打印几何1
2023年数学中考试题精选:几何综合证明(一)

1.(2023.营口24题)在平行四边形ABCD中,∠ADB=90°,点E在CD 上,点G在AB上,点F在BD的延长线上,连接EF,DG, ∠FED=∠ADG,ADBD =DG EF=k.(1)如图1,当k=1时,请用等式表示线段AG与线段DF的数量关系________;(2)如图2,当k=√(3)时,写出线段AD,DE和DF之间的数量关系,并说明理由;(3)在(2)的条件下,当点G是AB的中点时,连接BE,求tan∠EBF的值2.(2023.本溪铁岭辽阳25题)在Rt△ABC中,∠ACB=90°,CA=CB,点O为AB的中点,点D在直线AB上(不与点A,B重合),连接CD,线段CD绕点C逆时针旋转90°,得到线段CE,过点B作直线l⊥BC,过点E作EF⊥l,垂足为点F,直线EF交直线OC于点G.(1)如图1,当点D与点O重合时,请直接写出线段AD与线段EF 的数量关系;(2)如图2,当点D在线段AB上时,求证:CG+BD=√2BC;(3)连接DE,△CDE的面积记为S1,△ABC的面积记为S2,当EF:BC=1:3时,请直接写出S1S2的值.3.(2023.大连25题)综合与实践问题情境:数学活动课上,王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质。
已知AB=AC,∠A>90°,点E为AC上一动点,将△ABE以BE为对称轴翻折,同学们经过思考后进行如下探究:独立思考:小明:“当点D落在BC上时,∠EDC=2∠ACB.”小红:“若点E为AC中点,给出AC与DC的长,就可求出BE的长.”补足探究:奋进小组的同学们经过探究后提出问题1,请你回答:问题1:在等腰△ABC中,AB=AC,∠A>90°,△BDE由△ABE翻折得到.(1)如图1,当点D落在BC上时,求证:∠EDC=2∠ACB;(2)如图2,若点E为AC中点,AC=4,CD=3,求BE的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成∠A<90°的等腰三角形,可以问题进一步拓展.问题2:如图3,在等腰△ABC中,∠A<90°,AB=AC=BD=4,2∠D=∠ABD.若CD=1,则求BC的长.4.(2023.牡丹江26题)平行四边形ABCD中,AE⊥BC,垂足为E,连接DE,将ED绕点E逆时针旋转90°,得到EF,连接BF.(1)当点E在线段BC上,∠ABC=45°时,如图1,求证:AE+EC=BF;(2)当点E在线段BC延长线上,∠ABC=45°时,如图2,当点E在线段CB延长线上,∠ABC=135°时,如图3,请猜想并直接写出线段AE,EC,BF的数量关系;(3)在(1)、(2)的条件下,若BE=3,DE=5,则CE=______.5.(2023.贵州省25题)如图1,小红在学习了三角形相关知识后,对等腰直角三角形进行了探究,在等腰直角三角形ABC中,CA=CB,∠C=90°,过点B作射线BD⊥AB,垂足为B,点P在CB上.(1)【动手操作】如图2,若点P在线段CB上,画出射线PA,并将射线PA绕点P逆时针旋转90°与BD交于点E,根据题意在图中画出图形,图中∠PBE的度数为______度;(2)【问题探究】根据(1)所画图形,探究线段PA与PE的数量关系,并说明理由;(3)【拓展延伸】如图3,若点P在射线CB上移动,将射线PA绕点P逆时针旋转90°与BD将于点E,探究线段BA,BP,BE之间的数量关系,并说明理由.6.(2023.沈阳24题)如图1.在平行四边形纸片中,AB=10,AD=6,∠DAB=60°,点E为BC边上的一点(点E不与点C重合),连接AE,将平行四边形ABCD纸片沿AE所在直线折叠,点C,D的对应点分别为C`,D`,射线C`E与射线AD将于点F.(1)求证:AF=EF;(2)如图2,当EF⊥AF时,DF的长为______;(3)如图3,当CE=2时,过点F作FM⊥AE,垂足为点M,延长FM 交C`D`于点N,连接AN,EN,求△ANE的面积。
高中几何基本定理[1]
![高中几何基本定理[1]](https://img.taocdn.com/s3/m/23a0031e6bd97f192279e9aa.png)
(高中)竞赛平面几何必备定理1. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+;中线长:222222a c b m a -+=.2. 垂线定理:2222BD BC AD AC CD AB -=-⇔⊥.高线长:C b B c A abcc p b p a p p a h a sin sin sin ))()((2===---=. 3. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例.如△ABC 中,AD 平分∠BAC ,则ACAB DC BD =;(外角平分线定理).角平分线长:2cos 2)(2Ac b bc a p bcp c b t a +=-+=(其中p 为周长一半). 44. 张角定理:ABDAC AC BAD AD BAC ∠+∠=∠sin sin sin .5. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD .6. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?) 7. 弦切角定理:弦切角等于夹弧所对的圆周角.8. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:)9. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边.10. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P任作一直线与⊙O 交于点A 、B ,则P A·PB = |d 2-r 2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.11. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD .12. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM . 13. 费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点. 14.15. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如: (1)三角形的九点圆的半径是三角形的外接圆半径之半; (2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点; (3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.16. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上.17. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d 2=R 2-2Rr . 18. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和.19. 重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3,3(C B A C B A y y y x x x G ++++重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC 于D ,则D 为BC 的中点,则1:2:=GD AG ;(2)设G 为△ABC 的重心,则ABC AC G BC G ABGS S S S ∆∆∆∆===31;(3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===AB KHCA FP BC DE AB KH CA FP BC DE ; (4)设G 为△ABC 的重心,则①222222333GC AB GB CA GA BC +=+=+;②)(31222222CA BC AB GC GB GA ++=++;③22222223PG GC GB GA PC PB PA +++=++(P为△ABC 内任意一点);④到三角形三顶点距离的平方和最小的点是重心,即222GC GB GA ++最小;⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心).20. 垂心:三角形的三条高线的交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (CcB b A a yC cy B b y A a C c B b A a x C c x B b x A a H CB AC B A ++++++++ 垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍;(2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;(3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆; (4)设O ,H 分别为△ABC 的外心和垂心,则HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,.21. 内心:三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等;),(cb a cy by ayc b a cx bx ax I CB AC B A ++++++++ 内心性质:(1)设I 为△ABC 的内心,则I 到△ABC 三边的距离相等,反之亦然;(2)设I 为△ABC 的内心,则C AIB B AIC A BIC∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,2190;(3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,若A ∠平分线交△ABC外接圆于点K ,I 为线段AK 上的点且满足KI=KB ,则I 为△ABC 的内心;(4)设I 为△ABC 的内心,,,,c AB b AC a BC === A ∠平分线交BC 于D ,交△ABC 外接圆于点K ,则acb KD IK KI AK ID AI +===;(5)设I 为△ABC 的内心,,,,c AB b AC a BC ===I 在AB AC BC ,,上的射影分别为F E D ,,,内切圆半径为r ,令)(21c b a p ++=,则①pr S ABC =∆;②c p CD CE b p BF BD a p AF AE -==-==-==;;;③CI BI AI p abcr ⋅⋅⋅=.22. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等;)2sin 2sin 2sin 2sin 2sin 2sin ,2sin 2sin 2sin 2sin 2sin 2sin (CB A Cy By AyC B A Cx Bx Ax O CB AC B A ++++++++外心性质:(1)外心到三角形各顶点距离相等;(2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠-︒=∠2360;(3)∆=S abc R 4;(4)锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和.23. 旁心:一内角平分线与两外角平分线交点——旁切圆圆心;设△ABC 的三边,,,c AB b AC a BC ===令)(21c b a p ++=,分别与AB AC BC ,,外侧相切的旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,.旁心性质:(1),21,2190A C BI C BI A C BI C B A ∠=∠=∠∠-︒=∠(对于顶角B ,C 也有类似的式子);(2))(21C A I I I C B A ∠+∠=∠;(3)设A AI 的连线交△ABC 的外接圆于D ,则DC DB DI A ==(对于C B CI BI ,有同样的结论);(4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径'R 等于△ABC 的直径为2R .24. 三角形面积公式:C B A R R abc C ab ah S a ABCsin sin sin 24sin 21212====∆)cot cot (cot 4222C B A c b a ++++=))()((c p b p a p p pr ---==,其中a h 表示BC 边上的高,R 为外接圆半径,r 为内切圆半径,)(21c b a p ++=. 25. 三角形中内切圆,旁切圆和外接圆半径的相互关系:;2s i n2c o s 2c o s 4,2c o s 2s i n 2c o s 4,2c o s 2c o s 2s i n 4;2s i n 2s i n 2s i n 4CB A R rC B A R r C B A R r C B A R r c b a ==== .1111;2tan2tan ,2tan 2tan ,2tan 2tan r r r r B A r r C A r r C B r r c b a c b a=++===26. 梅涅劳斯(Menelaus )定理:设△ABC 的三边BC 、CA 、AB 或其延长线和一条不经过它们任一顶点的直线的交点分别为P 、Q 、R 则有1=⋅⋅RBARQA CQ PC BP .(逆定理也成立) 27. 梅涅劳斯定理的应用定理1:设△ABC 的∠A 的外角平分线交边CA 于Q ,∠C 的平分线交边AB 于R ,∠B 的平分线交边CA 于Q ,则P 、Q 、R 三点共线.32梅涅劳斯定理的应用定理2:过任意△ABC 的三个顶点A 、B 、C 作它的外接圆的切线,分别和BC 、CA 、AB 的延长线交于点P 、Q 、R ,则P 、Q 、R 三点共线.28. 塞瓦(Ceva )定理:设X 、Y 、Z 分别为△ABC 的边BC 、CA 、AB 上的一点,则AX 、BY 、CZ 所在直线交于一点的充要条件是AZ ZB ·BX XC ·CYYA=1. 29. 塞瓦定理的应用定理:设平行于△ABC 的边BC 的直线与两边AB 、AC 的交点分别是D 、E ,又设BE 和CD 交于S ,则AS 一定过边BC 的中点30. 塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点,三角形的三条高线交于一点,三角形的三条角分线交于一点.31. 塞瓦定理的逆定理的应用定理2:设△ABC 的内切圆和边BC 、CA 、AB 分别相切于点R 、S 、T ,则AR 、BS 、CT 交于一点.32. 史坦纳定理:设△ABC 的垂心为H ,其外接圆的任意点P ,这时关于△ABC 的点P 的西摩松线通过线段PH 的中心.. 33. 牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线.这条直线叫做这个四边形的牛顿线.34. 牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线.35. 笛沙格定理1:平面上有两个三角形△ABC 、△DEF ,设它们的对应顶点(A 和D 、B 和E 、C 和F )的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.36. 笛沙格定理2:相异平面上有两个三角形△ABC 、△DEF ,设它们的对应顶点(A 和D 、B 和E 、C 和F )的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.。
几何——第一讲 几何基本概念与简单图形

(2)点 A、B 在直线 m 同侧:
第 4 页 共 29 页
(3)两个点都在内侧:
形式二:已知点 A 位于直线 m、n 的内侧, 在直线 m、n 上分别求点 P、Q,使得三角形 APQ 的周长最短。
3. 台球两次碰壁模型 形式一:已知点 A、B 位于直线 m、n 的内侧,在
直线 n、m 上分别求点 D、E 点,使得围成的四边形 ADEB 的周长最短。
果它们有一个公共点,我们就说他们相交,它们是相交 直线,这个公共点叫做它们的交点。
相交关系中最重要的是垂直相交,与垂直有关的知 识,有以下两个重要的结论: ⑴过一点有且仅有一条直线与已知直线垂直; ⑵直线外一点与直线上各点连结的所有线段中,垂线段 最短。
两条直线相交,可形成两组对顶角,它们分别相等, 也可以形成邻补角,即一条直线与端点在这条直线上的 一条射线组成的两个角。也就是说,邻补角是具有特殊 位置关系的两个互补角,一个角的邻补角有且只有两个。
如果两个角的和是一个平角,这两个角叫做互为补角; 如图(b): BDC ABD A ACD
如果两个角的和是一个直角,这两个角叫做互为余角。
第 8 页 共 29 页
⑶“8 字形”模型 如图(c): A B C D
⑷“内角平分线”模型 点 P 是 ABC 和 ACB 的角平分线的交点。 如图(d): BPC 90 1 A
第 20 页 共 29 页
四、面积初步
由于多边形可以分割成若干个三角形,所以多边形
在中学数学里,面积是非常重要的内容,除简单的 的面积可转化为三角形面积来研究。
面积计算外,还要学会使用“等积变换”的思想方法来处
关于三角形的面积,有以下几个重要性质:
理几何问题。
⑴等底等高的两个三角形面积相等;
初中数学几何图形的三维建模与打印尝试

初中数学几何图形的三维建模与打印尝试一、三维建模与打印技术概述三维建模是指通过计算机软件创建三维物体的虚拟模型。
这些模型可以是基于真实物体的精确复制品,也可以是完全由想象创造出来的虚构物体。
而三维打印则是一种将数字模型转化为实体物体的制造技术。
它通过逐层堆积材料,将虚拟的三维模型变成现实中可以触摸和观察的实物。
二、初中数学几何图形与三维建模的结合初中数学中的几何图形,如正方体、长方体、圆柱体、圆锥体等,都可以通过三维建模软件进行创建。
以正方体为例,我们可以在建模软件中设定边长等参数,快速生成一个精确的正方体模型。
对于复杂一些的几何图形,如球体与圆柱体的组合,或者圆锥体的截头部分,通过调整参数和运用软件中的工具,同样能够轻松构建。
在建模过程中,学生不仅能够直观地看到几何图形的各个面、棱和顶点,还可以通过旋转、缩放等操作从不同角度观察图形,加深对其结构和特性的理解。
比如,在观察圆锥体时,可以清晰地看到圆锥的侧面展开图是一个扇形,从而更好地理解圆锥的表面积计算方法。
三、三维建模软件在初中数学教学中的应用目前,有许多适合初中学生使用的三维建模软件,如 Tinkercad、SketchUp 等。
这些软件操作相对简单,界面友好,并且提供了丰富的教学资源和教程。
教师可以在课堂上利用这些软件进行演示,将抽象的几何概念转化为生动的三维图像。
例如,在讲解三角形内角和定理时,可以创建不同形状的三角形模型,然后通过测量和计算内角的度数,让学生直观地看到无论三角形的形状如何变化,其内角和始终为 180 度。
学生也可以在课后使用这些软件进行自主学习和探索。
他们可以根据自己的想象创建各种几何组合体,或者尝试解决一些与实际生活相关的几何问题,如设计一个包装盒的形状以最大化利用空间。
四、三维打印技术在初中数学中的实践当学生完成几何图形的三维建模后,就可以通过三维打印机将其打印出来。
在打印之前,需要对模型进行一些必要的设置,如选择打印材料、调整打印精度等。
高中数学第二章空间向量与立体几何1从平面向量到空间向量ppt课件

→ —→ (2)〈AB,C1A1〉; 解答 〈A→B,C—1→A1〉=π-〈A→B,A—1→C1〉=π-π4=34π.
→ —→ (3)〈AB,A1D1〉.
解答
〈A→B,A—1→D1〉=〈A→B,A→D〉=π2.
引申探求 →→
在本例中,求〈AB1,DA1〉. 解答
如图,衔接B1C,那么B1C∥A1D, →→
梳理
间向量的夹角
(1)文字表达:a,b是空间中两个非零向量,过空间恣意一点O,作
→ OA
=a,O→B=b,那么∠AOB 叫作向量a与向量b的夹角,记作〈a,b〉 .
(2)图形表示:
角度
表示
〈a,b〉=__0_
〈a,b〉是_锐__角__
〈a,b〉是_直__角__ 〈a,b〉是_钝__角__〈a,b〉 Nhomakorabea_π__
第二章 空间向量与立体几何
§1 从平面向量到空间向量
学习目的 1.了解空间向量的概念. 2.了解空间向量的表示法,了解自在向量的概 念. 3.了解空间向量的夹角. 4.了解直线的方向向量与平面的法向量的概念.
内容索引
问题导学 题型探求 当堂训练
问题导学
知识点一 空间向量的概念
思索1
类比平面向量的概念,给出空间向量的概念. 答案 在空间中,把具有大小和方向的量叫作空间向量.
答案 解析
研讨长方体的模型可知,一切顶点两两相连得到的线段中,长度为1 的线段只需4条,故模为1的向量有8个.
12345
5.在直三棱柱ABC-A1B1C1中,以下向量可以作为平面ABC法向量的 是②__③____.(填序号)答案
No Image
12345
规律与方法
在空间中,一个向量成为某直线的方向向量的条件包含两个方面:一是 该向量为非零向量;二是该向量与直线平行或重合.二者缺一不可. 给定空间中恣意一点A和非零向量a,就可以确定独一一条过点A且平行 于向量a的直线.
《解析几何》知识点复习1

《解析几何》知识点复习1解析几何是数学中一个非常重要的分支,它将代数与几何巧妙地结合在一起,通过建立坐标系,用代数方法来研究几何图形的性质和相互关系。
接下来,让我们一起对解析几何的一些关键知识点进行复习。
一、坐标系坐标系是解析几何的基础,最常见的是直角坐标系(也称为笛卡尔坐标系)。
在直角坐标系中,我们通过两条互相垂直的数轴,即 x 轴和 y 轴,来确定平面上点的位置。
一个点的坐标就是它在 x 轴和 y 轴上的投影所对应的数值,通常表示为(x, y)。
此外,还有极坐标系。
在极坐标系中,一个点的位置由极径和极角来确定。
极径是该点到极点的距离,极角是极轴(通常为 x 轴的正半轴)到该点的连线与极轴所成的角。
二、直线1、直线的方程点斜式:若已知直线上一点(x₁, y₁) 以及直线的斜率 k,则直线方程为 y y₁= k(x x₁)。
斜截式:若直线的斜率为 k,且在 y 轴上的截距为 b,则直线方程为 y = kx + b。
两点式:若已知直线上两点(x₁, y₁) 和(x₂, y₂),则直线方程为(y y₁)/(y₂ y₁) =(x x₁)/(x₂ x₁)。
一般式:Ax + By + C = 0 (A、B 不同时为 0)。
2、直线的位置关系平行:两条直线斜率相等。
垂直:两条直线斜率之积为-1。
3、距离公式点到直线的距离:d =|Ax₁+ By₁+ C| /√(A²+ B²) ,其中(x₁, y₁) 是点的坐标,Ax + By + C = 0 是直线方程。
三、圆1、圆的方程标准方程:(x a)²+(y b)²= r²,其中(a, b) 是圆心坐标,r 是半径。
一般方程:x²+ y²+ Dx + Ey + F = 0 (D²+ E² 4F > 0),圆心坐标为(D/2, E/2) ,半径为√(D²+ E² 4F) / 2 。
平面几何100题(1)

平面几何100题1.非等腰锐角三角形ABC 的外接圆为ω,H 为△ABC 的垂心,M 是AB 的中点。
在不含C 的圆弧AB 上取点P、Q,使得∠ACP=∠BCQ<∠ACQ,过H 分别作CQ、CP 的垂线,垂足为R、S。
证明:P,Q,R,S 共圆且点M 是该圆的圆心。
2.在△ABC 中,点M、N、K 分别在边BC、CA、AB 上且不与顶点重合,若∠BAC=∠KMN 且∠ABC=∠KNM,则称△MNK 为完美三角形。
证明:如果在△ABC 中有两个具有共同顶点且不重合的完美三角形,则△ABC 是直角三角形。
3.四边形ABCD 满足AD//BC,∠ABC>90⁰,M 是线段AB 上不同于A、B 的一点,设△MAD、△MBC 的外心分别为21,O O 。
△D MO 1的外接圆不同于M 的交点为N。
求证:点N 在直线21O O 上。
4.在凸四边形(非平行四边形)ABCD 的对角线上分别取点B′、C′,使得△ACB′、△BDC′都为正三角形,其中点B 和B′位于AC 的同侧,点C 和C′位于BD 的同侧,如果CD AB C B +='',求∠BAD+∠CDA 的值。
5.给定一个凸六边形ABCDEF,其中AB//DE,BC//EF,CD//FA。
设BD 和AE、AC 和DF、CE 和BF 的交点分别为M、N、K。
证明:过M、N、K 分别作AB、CD、EF 的垂线交于同一点。
6.圆内接四边形ABCD 的对角线交于点K,点M 和N 分别是对角线AC 和BD 的中点,△ADM 和△BCM 的外接圆交于点M、L,证明:K,L,M,N(这些点两两不重合)四点共圆。
7.圆内接四边形ABCD 的外接圆为圆Ω且AB=AD,在线段BC、CD 上分别取点M、N,使得MN=BM+DN。
直线AM 交圆Ω于点P (不同于A),直线AN 交圆Ω于点Q (不同于A)。
求证:△APQ 的垂心在MN 上。
8.给定四边形ABCD,其中∠B=∠D=90⁰,在线段AB 上取点M 使得AD=AM。
高二数学立体几何(1)

平面的基本性质,两直线的位置关系一、选择题(本题每小题5分,共50分)1.若直线上有两个点在平面外,则 ( )A .直线上至少有一个点在平面内B .直线上有无穷多个点在平面内C .直线上所有点都在平面外D .直线上至多有一个点在平面内 2.在空间中,下列命题正确的是 ( ) A .对边相等的四边形一定是平面图形B .四边相等的四边形一定是平面图形C .有一组对边平行且相等的四边形是平面图形D .有一组对角相等的四边形是平面图形 3.在空间四点中,无三点共线是四点共面的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件4.用一个平面去截正方体,则截面形状不可能是( )A .正三角形B .正方形C .正五边形D .正六边形 5.如图:正四面体S -ABC 中,如果E ,F 分别是SC ,AB 的中点, 那么异面直线EF 与SA 所成的角等于 ( ) A .90° B .45°C .60°D .30°6.一条直线与两条平行线中的一条是异面直线,那么它与另一条直线的位置关系是( )A .相交B .异面C .平行D .相交或异面7.异面直线a 、b 成60°,直线c ⊥a ,则直线b 与c 所成的角的范围为 ( )A .[30°,90°]B .[60°,90°]C .[30°,60°]D .[60°,120°]8.右图是正方体的平面展开图,在这个正方体中,① BM 与ED 平行; ② CN 与BE 是异面直线;③ CN 与BM 成60角; ④ DM 与BN 垂直.以上四个命题中,正确命题的序号是( )A .①②③B .②④C .③④D .②③④9.梯形ABCD 中AB//CD ,AB ⊂平面α,CD ⊄平面α,则直线CD 与平面α内的直线的位 置关系只能是 ( ) A .平行 B .平行或异面 C .平行或相交 D .异面或相交 10.在空间四边形ABCD 中,E 、F 分别为AB 、AD 上的点,且AE :EB =AF :FDN D C ME A B F=1 :4,又H 、G 分别为BC 、CD 的中点,则 ( ) A .BD//平面EFGH 且EFGH 是矩形 B .EF//平面BCD 且EFGH 是梯形C .HG//平面ABD 且EFGH 是菱形 D .HE//平面ADC 且EFGH 是平行四边形二.填空题(本题每小题6分,共24分)11.若直线a, b 与直线c 相交成等角,则a, b 的位置关系是 .12.在四面体ABCD 中,若AC 与BD 成60°角,且AC =BD =a ,则连接AB 、BC 、CD 、DA 的中点的四边形面积为 .13.在长方体ABCD -A 1B 1C 1D 1中,AB =BC =3,AA 1=4,则异面直线AB 1与 A 1D 所成的角的余弦值为 .14.把边长为a 的正方形ABCD 沿对角线BD 折起,使A 、C 的距离等于a ,如图所示,则异面直线AC 和BD 的距离为 . 三、解答题(共76分)15.(12分)已知△ABC 三边所在直线分别与平面α交于P 、Q 、R 三点,求证:P 、Q 、R 三点共线 .16.(12分)在空间四边形ABCD 中,M 、N 、P 、Q 分别是四边上的点,且满足PDCPQD AQ NB CN MB AM ====k .求证:M 、N 、P 、Q 共面.17.(12分)已知:平面,//,,,a c c A a b b a 且平面βαβα⊂=⋂⊂=⋂求证:b 、c 是异面直线18.(12分)如图,已知空间四边形ABCD 中,AB =CD =3,E 、F 分别是BC 、AD 上的点,并且BE ∶EC =AF ∶FD =1∶2,EF =7,求AB 和CD 所成角的大小.19.(14分)四面体A-BCD 的棱长均为a ,E 、F 分别为楞AD 、BC 的 中点,求异面直线AF 与CE 所成的角的余弦值.20.(14分)在棱长为a的正方体ABCD—A′B′C′D′中,E、F分别是BC、A′D′的中点.(2)求直线A′C与DE所成的角;直线和平面的位置关系一、选择题(本题每小题5分,共50分)1.下列命题:① 一条直线在平面内 的射影是一条直线;② 在平面内射影是直线的图形一 定是直线;③ 在同一平面内的射影长相等,则斜线长相等;④ 两斜线与平面所成的角 相等,则这两斜线互相平行.其中真命题的个数是 ( )A .0个B .1个C .2个D .3个2.下列命题中正确的是 ( )A .若平面M 外的两条直线在平面M 内的射影为一条直线及此直线外的一个点,则这两条直线互为异面直线B .若平面M 外的两条直线在平面M 内的射影为两条平行直线,则这两条直线相交C .若平面M 外的两条直线在平面M 内的射影为两条平行直线,则这两条直线平行D .若平面M 外的两条直线在平面M 内的射影为两条互相垂直的直线,则这两条直线垂直3.相交成60°的两条直线与一个平面α所成的角都是45°,那么这两条直线在平面α内的 射影所成的角是 ( )A .30°B .45°C .60°D .90°4.已知A 、B 两点在平面α的同侧,AC ⊥α于C ,BD ⊥α于D ,并且AD ∩BC =E ,EF ⊥α于F ,AC =a ,BD=b ,那么EF 的长等于 ( )A .b a ab +B .ab b a +C .b a 2+D .2ba +5.P A 、PB 、PC 是从P 点引出的三条射线,每两条夹角都是60°,那么直线PC 与平面P AB 所成角的余弦值是( )A .21B .22C .36 D .33 6.Rt △ABC 中,∠B =90°,∠C =30°,D 是BC 的中点,AC =2,DE ⊥平面ABC ,且DE =1,则点E 到斜边AC 的距离是 ( )A .25 B .211 C .27 D .419 7.如图,PA ⊥矩形ABCD ,下列结论中不正确的是( ) A .PB ⊥BC B .PD ⊥CD C .PD ⊥BD D .PA ⊥BD8.如果α∥β,AB 和AC 是夹在平面α与β之间的 两条线段,AB ⊥AC ,且AB =2,直线AB 与平面α所成的角为30°,那么线段AC 的长的取值范围是( )A. B .[1,)+∞ C. D.)+∞9.若a , b 表示两条直线,α表示平面,下面命题中正确的是 ( ) A .若a ⊥α, a ⊥b ,则b //α B .若a //α, a ⊥b ,则b ⊥αC .若a ⊥α,b ⊂α,则a ⊥bD .若a //α, b //α,则a //b10.如果直角三角形的斜边与平面α平行,两条直角边所在直线与平面α所成的角分别为 21θθ和,则 ( ) A .1sin sin 2212≥+θθ B .1sin sin 2212≤+θθC .1sin sin 2212>+θθD .1sin sin 2212<+θθ二、填空题(本题每小题6分,共24分)11.已知△ABC ,点P 是平面ABC 外一点,点O 是点P 在平面ABC 上的射影,(1)若点P 到△ABC 的三个顶点的距离相等,那么O 点一定是△ABC 的 ;(2)若点P 到△ABC 的三边所在直线的距离相等且O 点在△ABC 内,那么O 点一定是△ABC 的 .12.已知△ABC 中,AB=9,AC=15,∠BAC=120°,△ABC 所在平面外一点P 到此三角形 三个顶点的距离都是14,则点P 到平面ABC 的距离是 13.如图所示,矩形ABEF 与矩形EFDC 相交于EF , 且BE ⊥CE ,AB =CD =4,BE =3,CE =2, ∠EAC =α,∠ACD =β,则cos α∶cos β= .14.AB ∥CD ,它们都在平面α内,且相距28.EF ∥α,且相距15. EF ∥AB ,且相距17.则EF 和CD 间的距离为 . 三、解答题(共76分) 15.(12分)如图,在正方体ABCD —A 1B 1C 1D 1中,求A 1B 和平面A 1B 1CD 所成的角.16.(12分)A 是△BCD 所在平面外的点,∠BAC=∠CAD=∠DAB=60°,AB=3,AC=AD=2. (1)求证:AB ⊥CD ;(2)求AB 与平面BCD 所成角的余弦值.17.(12分)如图,已知矩形ABCD 所在平面外一点P ,P A ⊥平面ABCD ,E 、F 分别是AB 、PC 的中点.(1)求证:EF ∥平面P AD ; (2)求证:EF ⊥CD ;(3)若∠PDA =45︒,求EF 与平面ABCD 所成的角的大小.18.(12分)在ABC ∆中,︒=∠75BAC ,线段VA ⊥平面ABC ,点A 在平面VBC 上的射影为H.求证:H 不可能是VBC ∆的垂心.19.(14分)AB 是⊙O 的直径,C 为圆上一点,AB =2,AC =1, P 为⊙O 所在平面外一点,且PA ⊥⊙O , PB 与平面所成角为45 (1)证明:BC ⊥平面PAC ; (2)求点A 到平面PBC 的距离.20.(14分)如图所示,在斜边为AB的Rt△ABC中,过A作P A⊥平面ABC,AM⊥PB于M,AN⊥PC于N.(2)求证:PB⊥面AMN.(3)若P A=A B=4,设∠BPC=θ,试用tanθ表示△AMN的面积,当tanθ取何值时,△AMN的面积最大?最大面积是多少?平面和平面的位置关系一、选择题:本大题共12个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列命题中正确的是 ( ) A .垂直于同一平面的两平面平行 B .垂直于同一直线的两平面平行 C .与一直线成等角的两平面平行 D .Rt ∠ABC 在平面α的射影仍是一个直角,则∠ABC 所在平面与平面α平行 2.ABCD 是一个四面体,在四个面中最多有几个是直角三角形 ( ) A .1 B .2 C .3 D .4 3.已知m 、n 是不重合的直线,α、β是不重合的平面,有下列命题: ①若m ⊂α、n ∥β,则m ∥n ; ②若m ∥α、n ∥β,则α∥β; ③若α∩β=n ,m ∥n ,则m ∥α,m ∥β;④若m ⊥α,m ⊥β,则α∥β. 其中真命题的个数是 ( ) A .0 B .1 C .2 D .3 4.已知二面角α-AB -β的平面角为θ,α内一点C 到β的距离为3,到棱AB 的距离为4, 则tan θ等于 ( )A .34B .35CD5.下列命题:① 若直线a //平面α,平面α⊥平面β,则α⊥β; ② 平面α⊥平面β,平 面β⊥平面γ,则α⊥γ;③ 直线a ⊥平面α,平面α⊥平面β,则a //β; ④ 平面α// 平面β,直线a ⊂平面α,则a //β.其中正确命题的个数是 ( ) A .1 B .2 C .3 D .4 6.二面角α-AB -β的平面角为锐角,C 是α内的一点 (它不在棱AB 上),点D 是C 在平面β内的射影,点E 是AB 上满足∠CEB 为锐角的任意一点,那么( ) A .∠CEB>∠DEB B .∠CEB<∠DEB C .∠CEB=∠DEB D .无法确定7.如果直线l 、m 与平面α、β、γ满足:l βγ=⋂,//l α,,m m αγ⊂⊥,那么必有( ) A .,l m αγ⊥⊥ B .,//m αγβ⊥ C .//,m l m β⊥ D .//,αβαβ⊥ 8.已知:矩形ADEF ⊥矩形BCEF ,记∠DBE =α, ∠DCE =β,∠BDC =θ,则 ( ) A .sin α=sin βsin θ B .sin β=sin αcos θ C .cos α=cos βcos θ D .cos β=cos αcos θ9.若有平面α与β,且l P P l ∉α∈β⊥α=βα,,, ,则下列命题中的假命题为 ( )A .过点P 且垂直于α的直线平行于βB .过点P 且垂直于l 的平面垂直于βC .过点P 且垂直于β的直线在α内D .过点P 且垂直于l 的直线在α内10.空间三条射线PA ,PB ,PC 满足∠APC=∠APB=60°,∠BPC=90°,则二面角B-PA-C的度数 ( )A .等于90°B .是小于120°的钝角C .是大于等于120°小于等于135°的钝角D .是大于135°小于等于150°的钝角二、填空题:本大题满分24分,每小题6分,各题只要求直接写出结果. 11.如图所示,E 、F 、G 是正方体ABCD -A 1B 1C 1D 1相应棱的中点,则(1)面EFG 与面ABCD 所成的角为 ;(2)面EFG 与面ADD 1A 1所成的角为 . 12.斜线PA 、PB 于平面α分别成40°和60°,则∠APB 的取值范围为13.在直角△ABC 中,两直角边AC =b ,BC =a ,CD ⊥AB 于D , 把这个Rt △ABC 沿CD 折成直二面角A -CD -B 后, cos ∠ACB = .14.如图,两个矩形ABCD 和ABEF 中,AD =AF =1, DC =EF =,则AB 与CF 所成角θ的大小范 围是 .三、解答题:本大题满分76分. 15.(本小题满分12分).//,,//,,,:αββαb b a a b a 且且是异面直线已知⊂⊂ 求证:βα//.16.(本小题满分12分)正方体ABCD-A ′B ′C ′D ′棱长为1.(1)证明:面A ′BD ∥面B ′CD ′; (2)求点B ′到面A ′BD 的距离.(14分)17.(本小题满分12分)如图,平面α∥平面β,点A 、C ∈α,B 、D ∈β,点E 、F 分别在线段AB 、CD 上,且FDCFEB AE =,求证:EF ∥β.18.(本小题满分12分)如图,四面体ABCD 中,△ABC 与△DBC 都是边长为4的正三角形.(1)求证:BC ⊥AD ;(2)若点D 到平面ABC 的距离不小于3,求二面角A —BC —D 的平面角的取值范围; (3)求四面体ABCD 的体积的最大值.19.(本小题满分14分)在长方体1111D C B A ABCD -中,11==AD AA ,底边AB 上有且 只有一点M 使得平面⊥DM D 1平面MC D 1. (1)求异面直线C C 1与M D 1的距离; (2)求二面角D C D M --1的大小.20.(本小题满分14分)如图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是BB 1、CD 的中点. (1)证明AD ⊥D 1F; (2)求AE 与D 1F 所成的角; (3)证明面AED ⊥面A 1FD 1;(4)111112ED A F V ED A F AA --=的体积,求三棱锥设.空间角和距离一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线m 与平面α间距离为d ,那么到m 与α距离都等于2d 的点的集合是 ( )A .一个平面B .一条直线C .两条直线D .空集2.异面直线a 、b 所成的角为θ,a 、b 与平面α都平行,b ⊥平面β,则直线a 与平面β所成的角 ( ) A .与θ相等 B .与θ互余 C .与θ互补 D .与θ不能相等.3.在正方体ABCD —A 'B 'C 'D '中,BC '与截面BB 'D 'D 所成的角为 ( )A .3π B .4π C .6πD .arctan24.在正方形SG 1G 2G 3中,E ,F 分别是G 1G 2及G 2G 3的中点,D 是EF 的中点,现在沿SE ,SF 及EF 把这个正方形折成一个四面体,使G 1,G 2,G 3三点重合,重合后的点记为G ,那么,在四面体S -EFG 中必有 ( ) A .SG ⊥△EFG 所在平面 B .SD ⊥△EFG 所在平面C .GF ⊥△SEF 所在平面D .GD ⊥△SEF 所在平面5.有一山坡,它的倾斜角为30°,山坡上有一条小路与斜坡底线成45°角,某人沿这条小路向上走了200米,则他升高了 ( ) A .1002米B .502米C .256米D .506米6.已知三棱锥D -ABC 的三个侧面与底面全等,且AB =AC =3,BC =2,则以BC 为棱,以面BCD 与面BCA 为面的二面角的大小为 ( )A .arccos 33B .arccos 31 C .2π D .32π7.正四面体A —BCD 中E 、F 分别是棱BC 和AD 之中点,则EF 和AB 所成的角 ( )A .45︒B .60︒C .90︒D .30︒8.把∠A =60°,边长为a 的菱形ABCD 沿对角线BD 折成60°的二面角,则AC 与BD 的距离为 ( )A .43a B .43 a C .23 a D .46a 9.若正三棱锥的侧面均为直角三角形,侧面与底面所成的角为α,则下列各等式中成立的是 ( )A .0<α<6π B .6π<α<4π C .4π<α<3π D .3π<α<2π10.已知A (1,1,1),B (-1,0 ,4),C (2 ,-2,3),则〈AB ,CA 〉的大小为( )A .6πB .65πC .3πD .32π二、填空题(本大题共4小题,每小题6分,共24分)11.从平面α外一点P 引斜线段PA 和PB ,它们与α分别成45︒和30︒角,则∠APB 的最大值是______最小值是_______12.∆ABC 中∠ACB=90︒,PA ⊥平面ABC ,PA=2,AC=2 3 ,则平面PBC 与平面PAC ,平面ABC 所成的二角的大小分别是______、_________. 13.在三棱锥P-ABC中,90=∠ABC ,30=∠BAC ,BC=5,又PA=PB=PC=AC,则点P到平面ABC的距离是 .14.球的半径为8,经过球面上一点作一个平面,使它与经过这点的半径成45°角,则这个平面截球的截面面积为 . 三、解答题(共计76分)15.(本小题满分12分)已知SA ⊥平面ABC ,SA=AB ,AB ⊥BC ,SB=BC ,E 是SC 的中点,DE ⊥SC 交AC 于D .(1) 求证:SC ⊥面BDE ;(2)求二面角E —BD —C 的大小. 16.(本小题满分12分)如图,点P 为斜三棱柱111C B A ABC -的侧棱1BB 上一点,1BB PM ⊥交1AA 于点M , 1BB PN ⊥交1CC 于点N .(1) 求证:MN CC ⊥1; (2) 在任意DEF ∆中有余弦定理:DFE EF DF EF DF DE ∠⋅-+=cos 2222.拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明. 17.(本小题满分12分)如图,四棱锥S —ABCD 的底面是边长为1的正方形, SD 垂直于底面ABCD ,SB=3. (1)求证BC ⊥SC ;(2)求面ASD 与面BSC 所成二面角的大小;(3)设棱SA 的中点为M ,求异面直线DM 与SB 所成角的大小.1AB=a,(如图一)将△ADC 18.(本小题满分12分)在直角梯形ABCD中,∠D=∠BAD=90︒,AD=DC=2沿AC折起,使D到D'.记面AC D'为α,面ABC为β.面BC D'为γ.(1)若二面角α-AC-β为直二面角(如图二),求二面角β-BC-γ的大小;(2)若二面角α-AC-β为60︒(如图三),求三棱锥D'-ABC的体积.19.(本小题满分14分)如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M是线段EF的中点.(1)求证AM//平面BDE;(2)求二面角A-DF-B的大小;(3)试在线段AC上确定一点P,使得PF与BC所成的角是60︒.20.(本题满分14分)如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直.点M 在AC 上移动,点N 在BF 上移动,若a BN CM ==)20(<<a .(1)求MN 的长;(2)当a 为何值时,MN 的长最小;(3)当MN 长最小时,求面MNA 与面MNB 所成的二面角α的大小.二 面 角二面角问题因其需要充分运用立体几何第一章的线线、线面、面面关系,具有综合性强,灵活性大的特点,因此,一直成为高考、会考的热点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点
知识点一平面图形各个部分都在同一个平面内。
常见的平面图形有点,线段,三角形,正方形,梯形,圆形,五边形等等。
立体图形各个部分不在同一个平面内。
常见的立体图形有长方体,正方体,棱柱,棱锥,球,圆锥等等。
知识点二几何体的三视图主视图左视图俯视图
三视图练习题
从正面看:
从侧面看:
从上面看:
2.指出图(1)、
图(2) 、图(3)是左边几何体从哪个方向看到的图形。
几何体
( )( )
( )
(3)
(2)
(1)
3.从正面、上面、左面看四棱锥,得到的3个图形是
A B C
4小明从正面观察下图所示的两个物体,看到的是()。
正面 A B C D 5我们从不同的方向观察同一物体时,可以看到不同的平面图形,如图,从左面看这个几何体是()
6某物体从不同方向看得到图所示的三个图形,那么该物体形状是()
A 、长方体;
B 、圆锥体;
C 、立方体;
D 、圆柱体.
知识点三 立体图形的平面展开图
同一个立体图形按不同的方式展开,得到的平现图形不一样的。
1小丽制作了一个对面图案均相同的正方体礼品盒(如图2所示),则这个正方体礼品盒的平面展开图可能是( )
.
2如图3,是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面, “程”表示下面.则“祝”、“你”、 “前”分别表示正方体的_________________. 3下列图形不是正方体展开图的是
( )
B
C
D
A
知识点4 点、线、面、体
(1)几何图形的组成
点:线和线相交的地方是点,它是几何图形最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
点动成线,线动成面,面动成体 (二)直线、射线、线段 1、基本概念
直线
射线
线段 图形 端点个数 无
一个
两个
表示法
直线a
直线AB (BA )
射线AB
线段a
线段AB (BA )
从正面看
从左面从上面
程
前 你 祝
似 锦
作法叙述
作直线AB ; 作直线a 作射线AB
作线段a ; 作线段AB ; 连接AB
延长叙述 不能延长
反向延长射线AB
延长线段AB ; 反向延长线段BA
例 1 植树时,只要定出 个树坑的位置,就能确定同一行树坑所在的直线,根据是 .
例2 下列关于作图的语句中正确的是( ) A.画直线AB=10厘米 B.画射线OB=10厘米 C.已知A 、B 、C 三点,过这三点画一条直线
D.过直线AB 外一点可以画无数条直线和已知直线相交 例3 如图1,线段AD 上有两点B 、C,图中共有______条线段.
43
2
1
(3)
C
B
A O E
D
(4)
C B
A
O E
D
(2)
C
B
A
O
E D
例4 轮船航行到C 处观测小岛A 的方向是北偏西48°,那么从A 同时观测轮船在C 处的方向是( ) A.南偏东48° B.东偏北48° C.东偏南48° D.南偏东42° 例5 射线AB 与射线BA 表示同一条射线.( ) 两点之间,直线最短.( ) 例6 如图,已知C 是AB 的中点,D 是AC 的中点,E 是BC 的中点.
(1)若AB=18cm,求DE 的长;(2)若CE=5cm,求DB 的长.
D C A
B
E
直线的性质,经过两点有一条直线,并且只有一条直线。
简单地,两点确定一条直线。
知识点5 线段的中点(二等分点)、三等分点、四等分点等 定义:把一条线段平均分成两条相等线段的点。
图形:
A M B
符号:若点M 是线段AB 的中点,则AM=BM=AB ,AB=2AM=2BM 。
线段的性质
两点的所有连线中,线段最短。
简单地:两点之间,线段最短。
两点的距离
连接两点的线段长度叫做两点的距离。
点与直线的位置关系
(1)点在直线上 (2)点在直线外。
线段AB=5cm,C 是直线AB 上的一点,BC=8cm,则AC=________. 角
角:由公共端点的两条射线所组成的图形叫做角。
角的分类 ∠β 锐角
直角
钝角
平角 周角 范围 0<∠β<90° ∠β=90° 90°<∠β<180°
∠β=180°
∠β=360°
角的平线线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线。
互余、互补
(1)若∠1+∠2=90°,则∠1与∠2互为余角。
其中∠1是∠2的余角,∠2是∠1的余角。
(2)若∠1+∠2=180°,则∠1与∠2互为补角。
其中∠1是∠2的补角,∠2是∠1的补角。
(3)余(补)角的性质:等角的补(余)角相等。
方向角 (1)正方向
(2)北(南)偏东(西)方向 (3)东(西)北(南)方
如图:∠AOC=
+
∠ BOC=∠BOD -
∠
=∠AOC -∠
若∠1∶∠2∶∠3∶∠4=1∶2∶3∶4,四个角的和为180°,则∠2=______;∠3=______;∠1与∠4互为 角。
如图:直线AB 和CD 相交于点O ,若
∠AOD=5∠AOC ,则∠BOC= 度。
如图,射线OA 的方向是:_______________;
射线OB 的方向是:_______________; 射线OC 的方向是:_______________;
如图,∠AOB 是直角,OD 平分∠BOC ,OE 平分∠AOC ,求∠EOD 的度数。
(10分)
、线段4 AB cm ,延长线段AB 到C ,使BC = 1cm ,再反向延长AB 到D ,使AD =3 cm ,E 是AD 中点,F 是CD 的中点,求EF 的长度。
(10分)
如图3-12,已知直线AB 和CD 相交于O 点,∠COE 是直角,OF 平分∠AOE, ∠COF=34°,求∠BOD
的度数.C B A
E
O
D
F。