高考数学:一轮复习配套讲义:第12篇 第1讲 合情推理与演绎推理

合集下载

一轮复习配套讲义:第12篇 第1讲 合情推理与演绎推理

一轮复习配套讲义:第12篇 第1讲 合情推理与演绎推理

第1讲合情推理与演绎推理[最新考纲]1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.3.了解合情推理和演绎推理之间的联系和差异.知识梳理1.合情推理(1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理.简言之,归纳推理是由部分到整体、由个别到一般的推理.(2)类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理.简言之,类比推理是由特殊到特殊的推理.(3)合情推理:归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.2.演绎推理(1)演绎推理:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况作出的判断.辨析感悟1.对合情推理的认识(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.(×)(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.(√)(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.(×)(4)(教材习题改编)一个数列的前三项是1,2,3,那么这个数列的通项公式是a n=n(n∈N*).(×)(5)(2014·安庆调研改编)在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为1∶8.(√)2.对演绎推理的认识(6)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.(√)(7)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.(×)[感悟·提升]三点提醒一是合情推理包括归纳推理和类比推理,所得到的结论都不一定正确,其结论的正确性是需要证明的.二是在进行类比推理时,要尽量从本质上去类比,不要被表面现象所迷惑;否则只抓住一点表面现象甚至假象就去类比,就会犯机械类比的错误,如(3).三是应用三段论解决问题时,应首先明确什么是大前提,什么是小前提,如果大前提与推理形式是正确的,结论必定是正确的.如果大前提错误,尽管推理形式是正确的,所得结论也是错误的.如(7).学生用书第200页考点一归纳推理【例1】(2013·湖北卷)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为n(n+1)2=12n2+12n,记第n个k边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式: 三角形数N (n,3)=12n 2+12n , 正方形数N (n,4)=n 2, 五边形数N (n,5)=32n 2-12n , 六边形数N (n,6)=2n 2-n……可以推测N (n ,k )的表达式,由此计算N (10,24)=____________.解析 由N (n,3)=12n 2+12n ,N (n,4)=22n 2+02n ,N (n,5)=32n 2+-12n ,N (n,6)=42n 2+-22n ,推测N (n ,k )=⎝ ⎛⎭⎪⎫k -22n 2+⎝ ⎛⎭⎪⎫4-k 2n ,k ≥3. 从而N (n,24)=11n 2-10n ,N (10,24)=1 000.答案 1 000规律方法 归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.【训练1】 (1)(2014·佛山质检)观察下列不等式: ①12<1;②12+16<2;③12+16+112< 3. 则第5个不等式为________.(2)(2013·陕西卷)观察下列等式(1+1)=2×1。

第1讲合情推理与演绎推理

第1讲合情推理与演绎推理

2.演绎推理 (1)演绎推理:从一般性的原理出发,推出某个特殊情况 下的结论,我们把这种推理称为演绎推理.简言之,演 绎推理是由一般到特殊的推理. (2)“三段论”是演绎推理的一般模式,包括: ①大前提——已知的一般原理; ②小前提——所研究的特殊情况; ③结论——根据一般原理,对特殊情况作出的判断.
考向二
类比推理
【例2】在平面几何里,有“若△ABC的三边长分别为a,b, c,内切圆半径为r,则三角形面积为S△ABC=1/2(a+b+c)r”, 拓展到空间,类比上述结论,“若四面体ABCD的四个面的 面积分别为S1,S2,S3,S4,内切球的半径为r,则四面体的 体积为________”. [审题视点] 注意发现其中的规律总结出共性加以推广,或将 结论类比到其他方面,得出结论.
一条规律 在进行类比推理时要尽量从本质上去类比,不要被表面现 象迷惑,否则,只抓住一点表面现象的相似甚至假象就去 类比,那么就会犯机械类比的错误. 两个防范 (1)合情推理是从已知的结论推测未知的结论,发现与 猜想的结论都要经过进一步严格证明. (2)演绎推理是由一般到特殊的推理,它常用来证明和 推理数学问题,注意推理过程的严密性,书写格式的规 范性.
【审题视点】观察等差数列{an}前n项和Sn的特点. 【解析】由等差数列“S4,S8-S4,S12-S8,S16-S12”中 的“差”,类比到等比数列中的“商”.
T8 T12 T16 解: T4 , , , 成等比数列. T4 T8 T12
【反思与悟】类比是以比较为基础的,它是根据两个或两
类不同对象的某些特殊属性的比较,而做出有关另一个特
【反思与悟】 演绎推理是从一般到特殊的推理;其一般形式 是三段论,应用三段论解决问题时,应当首先明确什么是大 前提和小前提,如果前提是显然的,则可以省略.

高考数学第一轮总复习知识点课件 第一节 合情推理与演绎推理

高考数学第一轮总复习知识点课件 第一节   合情推理与演绎推理
b
举一反三
3. 用三段论证明函数f(x)=- +x22x在(-∞,1]上是增函数.
证明 设 ∈x1 (-∞,1], ∈(x-2∞,1],
则 x x2 x1,
x1 x2
y f x2 f x1 x22 2x2 x12 2x1
x12 x22 2x2 2x1
x1 x2 x1 x2 2 x2 x1 x1 x2 x1 x2 2.
4
猜想:若β-α=30°,则β=30°+α,
sin2 cos2 sin cos 3
4
也可直接写成sin2 cos2 300 sin cos 300 3 4
下面进行证明:
左边 1 cos 2
1 cos
2 600
sin cos 300
2
2
1 cos 2 1 cos 2 cos 600 sin 2 sin 600 sin cos cos 300 sin sin 300
分析 在用演绎推理证明问题时,一定要按“三段论”的形式推理,当然有 时可以省略大前提或小前提. 证明 如图,(1)等腰三角形两底角相等(大前提), △DAC是等腰三角形,DA、DC是两腰(小前提), ∠1=∠2(结论). (2)两条平行线被第三条直线截出的内错角相等(大前提), ∠1和∠3是平行线AD、BC被AC截出的内错角(小前提), ∠1=∠3(结论). (3)等于同一个量的两个量相等(大前提), ∠2和∠3都等于∠1(小前提), ∠2=∠3(结论),即AC平分∠BCD. (4)同理DB平分∠CBA.
分析 实数的加法所具有的性质,如结合律、交换律等,都可以和向量加 以比较.
解 (1)两实数相加后,结果是一个实数;两向量相加后,结果仍是向量; (2)从运算律的角度考虑,它们都满足交换律和结合律,即:

2012高考数学一轮复习--合情推理与演绎推理ppt-18页文档资料

2012高考数学一轮复习--合情推理与演绎推理ppt-18页文档资料

B
C
C
A
A
巩固练习
练3、
谢谢!
二、知识要点
4.合情推理与演绎推理的区别与联系: ①从定义上看:
合情推理:前提为真,结论可能为真的推理. 演绎推理:根据一般性的真命题(或逻辑规则)导出特殊性
命题为真的推理. 从定义上可以看出,合情推理与演绎推理的区别是结论是否为真. 合情推理的结论可能为真,但演绎推理在前提和推理形式都正确的 前提下,其结论必定为真.故在数学论证中,证明命题的正确性, 都是用演绎推理,而合情推理不能用作证明.
an1
1an an得:1 Nhomakorabea1
a2
1 11
1 2
a3
2 1 1
1 3
2
a4
3 1 1
1 4
3
1 观察可得:数列的前4项都等于相应项数的倒数。
由此猜想(归纳)这个数列的通项公式为:
a n n
巩固练习
1、根据图中5个图形及相应点的个数的变化规律,试猜
测第n个图形中有n2 n1个点.
(1) (2) (3)
一、知识结构
二、知识要点
(一)合情推理与演绎推理 1、归纳推理
(1)归纳推理:由某类事物的部分对象具有某些特征,推出该 类事物的全部对象具有这些特征的推理,或者由个别事实概括出一 般结论的推理,称为归纳推理.归纳推理是由部分到整体,由个别 到一般的推理.显然归纳的个别情况越多,越具有代表性,推广的 一般性命题也就越可靠,应用归纳推理可以获得新的结论!
(2)归纳推理的一般步骤: ①通过观察一系列情形发现某些相同的性质; ②从已知的相同的性质中推出一般性命题;
二、知识要点
2.类比推理 (1)类比推理:由两类对象具有某些类似特征和其中一类对象的 某些已知特征,推出另一类对象也具有这些特征的推理称为类比推 理.类比推理是由特殊到特殊的推理.类比的结论不一定为真,在一 般情况下,若类比的相似越多,相似之间越相关,则类比得到的结论 也就越可靠. (2)类比推理的一般步骤: ①找出两类事物之间的相似性或一致性;②用一类事物的性质去 推测另一类事物的性质,得出一个明确的结论.

高考数学(理)新创一轮(实用课件)人教A版:第十二章 第1节 合情推理与演绎推理

高考数学(理)新创一轮(实用课件)人教A版:第十二章 第1节 合情推理与演绎推理

……
故第 10 个图中,小石子有
(1)第 1 个图中, 小石子有 1 个, 第 2 个图中, 小石子有 3=1+2 个,
10× 11 1+2+3+…+10= =55 个, 2 第 3 个图中,小石子有 6=1+2+3 个, 即 a10=55. 第 4 个图中,小石子有 10=1+2+3
+4 个,
考点一 归纳推理
[例 1] (2)(2018·济宁模拟)已知 ai>0(i=1,2,3,…,n),观察下列不等式: a1+a2 ≥ a1a2; 2 a1+a2+a3 3 ≥ a1a2a3; 3 a1+a2+a3+a4 4 ≥ a1a2a3a4; 4 a1+a2+…+an …… 照此规律,当 n∈N ,n≥2 时, ≥ ________ . n a1+a2+…an n * 解析 (2)根据题意有 ≥ a 1a2…an(n∈ N , n≥2). n n 6 7 12 答案 (1)2 +2 +…+2 (2) a1a2…an
*
考点一 归纳推理
归纳推理问题的常见类型及解题策略 (1)与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号可解. (2)与不等式有关的推理.观察每个不等式的特点,注意是纵向看,找到规律后可解. (3)与数列有关的推理.通常是先求出几个特殊现象,采用不完全归纳法,找出数列的项 与项数的关系,列出即可. (4)与图形变化有关的推理. 合理利用特殊图形归纳推理得出结论, 并用赋值检验法验证 其真伪性.
(4)演绎推理是在大前提、小前提和推理形式都正确时,得到的结论一定正确. 答案 (1)× (2)√ (3)× (4)×
考点一 归纳推理
[例 1] (1)(2018· 佛山一模)所有真约数(除本身之外的正约数)的和等于它本身的正 整数叫做完全数(也称为完备数、完美数),如 6=1+2+3;28=1+2+4+7+14; 496=1+2+4+8+16+31+62+124+248,…,此外,它们都可以表示为 2 的 一些连续正整数次幂之和,如 6=21+22,28=22+23+24,…,按此规律,8 128 可表示为__________.

高三数学,一轮复习,人教B版 (文), 12.1 ,合情推理与演绎推理 , 课件 (1)

高三数学,一轮复习,人教B版 (文), 12.1 ,合情推理与演绎推理 , 课件 (1)

一定是9的倍数”,这是三段论推理,但其结论是错误的.(
) (5)一个数列的前三项是1,2,3,那么这个数列的通项公 式是an=n(n∈N*).( )
(6)在演绎推理中,只要符合演绎推理的形式,结论就一 定正确.( ) (4)√ (5)× (6)×
【答案】 (1)× (2)√ (3)×
1.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4 +b4=7,a5+b5=11,„,则a10+b10等于( A.28 C.123 B.76 D.199 )
一般结论 实概括出__________的推理,称为归纳推理(简称归纳). 个别 部分 ②特点:由_____到整体、由______到一般的推理.
(2)类比推理 ①定义:由两类对象具有某些__________ 和其中一类对象的某些已 类似特征 知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比 ). ②特点:类比推理是由_____到______的推理. (3)合情推理
命题点 2
与不等式有关的推理
【例 2】 (2017· 山西四校联考)已知 x∈(0,+∞),观察下列 1 4 x x 4 27 x x x 27 各式: x+ x ≥2, x+x2=2+2+x2≥3, x+ x3 =3+3+3+ x3 ≥4, „, a 类比得 x+xn≥n+1(n∈N*),则 a=________.
题型一 归纳推理
命题点1 与数字有关的等式的推理
【例1】 (2016· 照模拟)对于实数x,[x]表示不超过x的
最大整数,观察下列等式: [ 1]+[ 2]+[ 3]=3,
[ 4]+[ 5]+[ 6]+[ 7]+[ 8]=10, [ 9]+[ 10]+[ 11]+[ 12]+[ 13]+[ 14]+[ 15]=21, „„ 按照此规律第 n 个等式的等号右边的结果为________.

2016届高考数学文一轮复习(人教版)讲义12.1合情推理与演绎推理

§12.1合情推理与演绎推理1.合情推理(1)归纳推理①定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).②特点:由部分到整体、由个别到一般的推理.(2)类比推理①定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).②特点:类比推理是由特殊到特殊的推理.(3)合情推理归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.2.演绎推理(1)演绎推理从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.(×)(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.(√)(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.(×)(4)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.(√)(5)一个数列的前三项是1,2,3,那么这个数列的通项公式是a n=n(n∈N*).(×)(6)2+23=223,3+38=338,4+415=4415, (6)ba=6ba(a,b均为实数),则可以推测a=35,b=6.(√)1.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是()A.使用了归纳推理B.使用了类比推理C.使用了“三段论”,但推理形式错误D.使用了“三段论”,但小前提错误答案 C解析由“三段论”的推理方式可知,该推理的错误原因是推理形式错误.2.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为__________.答案1∶8解析∵两个正三角形是相似的三角形,∴它们的面积之比是相似比的平方.同理,两个正四面体是两个相似几何体,体积之比为相似比的立方,∴它们的体积比为1∶8. 3.(2013·陕西)观察下列等式12=112-22=-312-22+32=612-22+32-42=-10……照此规律,第n 个等式可为____________________________________.答案 12-22+32-42+…+(-1)n +1n 2=(-1)n +1·n (n +1)2解析 观察等式左边的式子,每次增加一项,故第n 个等式左边有n 项,指数都是2,且正、负相间,所以等式左边的通项为(-1)n +1n 2.等式右边的值的符号也是正、负相间,其绝对值分别为1,3,6,10,15,21,….设此数列为{a n },则a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,…,a n -a n -1=n ,各式相加得a n -a 1=2+3+4+…+n ,即a n =1+2+3+…+n =n (n +1)2.所以第n 个等式为12-22+32-42+…+(-1)n +1n 2=(-1)n +1n (n +1)2. 4.设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论,设等比数列{b n }的前n 项积为T n ,则T 4,________,________,T 16T 12成等比数列.答案T 8T 4 T 12T 8解析 对于等比数列,通过类比,有等比数列{b n }的前n 项积为T n , 则T 4=a 1a 2a 3a 4,T 8=a 1a 2…a 8,T 12=a 1a 2…a 12, T 16=a 1a 2…a 16,因此T 8T 4=a 5a 6a 7a 8,T 12T 8=a 9a 10a 11a 12,T 16T 12=a 13a 14a 15a 16, 而T 4,T 8T 4,T 12T 8,T 16T 12的公比为q 16,因此T 4,T 8T 4,T 12T 8,T 16T 12成等比数列.题型一 归纳推理例1 设f (x )=13x +3,先分别求f (0)+f (1),f (-1)+f (2),f (-2)+f (3),然后归纳猜想一般性结论,并给出证明.思维点拨 先正确计算各式的值,再根据自变量之和与函数之和的特征进行归纳.解 f (0)+f (1)=130+3+131+3=11+3+13+3=3-12+3-36=33,同理可得:f (-1)+f (2)=33, f (-2)+f (3)=33,并注意到在这三个特殊式子中,自变量之和均等于1. 归纳猜想得:当x 1+x 2=1时,均有f (x 1)+f (x 2)=33. 证明:设x 1+x 2=1, ∵f (x 1)+f (x2)=====思维升华归纳推理的一般步骤: (1)通过观察个别情况发现某些相同特征;(2)从已知的相同性质中推出一个明确表述的一般性命题.(1)观察下列等式1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49…照此规律,第五个等式应为_______________________________________________. (2)已知f (n )=1+12+13+…+1n (n ∈N *),经计算得f (4)>2,f (8)>52,f (16)>3,f (32)>72,则有__________________________.答案 (1)5+6+7+8+9+10+11+12+13=81 (2)f (2n )>n +22(n ≥2,n ∈N *)解析 (1)由于1=12,2+3+4=9=32,3+4+5+6+7=25=52,4+5+6+7+8+9+10=49=72,所以第五个等式为5+6+7+8+9+10+11+12+13=92=81. (2)由题意得f (22)>42,f (23)>52,f (24)>62,f (25)>72,所以当n ≥2时,有f (2n )>n +22.故填f (2n)>n +22(n ≥2,n ∈N *).题型二 类比推理例2 已知数列{a n }为等差数列,若a m =a ,a n =b (n -m ≥1,m ,n ∈N *),则a m +n =nb -man -m .类比等差数列{a n }的上述结论,对于等比数列{b n }(b n >0,n ∈N *),若b m =c ,b n =d (n -m ≥2,m ,n ∈N *),则可以得到b m +n =________.思维点拨 等差数列{a n }和等比数列{b n }类比时,等差数列的公差对应等比数列的公比,等差数列的加减法运算对应等比数列的乘除法运算,等差数列的乘除法运算对应等比数列中的乘方开方运算. 答案 n -m d nc m解析 设数列{a n }的公差为d ,数列{b n }的公比为q . 因为a n =a 1+(n -1)d ,b n =b 1qn -1,a m +n =nb -man -m,所以类比得b m +n =n -m d nc m.思维升华 (1)进行类比推理,应从具体问题出发,通过观察、分析、联想进行类比,提出猜想.其中找到合适的类比对象是解题的关键.(2)类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;数的运算与向量的运算类比;圆锥曲线间的类比等.在平面上,设h a ,h b ,h c 是三角形ABC 三条边上的高,P 为三角形内任一点,P到相应三边的距离分别为P a ,P b ,P c ,我们可以得到结论:P a h a +P b h b +P ch c =1.把它类比到空间,则三棱锥中的类似结论为______________________.答案P a h a +P b h b +P c h c +P dh d=1 解析 设h a ,h b ,h c ,h d 分别是三棱锥A -BCD 四个面上的高,P 为三棱锥A -BCD 内任一点,P 到相应四个面的距离分别为P a ,P b ,P c ,P d ,于是可以得出结论:P a h a +P b h b +P c h c +P dh d =1.题型三 演绎推理例3 已知函数f (x )=-aa x +a (a >0,且a ≠1).(1)证明:函数y =f (x )的图象关于点(12,-12)对称;(2)求f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)的值.思维点拨 证明本题依据的大前提是中心对称的定义,函数y =f (x )的图象上的任一点关于对称中心的对称点仍在图象上.小前提是f (x )=-a a x +a (a >0,且a ≠1)的图象关于点(12,-12)对称.(1)证明 函数f (x )的定义域为全体实数,任取一点(x ,y ),它关于点(12,-12)对称的点的坐标为(1-x ,-1-y ). 由已知y =-aa x +a,则-1-y =-1+aa x +a =-a xa x +a ,f (1-x )=-aa 1-x +a =-aa a x +a=-a ·a xa +a ·a x =-a xa x +a,∴-1-y =f (1-x ),即函数y =f (x )的图象关于点(12,-12)对称.(2)解 由(1)知-1-f (x )=f (1-x ), 即f (x )+f (1-x )=-1.∴f (-2)+f (3)=-1,f (-1)+f (2)=-1, f (0)+f (1)=-1.则f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)=-3.思维升华 演绎推理是由一般到特殊的推理,常用的一般模式为三段论,演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提,一般地,若大前提不明确时,可找一个使结论成立的充分条件作为大前提.已知函数y =f (x )满足:对任意a ,b ∈R ,a ≠b ,都有af (a )+bf (b )>af (b )+bf (a ),试证明:f (x )为R 上的单调增函数. 证明 设x 1,x 2∈R ,取x 1<x 2,则由题意得x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1), ∴x 1[f (x 1)-f (x 2)]+x 2[f (x 2)-f (x 1)]>0, [f (x 2)-f (x 1)](x 2-x 1)>0,∵x 1<x 2,∴f (x 2)-f (x 1)>0,f (x 2)>f (x 1). ∴y =f (x )为R 上的单调增函数.高考中的合情推理问题典例:(1)(2013·湖北)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n ,记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式: 三角形数 N (n,3)=12n 2+12n ,正方形数 N (n,4)=n 2, 五边形数 N (n,5)=32n 2-12n ,六边形数N (n,6)=2n 2-n………………………………………可以推测N (n ,k )的表达式,由此计算N (10,24)=____________.解析 由N (n,4)=n 2,N (n,6)=2n 2-n ,可以推测:当k 为偶数时,N (n ,k )=k -22n 2+4-k2n ,∴N (10,24)=24-22×100+4-242×10=1 100-100=1 000. 答案 1 000(2)若P 0(x 0,y 0)在椭圆x 2a 2+y 2b 2=1(a >b >0)外,过P 0作椭圆的两条切线的切点为P 1,P 2,则切点弦P 1P 2所在的直线方程是x 0x a 2+y 0yb 2=1,那么对于双曲线则有如下命题:若P 0(x 0,y 0)在双曲线x 2a 2-y 2b 2=1(a >0,b >0)外,过P 0作双曲线的两条切线,切点为P 1,P 2,则切点弦P 1P 2所在直线的方程是________.解析 设P 1(x 1,y 1),P 2(x 2,y 2), 则P 1,P 2的切线方程分别是 x 1x a 2-y 1y b 2=1,x 2x a 2-y 2y b 2=1. 因为P 0(x 0,y 0)在这两条切线上, 故有x 1x 0a 2-y 1y 0b 2=1,x 2x 0a 2-y 2y 0b2=1, 这说明P 1(x 1,y 1),P 2(x 2,y 2)在直线x 0x a 2-y 0yb 2=1上,故切点弦P 1P 2所在的直线方程是x 0x a 2-y 0yb 2=1.答案x 0x a 2-y 0yb 2=1 (3)观察下列不等式: 1+122<32, 1+122+132<53, 1+122+132+142<74, ……照此规律,第五个...不等式为________________________. 解析 归纳观察法.观察每行不等式的特点,每行不等式左端最后一个分数的分母的开方与右端值的分母相等,且每行右端分数的分子构成等差数列.故第五个不等式为1+122+132+142+152+162<116.答案1+122+132+142+152+162<116温馨提醒(1)解决归纳推理问题,常因条件不足,了解不全面而致误.应由条件多列举一些特殊情况再进行归纳.(2)解决类比问题,应先弄清所给问题的实质及已知结论成立的缘由,再去类比另一类问题.方法与技巧1.合情推理的过程概括为从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想2.演绎推理是从一般的原理出发,推出某个特殊情况的结论的推理方法,是由一般到特殊的推理,常用的一般模式是三段论.数学问题的证明主要通过演绎推理来进行.失误与防范1.合情推理是从已知的结论推测未知的结论,发现与猜想的结论都要经过进一步严格证明.2.演绎推理是由一般到特殊的证明,它常用来证明和推理数学问题,注意推理过程的严密性,书写格式的规范性.3.合情推理中运用猜想时不能凭空想象,要有猜想或拓展依据.A组专项基础训练(时间:45分钟)1.数列2,5,11,20,x,47,…中的x等于()A.28 B.32 C.33 D.27答案 B解析5-2=3,11-5=6,20-11=9,推出x-20=12,所以x=32.2.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理( )A .结论正确B .大前提不正确C .小前提不正确D .全不正确答案 C解析 f (x )=sin(x 2+1)不是正弦函数,所以小前提错误. 3.下列推理是归纳推理的是( )A .A ,B 为定点,动点P 满足|P A |+|PB |=2a >|AB |,则P 点的轨迹为椭圆 B .由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式C .由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆x 2a 2+y 2b2=1的面积S =πabD .科学家利用鱼的沉浮原理制造潜艇 答案 B解析 从S 1,S 2,S 3猜想出数列的前n 项和S n ,是从特殊到一般的推理,所以B 是归纳推理,故应选B.4.给出下列三个类比结论:①(ab )n =a n b n 与(a +b )n 类比,则有(a +b )n =a n +b n ;②log a (xy )=log a x +log a y 与sin(α+β)类比,则有sin(α+β)=sin αsin β; ③(a +b )2=a 2+2ab +b 2与(a +b )2类比,则有(a +b )2=a 2+2a ·b +b 2. 其中正确结论的个数是( ) A .0 B .1 C .2 D .3答案 B解析 (a +b )n ≠a n +b n (n ≠1,a ·b ≠0),故①错误. sin(α+β)=sin αsin β不恒成立.如α=30°,β=60°,sin 90°=1,sin 30°·sin 60°=34,故②错误. 由向量的运算公式知③正确.5.若数列{a n }是等差数列,则数列{b n }(b n =a 1+a 2+…+a nn)也为等差数列.类比这一性质可知,若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为( ) A .d n =c 1+c 2+…+c nnB .d n =c 1·c 2·…·c nnC .d n = n c n 1+c n 2+…+c n n nD .d n =n c 1·c 2·…·c n答案 D 解析 若{a n }是等差数列,则a 1+a 2+…+a n =na 1+n (n -1)2d , ∴b n =a 1+(n -1)2d =d 2n +a 1-d 2,即{b n }为等差数列; 若{c n }是等比数列,则c 1·c 2·…·c n =c n 1·q 1+2+…+(n -1) =c n 1·q (1)2n n -,∴d n =n c 1·c 2·…·c n =c 1·q 12n -,即{d n }为等比数列,故选D.6.仔细观察下面○和●的排列规律:○ ● ○○ ● ○○○ ● ○○○○ ● ○○○○○ ● ○○○○○○ ●……若依此规律继续下去,得到一系列的○和●,那么在前120个○和●中,●的个数是________.答案 14解析 进行分组○●|○○●|○○○●|○○○○●|○○○○○●|○○○○○○●|……,则前n 组两种圈的总数是f (n )=2+3+4+…+(n +1)=n (n +3)2, 易知f (14)=119,f (15)=135,故n =14.7.在平面几何中,有“正三角形内切圆半径等于这个正三角形高的13”.拓展到空间,类比平面几何的上述正确结论,则正四面体的内切球半径等于这个正四面体的高的________.答案 14解析 设正三角形的边长为a ,高为h ,内切圆半径为r ,由等面积法知3ar =ah ,所以r =13h ; 同理,由等体积法知4SR =HS ,所以R =14H . 8.(2013·陕西)观察下列等式:(1+1)=2×1(2+1)(2+2)=22×1×3(3+1)(3+2)(3+3)=23×1×3×5…照此规律,第n 个等式可为____________________________.答案 (n +1)(n +2)…(n +n )=2n ×1×3×…×(2n -1)解析 由已知的三个等式左边的变化规律,得第n 个等式左边为(n +1)(n +2)…(n +n ),由已知的三个等式右边的变化规律,得第n 个等式右边为2n 与n 个奇数之积,即2n ×1×3×…×(2n -1).9.已知等差数列{a n }的公差d =2,首项a 1=5.(1)求数列{a n }的前n 项和S n ;(2)设T n =n (2a n -5),求S 1,S 2,S 3,S 4,S 5;T 1,T 2,T 3,T 4,T 5,并归纳出S n 与T n 的大小规律.解 (1)∵a 1=5,d =2,∴S n =5n +n (n -1)2×2=n (n +4). (2)∵T n =n (2a n -5)=n [2(2n +3)-5]=4n 2+n .∴T 1=5,T 2=4×22+2=18,T 3=4×32+3=39,T 4=4×42+4=68,T 5=4×52+5=105.S 1=5,S 2=2×(2+4)=12,S 3=3×(3+4)=21,S 4=4×(4+4)=32,S 5=5×(5+4)=45.由此可知S 1=T 1,当2≤n ≤5,n ∈N 时,S n <T n .归纳猜想:当n =1时,S n =T n ;当n ≥2,n ∈N 时,S n <T n .10.在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于D ,求证:1AD 2=1AB 2+1AC 2,那么在四面体ABCD 中,类比上述结论,你能得到怎样的猜想,并说明理由.解 如图所示,由射影定理AD 2=BD ·DC ,AB 2=BD ·BC ,AC 2=BC ·DC ,∴1AD 2=1BD ·DC=BC 2BD ·BC ·DC ·BC =BC 2AB 2·AC 2.又BC 2=AB 2+AC 2,∴1AD 2=AB 2+AC 2AB 2·AC 2=1AB 2+1AC 2. 猜想,四面体ABCD 中,AB 、AC 、AD 两两垂直,AE ⊥平面BCD ,则1AE 2=1AB 2+1AC 2+1AD 2. 证明:如图,连接BE 并延长交CD 于F ,连接AF .∵AB ⊥AC ,AB ⊥AD ,∴AB ⊥平面ACD .∴AB ⊥AF .在Rt △ABF 中,AE ⊥BF ,∴1AE 2=1AB 2+1AF 2. 在Rt △ACD 中,AF ⊥CD ,∴1AF 2=1AC 2+1AD 2, ∴1AE 2=1AB 2+1AC 2+1AD 2. B 组 专项能力提升(时间:30分钟)11.已知①正方形的对角线相等;②矩形的对角线相等;③正方形是矩形.根据“三段论”推理出一个结论.则这个结论是( )A .正方形的对角线相等B .矩形的对角线相等C .正方形是矩形D .其他答案 A解析 根据演绎推理的特点,正方形与矩形是特殊与一般的关系,所以结论是正方形的对角线相等.12.设是R 的一个运算,A 是R 的非空子集.若对于任意a ,b ∈A ,有a b ∈A ,则称A 对运算封闭.下列数集对加法、减法、乘法和除法(除数不等于零)四则运算都封闭的是( )A .自然数集B .整数集C .有理数集D .无理数集答案 C 解析 A 错:因为自然数集对减法、除法不封闭;B 错:因为整数集对除法不封闭;C 对:因为任意两个有理数的和、差、积、商都是有理数,故有理数集对加、减、乘、除法(除数不等于零)四则运算都封闭;D 错:因为无理数集对加、减、乘、除法都不封闭.13.如图(1)若从点O 所作的两条射线OM 、ON 上分别有点M 1、M 2与点N 1、N 2,则三角形面积之比1122OM N OM N S S ∆∆=OM 1OM 2·ON 1ON 2.如图(2),若从点O 所作的不在同一平面内的三条射线OP 、OQ 和OR 上分别有点P 1、P 2,点Q 1、Q 2和点R 1、R 2,则类似的结论为______________________.答案 111222O PQ R O P Q R V V --=OP 1OP 2·OQ 1OQ 2·OR 1OR 2解析 考查类比推理问题,由图看出三棱锥P 1-OR 1Q 1及三棱锥P 2-OR 2Q 2的底面面积之比为OQ 1OQ 2·OR 1OR 2,又过顶点分别向底面作垂线,得到高的比为OP 1OP 2,故体积之比为111222O PQ R O P Q R V V --=OP 1OP 2·OQ 1OQ 2·OR 1OR 2. 14.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n ∈N *).证明: (1)数列{S n n}是等比数列; (2)S n +1=4a n .证明 (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n, ∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n .故S n +1n +1=2·S n n ,(小前提) 故{S n n}是以2为公比,1为首项的等比数列.(结论)(大前提是等比数列的定义,这里省略了)(2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2).(小前提) 又∵a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提)∴对于任意正整数n ,都有S n +1=4a n .(结论)15.对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),给出定义:设f ′(x )是函数y =f (x )的导数,f ″(x )是f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若f (x )=13x 3-12x 2+3x -512,请你根据这一发现, (1)求函数f (x )=13x 3-12x 2+3x -512的对称中心; (2)计算f (12 013)+f (22 013)+f (32 013)+f (42 013)+…+f (2 0122 013). 解 (1)f ′(x )=x 2-x +3,f ″(x )=2x -1,由f ″(x )=0,即2x -1=0,解得x =12. f (12)=13×(12)3-12×(12)2+3×12-512=1. 由题中给出的结论,可知函数f (x )=13x 3-12x 2+3x -512的对称中心为(12,1). (2)由(1),知函数f (x )=13x 3-12x 2+3x -512的对称中心为(12,1), 所以f (12+x )+f (12-x )=2,即f (x )+f (1-x )=2. 故f (12 013)+f (2 0122 013)=2, f (22 013)+f (2 0112 013)=2, f (32 013)+f (2 0102 013)=2, …f (2 0122 013)+f (12 013)=2.所以f(12 013)+f(22 013)+f(32 013)+f(42 013)+…+f(2 0122 013)=12×2×2 012=2 012.。

届高考数学一轮复习精讲课件第单元第讲合情推理与演绎推理湘教版PPT文档43页

届高考数学一轮复习精讲课件第单元 第讲合情推理与演绎推理湘教版
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
谢谢!
36、自己的鞋子,自己知道紧在哪里。—exie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子

高考数学一轮复习第十二章推理与证明、算法、复数12.1合情推理与演绎推理课件文新人教A


则OAEE+DOFF+OBGG+OCHH=1. 证明如下:在四面体 O-BCD 与 A-BCD 中, OAEE=hhOA--BBCCDD
1 =313SS△△BBCCDD··hhOA--BBCCDD=VVOA--BBCCDD. 同理,ODFF=VVOD- -AABBCC,OBGG=VVOB--AACCDD,OCHH=VVOC--AABBDD,
事实上,在直角三角形中h12=a12+b12是由等面积法得到的, 而在三棱锥中可由等体积法求得h12=a12+b12+c12
[典题 1] (1)在等差数列{an}中,若 am=p,an=q(m,n∈N*,
n-m≥1),则 am+n=nnq--mmp.
类比上述结论,对于等比数列{bn}(bn>0,n∈N*),若 bm=r, n-m sn
bn=s(n-m≥2,m,n∈N*),则可以得到 bm+n=_______rm_. [解析] 设公比为 q,则 sn=bn1qn(n-1),rm=bm1 qm(m-1),rsmn=bn1-m
n-m q(n-m)(n+m-1),bm+n=b1qn+m-1=
sn rm.
(2)[2017·江西南昌模拟]如图,在梯形 ABCD 中,AB∥CD, AB=a,CD=b(a>b).若 EF∥AB,EF 到 CD 与 AB 的距离 之比为 m∶n,则可推算出:EF=mma++nnb.用类 比的方法,推想出下面问题的结果.在上面的
[教材习题改编]在Rt△ABC中,两直角边分别为a,b,设h
为斜边上的高,则
1 h2

1 a2

1 b2
.由此类比:三棱锥S-ABC中的三
条侧棱SA,SB,SC两两垂直,且长度分别为a,b,c,设棱锥 底面ABC上的高为h,则__h1_2_=__a1_2+__b_12_+__c1_2___.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲合情推理与演绎推理[最新考纲]1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.3.了解合情推理和演绎推理之间的联系和差异.知识梳理1.合情推理(1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理.简言之,归纳推理是由部分到整体、由个别到一般的推理.(2)类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理.简言之,类比推理是由特殊到特殊的推理.(3)合情推理:归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.2.演绎推理(1)演绎推理:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况作出的判断.辨析感悟1.对合情推理的认识(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.(×)(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.(√)(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.(×)(4)(教材习题改编)一个数列的前三项是1,2,3,那么这个数列的通项公式是a n=n(n∈N*).(×)(5)(2014·安庆调研改编)在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为1∶8.(√)2.对演绎推理的认识(6)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.(√)(7)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.(×)[感悟·提升]三点提醒一是合情推理包括归纳推理和类比推理,所得到的结论都不一定正确,其结论的正确性是需要证明的.二是在进行类比推理时,要尽量从本质上去类比,不要被表面现象所迷惑;否则只抓住一点表面现象甚至假象就去类比,就会犯机械类比的错误,如(3).三是应用三段论解决问题时,应首先明确什么是大前提,什么是小前提,如果大前提与推理形式是正确的,结论必定是正确的.如果大前提错误,尽管推理形式是正确的,所得结论也是错误的.如(7).学生用书第200页考点一归纳推理【例1】(2013·湖北卷)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为n(n+1)2=12n2+12n,记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:三角形数 N (n,3)=12n 2+12n , 正方形数 N (n,4)=n 2, 五边形数 N (n,5)=32n 2-12n , 六边形数N (n,6)=2n 2-n……可以推测N (n ,k )的表达式,由此计算N (10,24)=____________. 解析 由N (n,3)=12n 2+12n , N (n,4)=22n 2+02n , N (n,5)=32n 2+-12n , N (n,6)=42n 2+-22n ,推测N (n ,k )=⎝⎛⎭⎪⎫k -22n 2+⎝ ⎛⎭⎪⎫4-k 2n ,k ≥3. 从而N (n,24)=11n 2-10n ,N (10,24)=1 000. 答案 1 000规律方法 归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法. 【训练1】 (1)(2014·佛山质检)观察下列不等式: ①12<1;②12+16<2;③12+16+112< 3. 则第5个不等式为________. (2)(2013·陕西卷)观察下列等式 (1+1)=2×1(2+1)(2+2)=22×1×3(3+1)(3+2)(3+3)=23×1×3×5 ……照此规律,第n 个等式可为________.解析 (2)由已知的三个等式左边的变化规律,得第n 个等式左边为(n +1)(n +2)…(n +n ),由已知的三个等式右边的变化规律,得第n 个等式右边为2n 与n 个奇数之积,即2n ×1×3×5×…×(2n -1). 答案 (1)12+16+112+120+130< 5 (2)(n +1)(n +2)…(n +n )=2n ×1×3×…×(2n -1)考点二 类比推理【例2】 在平面几何里,有“若△ABC 的三边长分别为a ,b ,c ,内切圆半径为r ,则三角形面积为S △ABC =12(a +b +c )r ”,拓展到空间,类比上述结论,“若四面体A -BCD 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球的半径为r ,则四面体的体积为________”.审题路线 三角形面积类比为四面体的体积⇒三角形的边长类比为四面体四个面的面积⇒内切圆半径类比为内切球的半径⇒二维图形中12类比为三维图形中的13⇒得出结论.答案 V 四面体A -BCD =13(S 1+S 2+S 3+S 4)r规律方法 在进行类比推理时,不仅要注意形式的类比,还要注意方法的类比,且要注意以下两点:①找两类对象的对应元素,如:三角形对应三棱锥,圆对应球,面积对应体积等等;②找对应元素的对应关系,如:两条边(直线)垂直对应线面垂直或面面垂直,边相等对应面积相等.【训练2】 二维空间中圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2,观察发现S ′=l ;三维空间中球的二维测度(表面积)S =4πr 2,三维测度(体积)V =43πr 3,观察发现V ′=S .则四维空间中“超球”的四维测度W =2πr 4,猜想其三维测度V =________.解析 由已知,可得圆的一维测度为二维测度的导函数;球的二维测度是三维测度的导函数.类比上述结论,“超球”的三维测度是四维测度的导函数,即V =W ′=(2πr 4)′=8πr 3. 答案 8πr 3考点三 演绎推理【例3】 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n (n ∈N *).证明:(1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .证明 (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n , ∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n . ∴S n +1n +1=2·S n n ,又S 11=1≠0, (小前提) 故⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列.(结论) (大前提是等比数列的定义,这里省略了) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n +1n -1·S n -1=4a n (n ≥2), (小前提) 又a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论)(第(2)问的大前提是第(1)问的结论以及题中的已知条件)学生用书第201页规律方法 解决问题时,应当首先明确什么是大前提和小前提,如果前提是显然的,则可以省略.【训练3】 “因为对数函数y =log a x 是增函数(大前提),而y =log 14x 是对数函数(小前提),所以y =log 14x 是增函数(结论)”,以上推理的错误是( ). A .大前提错误导致结论错误 B .小前提错误导致结论错误 C .推理形式错误导致结论错误D.大前提和小前提错误导致结论错误解析当a>1时,函数y=log a x是增函数;当0<a<1时,函数y=log a x是减函数.故大前提错误导致结论错误.答案 A1.合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向.2.演绎推理是从一般的原理出发,推出某个特殊情况下的结论的推理方法,是由一般到特殊的推理,常用的一般模式是三段论.数学问题的证明主要通过演绎推理来进行.3.合情推理仅是“合乎情理”的推理,它得到的结论不一定正确.而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下).创新突破12——新定义下的归纳推理【典例】(2013·湖南卷)对于E={a1,a2,…,a100}的子集X={ai1,ai2,…,ai k},(1)子集{a1,a3,a5}的“特征数列”的前3项和等于______;(2)若E的子集P的“特征数列”p1,p2,…,p100满足p1=1,p i+p i+1=1,1≤i≤99;E的子集Q的“特征数列”q1,q2,…,q100满足q1=1,q j+q j+1+q j+2=1,1≤j≤98,则P∩Q的元素个数为________.突破1:读懂信息❶,对于集合X={ai1,ai2,…,ai k}来说,定义X的“特征数列”为x1,x2,…,x100是一个新的数列,该数列的xi1=xi2=…=xi k=1,其余项均为0.突破2:通过例子❷:“子集{a2,a3}的特征数列为0,1,1,0,0,…,0”来理解“特征数列”的特征;第2项,第3项为1,其余项为0.突破3:根据p 1=1,p i +p i +1=1可写出子集P 的“特征数列”为:1,0,1,0,1,0,…,1,0,归纳出子集P ;同理,子集Q 的特征数列为1,0,0,1,0,0,…,1,0,0,归纳出子集Q .突破4:由P 与Q 的前几项的规律,找出子集P 与子集Q 的公共元素即可. 解析 (1)根据题意可知子集{a 1,a 3,a 5}的“特征数列”为1,0,1,0,1,0,0,…,0,此数列前3项和为2.(2)根据题意可写出子集P 的“特征数列”为1,0,1,0,1,0,…,1,0,则P ={a 1,a 3,…,a 2n -1,…,a 99}(1≤n ≤50),子集Q 的“特征数列”为1,0,0,1,0,0,…,1,0,0,1,则Q ={a 1,a 4,…,a 3k -2,…,a 100}(1≤k ≤34),则P ∩Q ={a 1,a 7,a 13,…,a 97},共有17项. 答案 (1)2 (2)17[反思感悟] 此类问题一定要抓住题设中的例子与定义的紧密结合, 细心观察,寻求相邻项及项与序号之间的关系,需有一定的逻辑推理能力. 【自主体验】若定义在区间D 上的函数f (x )对于D 上的n 个值x 1,x 2,…,x n 总满足1n [f (x 1)+f (x 2)+…+f (x n )]≤f ⎝⎛⎭⎪⎫x 1+x 2+…+x n n ,称函数f (x )为D 上的凸函数.现已知f (x )=sin x 在(0,π)上是凸函数,则在△ABC 中,sin A +sin B +sin C 的最大值是________.解析 已知1n [f (x 1)+f (x 2)+…+f (x n )]≤ f ⎝⎛⎭⎪⎫x 1+x 2+…+x n n , (大前提) 因为f (x )=sin x 在(0,π)上是凸函数,(小前提) 所以f (A )+f (B )+f (C )≤3f ⎝⎛⎭⎪⎫A +B +C 3,(结论) 即sin A +sin B +sin C ≤3sin π3=332. 因此sin A +sin B +sin C 的最大值是332. 答案332对应学生用书P379基础巩固题组(建议用时:40分钟)一、选择题1.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理().A.结论正确B.大前提不正确C.小前提不正确D.全不正确解析f(x)=sin(x2+1)不是正弦函数而是复合函数,所以小前提不正确.答案 C2.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理得:若定义在R 上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=().A.f(x) B.-f(x) C.g(x) D.-g(x)解析由已知得偶函数的导函数为奇函数,故g(-x)=-g(x).答案 D3.(2012·江西卷)观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10等于().A.28 B.76 C.123 D.199解析从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,照此规律,则a10+b10=123.答案 C4.(2014·长春调研)类比“两角和与差的正弦公式”的形式,对于给定的两个函数:S(x)=a x-a-x,C(x)=a x+a-x,其中a>0,且a≠1,下面正确的运算公式是().①S(x+y)=S(x)C(y)+C(x)S(y);②S(x-y)=S(x)C(y)-C(x)S(y);③2S(x+y)=S(x)C(y)+C(x)S(y);④2S(x-y)=S(x)C(y)-C(x)S(y).A .①②B .③④C .①④D .②③解析 经验证易知①②错误.依题意,注意到2S (x +y )=2(a x +y -a -x -y ),S (x )C (y )+C (x )S (y )=2(a x +y -a -x -y ),因此有2S (x +y )=S (x )C (y )+C (x )S (y );同理有2S (x -y )=S (x )C (y )-C (x )S (y ).综上所述,选B. 答案 B5.由代数式的乘法法则类比推导向量的数量积的运算法则: ①“mn =nm ”类比得到“a ·b =b ·a ”;②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a ·c +b ·c ”; ③“(m ·n )t =m (n ·t )”类比得到“(a ·b )·c =a ·(b ·c )”;④“t ≠0,mt =xt ⇒m =x ”类比得到“p ≠0,a ·p =x ·p ⇒a =x ”; ⑤“|m ·n |=|m |·|n |”类比得到“|a ·b |=|a |·|b |”; ⑥“ac bc =a b ”类比得到“a ·c b ·c =a b ”.以上式子中,类比得到的结论正确的个数是( ). A .1 B .2 C .3 D .4 解析 ①②正确;③④⑤⑥错误. 答案 B 二、填空题6.(2014·西安五校联考)观察下式:1=12;2+3+4=32;3+4+5+6+7=52;4+5+6+7+8+9+10=72,…,则得出结论:________.解析 各等式的左边是第n 个自然数到第3n -2个连续自然数的和,右边是中间奇数的平方,故得出结论:n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2. 答案 n +(n +1)+(n +2)+…+(3n -2)=(2n -1)27.若等差数列{a n }的首项为a 1,公差为d ,前n 项的和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 为等差数列,且通项为S n n =a 1+(n -1)·d2,类似地,请完成下列命题:若各项均为正数的等比数列{b n }的首项为b 1,公比为q ,前n 项的积为T n ,则________. 答案 数列{n T n }为等比数列,且通项为nT n =b 1(q )n -18.(2014·揭阳一模)给出下列等式:2=2cos π4,2+2=2cos π8,2+2+2=2cos π16,请从中归纳出第n个等式:2+…+2+2=________.答案2cosπ2n+1三、解答题9.给出下面的数表序列:表1表2表311313 544812…其中表n(n=1,2,3,…)有n行,第1行的n个数是1,3,5,…,2n-1,从第2行起,每行中的每个数都等于它肩上的两数之和.写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明).解表4为13574812122032它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列.将这一结论推广到表n(n≥3),即表n(n≥3)各行中的数的平均数按从上到下的顺序构成首项为n,公比为2的等比数列.10.f(x)=13x+3,先分别求f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后归纳猜想一般性结论,并给出证明.解f(0)+f(1)=130+3+131+3=11+3+13(1+3)=33(1+3)+13(1+3)=33,同理可得:f(-1)+f(2)=33,f(-2)+f(3)=33.由此猜想f(x)+f(1-x)=3 3.证明:f(x)+f(1-x)=13x+3+131-x+3=13x+3+3x3+3·3x=13x+3+3x3(3+3x)=3+3x3(3+3x)=33.能力提升题组(建议用时:25分钟)一、选择题1.(2012·江西卷)观察下列事实:|x|+|y|=1的不同整数解(x,y)的个数为4,|x|+|y|=2的不同整数解(x,y)的个数为8,|x|+|y|=3的不同整数解(x,y)的个数为12,…,则|x|+|y|=20的不同整数解(x,y)的个数为().A.76 B.80 C.86 D.92解析由|x|+|y|=1的不同整数解的个数为4,|x|+|y|=2的不同整数解的个数为8,|x|+|y|=3的不同整数解的个数为12,归纳推理得|x|+|y|=n的不同整数解的个数为4n,故|x|+|y|=20的不同整数解的个数为80.故选B.答案 B2.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是().A.289 B.1 024 C.1 225 D.1 378解析观察三角形数:1,3,6,10,…,记该数列为{a n},则a1=1,a 2=a 1+2,a 3=a 2+3,…a n =a n -1+n .∴a 1+a 2+…+a n =(a 1+a 2+…+a n -1)+(1+2+3+…+n )⇒a n =1+2+3+…+n =n (n +1)2,观察正方形数:1,4,9,16,…,记该数列为{b n },则b n =n 2.把四个选项的数字,分别代入上述两个通项公式,可知使得n 都为正整数的只有1 225.答案 C二、填空题3.在平面直角坐标系中,若点P (x ,y )的坐标x ,y 均为整数,则称点P 为格点.若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L .例如图中△ABC 是格点三角形,对应的S =1,N =0,L =4.(1)图中格点四边形DEFG 对应的S ,N ,L 分别是________;(2)已知格点多边形的面积可表示为S =aN +bL +c ,其中a ,b ,c 为常数.若某格点多边形对应的N =71,L =18,则S =________(用数值作答).解析 (1)四边形DEFG 是一个直角梯形,观察图形可知:S =(2+22)×2×12=3,N =1,L =6.(2)由(1)知,S 四边形DEFG =a +6b +c =3.S △ABC =4b +c =1.在平面直角坐标系中,取一“田”字型四边形,构成边长为2的正方形,该正方形中S =4,N =1,L =8.则S =a +8b +c =4.联立解得a =1,b =12.c =-1.∴S =N +12L -1,∴若某格点多边形对应的N =71,L =18,则S =71+12×18-1=79.答案(1)3,1,6(2)79三、解答题4.(2012·福建卷)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin213°+cos217°-sin 13°cos 17°;②sin215°+cos215°-sin 15°cos 15°;③sin218°+cos212°-sin 18°cos 12°;④sin2(-18°)+cos248°-sin(-18°)cos 48°;⑤sin2(-25°)+cos255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.解(1)选择②式,计算如下:sin215°+cos215°-sin 15°cos 15°=1-12sin 30°=1-14=34.(2)三角恒等式为sin2α+cos2(30°-α)-sin αcos(30°-α)=3 4.证明如下:sin2α+cos2(30°-α)-sin αcos(30°-α)=sin2α+(cos 30°cos α+sin 30°sin α)2-sinα·(cos 30°cos α+sin 30°sin α)=sin2α+34cos2α+32sin αcos α+14sin2α-32sin αcosα-12sin2α=34sin2α+34cos2α=34.学生用书第202页。

相关文档
最新文档