的纵截面为椭圆,,分别为该椭圆的两个焦点,为该椭圆过点的一条弦,且的周长为.若该椭球横截面的最大直径为2米,则该椭球的高为()A.米B.米C.米D.米第(3)题2023年6月22日,由中国帮助印尼修建的雅万高铁测试成功,高铁实现时速自动驾驶,不仅速度比普通列车快,而且车内噪声更小.如果用声强(单位:)表示声音在传播途径中每平方米上的声能流密度,声强级(单位:)与声强的函数关系式为,其中为基准声强级,为常数,当声强时,声强级.下表为不同列车声源在距离处的声强级:声源与声源的距离(单位:)声强级范围内燃列车20电力列车20高速列车20设在离内燃列车、电力列车、高速列车处测得的实际声强分别为,则下列结论正确的是()A.B.C.D.第(4)题某产品的广告费用x与销售额y的统计数据如下表:广告费用x(万元)1245销售额y(万元)10263549根据上表可得回归方程的约等于9,据此模型预报广告费用为6万元时,销售额约为()A.56万元B.57万元C.58万元D.59万元第(5)题已知函数的图像与x轴相邻的两个交点为M,N,他们之间有一个最高点为P,,则的最小正周期为()A.B.C.D.第(6)题“”是“”的()A.充分非必要条件B.必要非充分条件C.充分必要条件D.既非充分又非必要条件第(7)题幂函数在第一象限的图像如图所示,则的大小关系是()A.B.C.D.第(8)题已知函数恰有两个零点,则的取值范围为()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题如图,在中,,,,设点在上的射影为,将绕边任意转动,则有()A.若为锐角,则在转动过程中存在位置使B.若为直角,则在转动过程中存在位置使C.若,则在转动过程中存在位置使D.若,则在转动过程中存在位置使第(2)题将一组数据从小到大排列为:,中位数和平均数均为a,方差为,从中去掉第6项,从小到大排列为:,方差为,则下列说法中一定正确的是()A.B.的中位数为aC.的平均数为a D.第(3)题如图,在矩形中,,,为的中点,现分别沿、将、翻折,使点、重合,记为点,翻折后得到三棱锥,则()A.B.三棱锥的体积为C.三棱锥外接球的半径为D.直线与所成角的余弦值为三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知一个圆锥的侧面积是底面面积的2倍,则该圆锥的母线与其底面所成的角的大小为______.第(2)题将5名志愿者分配到四个社区协助开展活动,每名志愿者只能到1个社区,每个社区至少1名,则不同的分配方法数是____________.第(3)题已知函数.则函数的值域为__________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知向量,且函数.在上的最大值为.(1)求常数的值;(2)求函数的单调递增区间;(3)求使成立的的取值集合.第(2)题已知函数.(1)当时,求的最大值;(2)讨论函数在区间上零点的个数.第(3)题如图所示,直角梯形和三角形所在平面互相垂直,,,,,异面直线与所成角为45°.(1)求证:平面平面;(2)若点在上,当面积最小时,求三棱锥的体积.第(4)题如图,开车从站到站有3条路线.甲、乙、丙路线分别为.开车从站到站需要3分钟,从站到站需要2分钟,从站到站需要2分钟,从站到站需要,2.5分钟,从站到站需要分钟,从站到站需要分钟,从站到站需要分钟,从站到站需要分钟,受路上的红绿灯影响,都是随机变量,且分布列如下.2 2.50.40.61.52.50.50.523m230.50.5(1)若选择甲路线,开车从站到站的总时间为分钟,求的分布列;(2)小张从这3条路线中选择1条,他在每站选择前进的方向时,都会等可能地选择其中一个方向,在他开车经过站的前提下,若他开车从站到站的总时间少于5分钟的概率为0.4,求的值;(3)以各条路线开车需要的总时间的期望为依据,若三条路线中只有丙路线最快捷,求的取值范围.第(5)题已知,为双曲线E:(,)的左、右焦点,E的离心率为,M为E上一点,且.(1)求E的方程;(2)设点M在坐标轴上,直线l与E交于异于M的A,B两点,且点M在以线段AB为直径的圆上,过M作,垂足为C,是否存在点D,使得为定值?若存在,求出点D的坐标以及的长度;若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中华人民共和国普通高等学校联合招收
华侨、港澳台地区入学考试模拟试卷(15)
这份试卷共三个大题,共27小题.满分150分.考试时间为120分钟.
考生注意:这份试卷共三个大题,所有考生做一、二题,在第三题(21、22、23)题中任选两题;理工考生做24、25题;文史考生做26、27题。
第一部分选择题(共60分)
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1 .
2
i(1 i)=().
A. 1 i B .-1 i C. -2 D. 2
2.已知I为实数集,M二{x|x2 -2x ::0},
N={x | y = x -1},则M'(C I N)=( )
A . {x |0 :: x ::
B . {x |0 ::C. {x | x <1} D . 一
3. “ a =2 ”是“函数f(x)二x-a在区间[2,;)上为增函数”的().
A •充分条件不必要
B •必要不充分条件
C •充要条件
D •既不充分也不必要条件
4.下列命题是真命题的为
A .若一=—,则x = y
B .若x = 1,则x=1
C .若x = y,则J x =、. y
D .若x y
2 2
x y ,贝U x ::: y
-x2_ 3x 亠4
5.函数y 的定义域为
x
A . [-4,1]
B .0,0)
C . (0,1]
D . [-4,0)U(0,1]
6. 50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名, 参加乙项的学生有25名,则仅参加了一项活动的学生人数为
A •
50 B • 45 C . 40 D • 35
7 •
函数 f (x) =(1 ..3tan x)cos x 的最小正周期为
2 二
3兀
n A
B •
C .二
D •—
2
2
la, a Eb
8•定义运算::a : b 二
•设 F(x)二 f (x) : g(x),若 f X) s ,x(g)x cs 二 x
b, a a b
x • R ,贝U F (x )的值域为( )•
外接圆直径为
A •甲是乙的充分条件但不是必要条件
B •甲是乙的必要条件但不是充分条件
C •甲是乙的充要条件
D .甲既不是乙的充分条件也不是乙的必要条件
12 •已知a1>a2>a3>0,则使得(1 -ax)2 £ 1(i = 1,2, 3)都成立的x 取值范围是
()
1 2
1 2
A. (0, —)
B. (0, —)
C.
(0, —) D. (0,—
a 1
a 1
a 3
a 3
A J.-1,11
B.
,2
C.
9 •在ABC 中, 角A,B,C 的对边分别是
a,b,c ,且 a =1, B =45 , S 出BC 2
,则也ABC 的
A. 4、、5
B. 5
C.
62
2
io 椭圆 y =1的两个焦点为
4
点为P ,则P 到F 2的距离为()•
A •乜
B .
3
2
F 2,过卩舁乍垂直于x 轴的直线与椭圆相交,一个交
7
C .
D . 4
2
2 2
11.若数列{a n }满足a n 1 -a n =d ( d 为正常数, 『),则称{a n }为“等方差数列”
甲:数列{a n }是等方差数列;
乙:数列{a n }是等差数列,则(
)•
D. _1
,
第二部分 非选择题(共110分)
、填空题:本大题共 8小题,每小题4分,满分32分.
2
13.
已知双曲线—-y 2
=1,则其渐近线方程为 4
,离心率为
14. (仮-2)6展开式中,常数项是
.
x
15 .
设数列仏门为公比q 1的等比数列,若 2
a 4,a 5是方程4x -8x *3=0的两根,则
a
6
' a 7 二 _________ .
16. 已知函数f (x ) 4
1的定义域是 a,b 】(a,b 为整数),值域是0,1丨,则满足条件
|x|+2
的整数数对(a , b )共有___________ 个.
17. 函数y =sinx + sinx 的值域是 ____________ .
x = 2 cosB
18在直角坐标系中圆 C 的参数方程为」
(日为参数),则圆C 的普通方程为
y = 2 +2si n 日
,以原点0为极点,以x 轴正半轴为极轴建立极坐标系,则圆 C 的圆心极坐标 为 .
佃 若 f (x ) = (x + 3) + a (x + 1) + 6(x — 1) — 5 除以(x + 2 )的余式为 2 '求 a
26、27题。
解答应写出文字说明、演算步骤或推证过程.
21 .(本小题满分14分)
如图A 、B 是单位圆O 上的点,C 是圆与x 轴正半轴 点,A 点的坐标为(3,4),三角形 AOB 为正三角形.
5 5
(I )求 sin COA ;
(n )求|BC|2的值.
20.求过直线11:
面方程为 _____
口二口二二,且与直线l 2 : G
3 -2 -1
2
z -7
3
平行的平
三、解答题:在第三题( 21、22、23)题中任选两题;理工考生做 24、25题;文史考生做
1
第4页共14页
22.(本题满分14分)
如图,在组合体中,ABCD — ABGD i 是一个长方体,
P -ABCD 是一个四棱锥.AB =2 , BC =3 ,点 P 平面 CC 1D 1D
且 PD =PC =舟2 .
(I)证明:PD _平面PBC ;
(D)求PA 与平面ABCD 所成的角的正切值;
23.(本小题满分14分)
在平面直角坐标系xOy 中,点P 到两点(0,-、3) , (0, 3)的距离之和等于4, 设点P 的轨迹为
C .
(I)写出C 的方程;
(n)设直线y =kx 1与C 交于A , B 两点.k 为何值时OA _ OB ?
C
C
24.(本小题满分15分,文史类考生不做)
某公司生产陶瓷,根据历年的情况可知,生产陶瓷每天的固定成本为14000元,每生产一件产品,成本增加210元.已知该产品的日销售量f(x)与产量x之间的关系式为
-^x2, 0 Ex 兰400
f(x)二625 ,每件产品的售价g(x)与产量x之间的关系式为
256, x 400
-5x 750, 0 Ex 空400
g(x)= 8
500, x 400
(I)写出该陶瓷厂的日销售利润Q(x)与产量x之间的关系式;
(H)若要使得日销售利润最大,每天该生产多少件产品,并求出最大利润.。