一元二次方程根与系数关系(知识讲解)九年级数学上册基础知识讲与练
九年级数学一元二次方程的根与系数的关系

九年级数学一元二次方程的根与系数的关系一、一元二次方程的根与系数的关系在我们生活中,有很多问题都可以用一元二次方程来解决。
那么,什么是一元二次方程呢?简单来说,就是形如ax^2+bx+c=0的方程,其中a、b、c是已知的常数,x 是未知数。
而这个方程的解,就是我们要找的那个未知数x。
那么,如何求解这个方程呢?这就需要我们了解一元二次方程的根与系数的关系。
我们来看一下一元二次方程的一般形式:ax^2+bx+c=0。
在这个方程中,a、b、c 是已知的常数,而x是未知数。
我们的目标就是求出x的值。
为了实现这个目标,我们需要先了解一下一元二次方程的根与系数的关系。
二、一元二次方程的根与系数的关系1. 根的概念在一元二次方程中,x是未知数,而a、b、c是已知的常数。
我们的目标就是求出x的值。
为了实现这个目标,我们需要先了解一下根的概念。
根是指一个数与其对应的幂次相乘所得的结果等于原方程。
例如,对于方程ax^2+bx+c=0,它的两个根分别是:(1)当b^2-4ac≥0时,有两个实数根,分别为:x_1=(-b±√(b^2-4ac))/2ax_2=(-b±√(b^2-4ac))/2a(2)当b^2-4ac<0时,无实数根。
这里我们需要注意的是,当b^2-4ac<0时,方程没有实数根;而当b^2-4ac≥0时,方程有两个实数根。
这两个实数根分别称为一元二次方程的两个根。
2. 系数的概念在一元二次方程中,a、b、c是已知的常数。
它们分别表示了方程中各项的系数。
具体来说,a表示x^2项的系数,b表示x项的系数,c表示常数项的系数。
在求解一元二次方程时,我们需要关注这些系数之间的关系。
三、一元二次方程的解法及步骤在了解了一元二次方程的根与系数的关系之后,我们就可以运用这些知识来求解一元二次方程了。
下面我们来看一下求解一元二次方程的具体步骤:1. 我们需要判断方程是否有实数根。
根据前面我们学过的知识,当b^2-4ac≥0时,方程有实数根;而当b^2-4ac<0时,方程没有实数根。
一元二次方程的根与系数的关系-九年级数学上册(人教版)

归纳和判断的能力.
复习引入
人教版数学九年级上册
1.一元二次方程的一般形式是什么?
ax +bx +c 0 a 0
2
2.一元二次方程的求根公式是什么?
b b 2 4ac 2
x
b 4ac 0
2a
3.一元二次方程的根的情况怎样确定?
Δ 0 方程有两个不等的实数根;
a
互动新授
人教版数学九年级上册
因此,方程的两个根x1,x2和系数a,b,c有如下关系:
c
b
x1 x2 ,x1 x2 .
a
a
这表明任何一个一元二次方程的根与系数的关系为:两个
根的和等于一次项系数与二次项系数的比的相反数,两个根的
积等于常数项与二次项系数的比.
如果把上述方程ax2+bx+c=0(a≠0)
(3)方程化为x2-x-1=0. x1+x2=-(-1)=1,x1x2=-1.
(4)方程化为2x2-4x+1=0.
−
x1+x2=- =2,x1x2= .
拓展训练
人教版数学九年级上册
1.已知方程 + + + = 的两个实数根x1,x2,且
+ = ,求k的值.
思考 从因式分解法可知,方程(x-x1)(x-x2)=0(x1,x2为
已知数)的两根为x1和x2,将方程化为x2+px+q=0的形式,你能
看出x1,x2与p,q之间的关系吗?
把方程(x-x1)(x-x2)=0的左边展开,化成一般形式,
得方程
人教版数学九年级上册一元二次方程的根与系数的关系课件

课堂小结
若方程x2+px+q=0有两个实根x1,x2,则
x1+x2=-p, x1x2=q.
若方程ax2+bx+c=0(a≠0)的两个根分别为x1,x2,则
x1
x2
b a
,
x1 x2
c a
.
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
(2)当 Rt△ABC 为等腰直角三角形时,关于 x 的一元二次 方程 x2+kx+12=0 的两根相等,则Δ=k2-4×12=0,解得 k =±4 3 ,∵两直角边长的和为-k>0,∴k=-4 3 ,∴两 直角边长为 2 3 ,2 3 ,∴斜边长为 2 3 × 2 =2 6 , ∴Rt△ABC 的周长为 2 3 +2 3 +2 6 =4 3 +2 6
2.已知a,b是方程x2+3x-1=0的两根,则a2b+ab2的值是__3__.
3.已知关于x的一元二次方程x2-3x+k+1=0,它的两根之积 为-4,则k的值为( D ) A.-1 B.4 C.-4 D.-5
4.已知关于x的一元二次方程x2-6x+c=0有一个根为2,则另 一根为( C ) A.2 B.3 C.4 D.8
已知方程ax2+bx+c=0(a≠0),当b2-4ac≥0时,两根分
b b2 4ac
别为x1= 2a
b b2 4ac
,x2=
2a
ห้องสมุดไป่ตู้
b b2 4ac b b2 4ac 2b b
x1+x2=
2a
2a
2a a
。 ,
b b2 4ac b b2 4ac
•
2a
2a
(b)2 (b2 4ac) c
湘教版数学九年级上册一元二次方程根与系数的关系课件

谢谢!
知1-导
(2) 方程x2-5x+6=0的两个根分别为x1=______, x2 =______,
得x2-5x+6=(x-____)(x-____).
知1-讲
对于方程 a x2+b x+c=0 ( a≠0 ),当≥0时,该方程的根
识点
与它的系数之间有什么关系呢
?
解:当≥0时,设a x2+b x+c=0( a≠0) 的两个根为x1, x2,
与系数还有什么关系呢 ?
知1-导
知识点
1 一元二次方程根与系数的关系
(1) 先解方程,再填表:
方程
x2 -2x=0
x1
x2
0
2
x1+x2
x1 ·x2
x2 +3x-4=0
x2 -5x-6=0
由上表猜测:若方程 x2+bx+c =0的两根分别为x1,
x2,则:x1+x2=______,x1 ·x2=_______;
则 a x2+b x+c = a ( x-x1 ) ( x-x2 )
=a [x2-(x1+x2) x + x1x2],
b
c
a ( x x ),
a
a
b
c
于是 x 2 x =x 2 ( x1 + x2 ) x x1 x2 .
a
a
又 a x2+b x+c=
2
知1-讲
根据七年级上册教科书 2.5 节关于两个多项式相等
=- .
∴x1+x2= =
a
2
a
2
2
知1-讲
总 结
求一元二次方程两根之和或两根之积时,要把
方程化成一元二次方程的一般情势, 先确定方程有
人教版九年级数学上章节知识点深度解析 一元二次方程的根与系数的关系

则 x1+ x2=-2, x1·x2=- .
1
2
3
4
5
6
7
谢谢观看
Thank you for watching!
第二十一章
*21.2.4
一元二次方程
21.2 解一元二次方程
一元二次方程的根与系数的关系
要点归纳
知识要点
一元二次方程的根与系数的关系
根与系数的关系
x2+ px + q =0 x1+ x2= -p
公式 ax2+ bx + c =
0( a ≠0)
应用 应用前提
x1+ x2= -
x1·x2= q
)
D
A. x2-6 x +8=0
B. x2+2 x -3=0
C. x2- x -6=0
D. x2+ x -6=0
3. 已知 x1, x2是一元二次方程 x2+4 x -3=0的两个
实数根,则 x1+ x2- x1 x2的值是(
A. 6
B. 0
2
3
4
5
6
)
D. -1
C. 7
1
D
7
4. 已知关于 x 的一元二次方程 x2-6 x + c =0有一个根
x1·x2=
方程有实数根,即Δ= b2-4 应用
用 形式
≥
当堂检测
1. 已知 x1, x2是一元二次方程2 x2-4 x +1=0的两
个实数根,则 x1·x2等于(
)
C
A. -2
D. 2
1
2
3
4
5
6
7
2. 已知一元二次方程的两根分别是2和-3,则这个
一元二次方程的根与系数的关系(知识点考点)-九年级数学上册知识点考点(解析版)

一元二次方程的根与系数的关系(知识点考点一站到底)知识点☀笔记韦达定理:如一元二次方程20(0)ax bx c a ++=≠的两根为12,x x ,则12b x x a +=-,12c x x a⋅= 考点☀梳理考点1:韦达定理必备知识点:如一元二次方程20(0)ax bx c a ++=≠的两根为12,x x ,则12b x x a +=-,12c x x a⋅= 解题指导:适用题型:(1)已知一根求另一根及未知系数;(2)求与方程的根有关的代数式的值;(3)已知两根求作方程;(4)已知两数的和与积,求这两个数;(5)确定根的符号:(12,x x 是方程两根);(6)题目给出两根之间的关系,如两根互为相反数、互为倒数、两根的平方和或平方差是多少、两根是Rt ∆的两直角边求斜边等情况.注意:(1)韦达定理拓展公式 ①x 12+x 22=(x 1+x 2)2−2x 1∙x 2②1x 1+1x 2=x 2+x 1x 1∙x 2x 2x 1+x1x 2=x 12+x 22x 1∙x 2=(x 1+x 2)2−2x 1∙x 2x 1∙x 2③(x 1−x 2)2=(x 1+x 2)2−4x 1∙x 2④|x 1−x 2|=√(x 1+x 2)2−4x 1∙x 2 ;(2)①方程有两正根,则1212000x x x x ∆≥⎧⎪+>⎨⎪⋅>⎩;②方程有两负根,则1212000x x x x ∆≥⎧⎪+<⎨⎪⋅>⎩ ;③方程有一正一负两根,则120x x ∆>⎧⎨⋅<⎩;(3)应用韦达定理时,要确保一元二次方程有根,即一定要判断根的判别式是否非负;求作一元二次方程时,一般把所求作得方程的二次项系数设为1,即以12,x x 为根的一元二次方程为21212()0x x x x x x -++⋅=;求字母系数的值时,需使二次项系数0a ≠,同时满足∆≥0;求代数式的值,常用整体思想,把所求代数式变形成为含有两根之和12x x +,•两根之积12x x ⋅的代数式的形式,整体代入。
九年级数学上册知识点---- 一元二次方程的根与系数的关系

x1
x2
b a
x1 gx2
c a
证一证:
x1 x2 b
b2 4ac b 2a
b2 4ac 2a
b b2 4ac b b2 4ac 2a
2b 2a
b . a
x1 x2 b
b2 4ac b 2a
b2 4ac 2a
b2 b2 4ac
4a2
4ac 4a2
倒数和.
解:根据根与系数的关系可知:
x1
x2
3 2
, x1
x2
1 2
.
1∵ x1
x2 2
x12
2 x1 x2
x
2 2
,
x12 x22 x1 x2 2 2 x1x2
3 2
2
2
1 2
13 4
;
2
1 x1
1 x2
x1 x2 x1 x2
3 2
1 2
3.
练一练
设x1, x2为方程x2-4x+1=0的两个根,则: (1)x1+x2= 4 , (2)x1·x2= 1 ,
3
x1 + x2 = 2 , x1 x2 = -1 .
例2 已知方程5x2+kx-6=0的一个根是2,求它的另一个 根及k的值.
解:设方程的两个根分别是x1、x2,其中x1=2 .
所以:x1
·
x2=2x2=
6 5
,
即:x2=
3 5
.
由于x1+x2=2+
(
3) 5
= k ,
5
得:k=-7.
答:方程的另一个根是
3 5
,k=-7.
变式:已知方程3x2-18x+m=0的一个根是1,求它 的另一个根及m的值.
4一元二次方程根的判别式及根与系数的关系(讲+练)

21.2 一元二次方程根的判别式及根与系数的关系一元二次方程根的判别式一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即(1)当△>0时,一元二次方程有2个不相等的实数根;(2)当△=0时,一元二次方程有2个相等的实数根; (3)当△<0时,一元二次方程没有实数根.题型1:利用判别式判断一元二次方程根的情况1.下列方程有两个相等的实数根的是( )A .x 2﹣2x+1=0B .x 2﹣3x+2=0C .x 2﹣2x+3=0D .x 2﹣9=0)0(02≠=++a c bx ax ac b 42-)0(02≠=++a c bx ax ∆ac b 42-=∆2.已知:关于x的一元二次方程x2+kx﹣1=0,求证:方程有两个不相等的实数根.题型3:求一元二次方程两根的和与积3.若x1,x2是一元二次方程x2−5x+6=0的两个根,则x1+x2,x1x2的值分别是()A.1和6B.5和-6C.-5和6D.5和6; .题型4:已知一根求另一根或字母的值4.关于x 的方程x²+mx +6=0的一个根为-2,则另一个根是( )A .-3B .-6C .3D .6的一个根,求方程的另一个根及. 22x x +121(x x x =+2212x x x +1(x =22|x 2(|x x =题型5:利用根与系数的关系构造方程5.如果关于x的一元二次方程x2+px+q=0的两根分别为x1=3,x2=1,那么这个一元二次方程是()A.x2+3x+4=0B.x2+4x−3=0C.x2−4x+3=0D.x2+3x−4=0题型6:求涉根代数式的值6.若一元二次方程x2−2x=1的两个实数根分别为x1,x2,求(x1−1)(x2−1)的值.题型7:根与系数的关系与三角形综合7.一个三角形的两边为方程2x2−kx+8=0的两根,第三边长为4,则k的范围是()题型8:根与系数中的新定义问题8.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c一、单选题1.已知关于x的一元二次方程2x2+mx﹣3=0的一个根是﹣1,则另一个根是()A.1B.﹣1C.32D.−32 2.关于x的一元二次方程x2+bx+c=0的两个实数根分别为2和﹣3,则()A.b=1,c=﹣6B.b=﹣1,c=﹣6C.b=5,c=﹣6D.b=﹣1,c=63.一元二次方程x2-5x+6=0的两根分别是x1、x2,则x1+x2等于() A.5B.6C.-5D.-64.已知关于x的一元二次方程x2+(2m﹣3)x+m2=0的两个不相等的实数根α,β满足1α+1β=1,则m的值为()A.﹣3B.1 C.﹣3 或1D.2 5.已知a、b满足a2﹣6a+2=0,b2﹣6b+2=0,则b a+a b=()A.﹣6B.2C.16D.16或2 6.已知x1、x2是一元二次方程x2﹣3x+2=0的两个实根,则x1+x2等于()A.﹣3B.3C.﹣2D.2二、填空题7.二次项系数为2的一元二次方程的两个根分别是1 −√3和1 +√3,那么这个方程是.8.已知一元二次方程x2 -5x-1=0的两根为x1,x2,则x1+x2= .9.已知方程x2+2x-1=0 的两根分别为x1,x2,则x1+x2=.10.已知一元二次方程x2﹣6x﹣5=0的两根为a、b,则1a+1b的值是.11.方程x2+2x−3=0的两根为x1、x2则x1⋅x2的值为.三、解答题12.已知方程关于x的一元二次方程3x2+5x-4k=0的一个根是-2,求k和方程另一个根a的值.13.已知方程2x2+3x-4=0的两实数根为x1、x2,不解方程求:(1)x12+x22的值;(2)(x1-2)(x2-2) 的值四、综合题14.已知关于x的一元二次方程x2﹣6x+2m+1=0有实数根.(1)求实数m的取值范围;(2)若方程的两个实数根为x1,x2,且x1x2+x1+x2=15,求m的值.15.已知关于x的一元二次方程x2−2x+k−1=0.(1)若此方程有两个不相等的实数根,求实数k的取值范围;(2)已知x=3是此方程的一个根,求方程的另一个根及k的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题2.14 一元二次方程根与系数关系(知识讲解)【学习目标】掌握一元二次方程的根与系数的关系以及在各类问题中的运用. 【要点梳理】一元二次方程的根与系数的关系 1.一元二次方程的根与系数的关系如果一元二次方程的两个实数根是, 那么,. 注意它的使用条件为a ≠0, Δ≥0.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.2. 一元二次方程的根与系数的关系的应用⎧⎪⎪⎪→→⎨⎪⎪⎪⎩知识框图:1、求代数式的值2、求待定系数一元二次方程求根公式根与系数关系应用3、构造方程4、解特殊的二元二次方程组5、二次三项式的因式分解【典型例题】类型一、由根与系数关系直接求值1.已知x 1,x 2是一元二次方程x 2-3x -1=0的两根,不解方程求下列各式的值:(1)2211+x x (2)1211+x x 【答案】(1)11;(2) -3. 【分析】由一元二次方程的根与系数的关系可得12123,1x x x x +=⋅=-;(1)将所求式子变形为(x 1+x 2)2-2x 1x 2 ,然后整体代入上面两个式子计算即可; (2)将所求式子变形为1212x x x x +⋅,然后整体代入上面两个式子计算即可.解:∵x 1,x 2是一元二次方程x 2-3x -1=0的两根,∵12123,1x x x x +=⋅=-,(1)2211+x x = (x 1+x 2)2-2x 1x 2 =32-2×(-1)=11;)0(02≠=++a c bx ax 21x x ,a b x x -=+21ac x x =21(2)12121211331x x x x x x ++===-⋅-. 【点拨】本题考查了一元二次方程的根与系数的关系,属于基本题目,熟练掌握一元二次方程的两根之和与两根之积与系数的关系是解题关键.举一反三:【变式1】利用根与系数的关系,求下列方程的两根之和、两根之积: (1)2760x x ++=; (2)22320x x --=.【答案】(1)12127,6x x x x +=-=;(2)12123,12x x x x +==-【分析】直接运用一元二次方程根与系数的关系求解即可. 解:(1)这里1,7,6a b c ===.22Δ474164924250b ac =-=-⨯⨯=-=>,∵方程有两个实数根. 设方程的两个实数根是12,x x , 那么12127,6x x x x +=-=. (2)这里2,3,2a b c ==-=-.22Δ4(3)42(2)916250b ac =-=--⨯⨯-=+=>,∵方程有两个实数根.设方程的两个实数根是12,x x ,那么12123,12x x x x +==-.【点拨】本题考查了一元二次方程根与系数的关系,熟知1212,b cx x x x a a+=-=是解题的关键.【变式2】 甲、乙两人同解一个二次项系数为1的一元二次方程,甲抄错了常数项,解得两根分别为3和2,乙抄错了一次项系数,解得两根分别为-5和-1,求原来的方程.【答案】2550x x -+= 【分析】解法一:利用甲乙解出的根,可以得出两个一元二次方程,取甲方程的一次项系数,取乙方程的常数项,即可重新组合出原来正确的方程.解法二:利用根与系数的关系,取甲方程的一次项系数,取乙方程的常数项,即可重新组合出原来正确的方程.解:解法一:设原一元二次方程为2+a b 0+=x x ,代入甲解出的两根3、2得9+3a+b=04+2a+b=0⎧⎨⎩,解得a=5b=6-⎧⎨⎩,因为甲抄错常数项,所以取a=5-同理,代入乙解出的两根-5和-1,可得a=6b=5⎧⎨⎩,而乙抄错了常数项,所以取b=5,综上可得原方程为2550x x -+=解法二:甲抄错常数项,解得两个为3和2,两根之和正确;乙抄错了一次项系数,解得两根为-5和-1,则两根之积正确.设原方程的两根分别为1x 、2x ,可得12+=5x x ,12=5x x ,所以原方程就是2550x x -+=.【点拨】在没有学习根与系数关系之前,可用方程的解的性质,代入两根求出方程系数,学习之后可直接利用根与系数关系得出方程系数,更为简单.类型二、由根与系数关系求参数的值2.关于x 的一元二次方程22(21)0x m x m --+=的两根为,a b ,且4a b ab +=-,求m 的值.嘉佳的解题过程如下: 解:221,a b m ab m +=-=,2214m m ∴-=-, 整理,得2230m m --=, 解得121,3m m =-=.嘉佳的解题过程漏了考虑哪个条件?请写出正确的解题过程. 【答案】m 的值为1-. 【分析】根据一元二次方程根的判别式结合根与系数的关系解答.解:嘉佳的解题过程漏了考虑0∆这一条件.正确的解题过程如下:根据题意得22(21)40m m ∆=--,解得14m. 221,a b m ab m +=-=,2214m m ∴-=-,整理得2230m m --=,解得121,3m m =-=(舍去), m ∴的值为1-.【点拨】本题中忽略0∆这一条件导致错解针对这一类题,我们一定要看清题目中所给的条件,考虑一元二次方程有解的条件是“0∆”,才能得出正确结果.举一反三:【变式1】已知1x 、2x 是方程2220x kx k k -+-=的两个实根,是否存在常数k ,使122132x x x x +=成立?若存在,请求出k 的值;若不存在,请说明理由. 【答案】不存在.理由见分析【分析】根据根与系数关系列出关于k 的方程,根据方程有实数根列出关于k 的不等式,求解即可.解:不存在.∵1x 、2x 是方程2220x kx k k -+-=的两个实根, ∵240b ac -≥,即22(2)4()0k k k ---≥, 解得,0k ≥;由题意可知122x x k +=,212x x k k =-,∵12121212122221122()232x x x x x x x x x x x x x x +=+-=+=, ∵222(2)32)2(k k k k k --=-,解得120,7k k ==-,经检验,27k =-是原方程的解,∵0k ≥,∵不存在常数k ,使122132x x x x +=成立. 【点拨】本题考查了一元二次方程根与系数关系和解方程,解题关键是根据根与系数关系列出方程并求解,注意:根的判别式要大于或等于0.【变式2】 已知方程2 420x x m +-=的一个根比另一个根小4,求这两个根和m 的值.【答案】10x =,24x =-,0m =【分析】设两根为x 1和x 2,根据根与系数的关系得x 1+x 2,x 1·x 2,由|x 2-x 1|=4两边平方,得(x 1+x 2)2-4x 1·x 2=16,代入解得m ,此时方程为x 2+4x=0,解出两根 .解:x 2+4x -2m=0设两根为x 1和x 2,则∵=16+8m>0, 且x 1+x 2=-4,x 1·x 2=-2m 由于|x 2-x 1|=4两边平方得x 12-2x 1·x 2+x 22=16 即(x 1+x 2)2-4x 1·x 2=16 所以16+8m=16 解得:m=0此时方程为x 2+4x=0, 解得 x 1=0 , x 2=−4 .【点拨】本题考查一元二次方程的根与系数的关系,解题的关键是灵活利用一元二次方程根与系数的关系,以及完全平方公式进行变形,求出两根.类型三、根的判断别与根与系数关系综合3、已知一元二次方程220x x m -+=. (1)若方程有两个实数根,求m 的范围;(2)若方程的两个实数根为12x x 、,且1233x x +=,求m 的值. 【答案】(1)1m ≤;(2)34m = 【分析】(1)一元二次方程220x x m -+=有两个实数根,∵≥0,把系数代入可求m 的范围; (2)利用根与系数的关系,已知122x x +=结合1233x x +=,先求12x x 、,再求m . 解:(1)∵方程220x x m -+=有两个实数根,∵()22424440b ac m m =-=--=-≥, 解得1m ≤;(2)由根与系数的关系可知,122x x +=,12x x m =,解方程组1212233x x x x +=⎧⎨+=⎩,解得123212x x ⎧=⎪⎪⎨⎪=⎪⎩,∵12313224m x x ==⨯=.【点拨】本题考查了一元二次方程根的判别式以及根与系数的关系,熟练掌握根的判别式、根与系数的关系是解题的关键.【变式1】已知关于x 的一元二次方程2(8)80x k x k -++=. (1)证明:无论k 取任何实数,方程总有实数根.(2)若221268x x +=,求k 的值.(3)若等腰三角形的一边长为5,另两边长恰好是这个方程的两个根,求这个等腰三角形的周长.【答案】(1)证明见分析;(2)2k =±;(3)这个等腰三角形的周长为21或18. 【分析】(1)根据根的判别式即可得到结论;(2)先计算∵=(8+k )2−4×8k ,整理得到∵=(k−8)2,根据非负数的性质得到∵≥0,然后根据∵的意义即可得到结论;(3)先解出原方程的解为x 1=k ,x 2=8,然后分类讨论:腰长为8时,则k =8;当底边为8时,则得到k =5,然后分别计算三角形的周长.解:(1)22(8)48(8)k k k ∆=+-⨯=-.2(8)0k -,0∴∆,∴无论k 取任何实数,方程总有实数根;(2)221212128,8,68x x k x x k x x +=+=+=,()2221212122x x x x x x +=++,2(8)6816k k ∴+=+,解得2k =±;(3)解方程2(8)80x k x k -++=得12,8x k x ==.∵当腰长为8时,8k . 85138+=>,能构成三角形,∴周长为88521++=.∵当底边长为8时,5k =.55108+=>∴能构成三角形,周长为55818++=.综上,这个等腰三角形的周长为21或18.【点拨】本题考查了一元二次方程ax 2+bx +c =0(a≠0)的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2=−b a ,x 1•x 2=ca.也考查了一元二次方程的判别式和等腰三角形的性质,掌握这些知识点是解题关键.【变式2】 已知关于x 的一元二次方程()22121202x k x k -++-=.(1)求证:无论k 为何实数,方程总有两个不相等的实数根; (2)若方程的两个实数根1x ,2x 满足123x x -=,求k 的值. 【答案】(1)见分析 (2)0,-2 【分析】(1)根据根的判别式即可求证出答案;(2)可以根据一元二次方程根与系数的关系得k 与的1x 、2x 的关系式,进一步可以求出答案.解:(1)证明:∵()222121422492k k k k ⎛⎫∆=+-⨯-=++ ⎪⎝⎭()2217k =++,∵无论k 为何实数,()2210k +≥, ∵()22170k +∆=+>,∵无论k 为何实数,方程总有两个不相等的实数根;(2)由一元二次方程根与系数的关系得: 1221x x k +=+,212122x x k =-, ∵123x x -=, ∵()2129x x -=, ∵()2121249x x x x +-=,∵()221214292k k ⎛⎫+-⨯-= ⎪⎝⎭,化简得:220k k +=,解得0k =,2-.【点拨】本题主要考查根的判别式和根与系数的关系,熟练掌握概念和运算技巧即可解题.类型四、根与系数关系拓展应用14、已知m ,n 是方程x 2﹣2x ﹣1=0的两个根,是否存在实数a 使﹣(m +n )(7m 2﹣14m +a )(3n 2﹣6n ﹣7)的值等于8?若存在,求出a 的值;若不存在,请说明理由.【答案】存在,a =-6 【分析】根据方程的解的定义得出m 2-2m =1,n 2-2n =1,m +n =2,再整体代入即可得出a 的值. 解:存在,理由如下:∵m ,n 是方程x 2﹣2x ﹣1=0的两个根, ∵m 2﹣2m =1,n 2﹣2n =1,m +n =2, ∵﹣(m +n )(7m 2﹣14m +a )(3n 2﹣6n ﹣7) =﹣(m +n )[7(m 2﹣2m )+a ][3(n 2﹣2n )﹣7] =﹣2×(7+a )(3﹣7) =8(7+a ),由8(7+a )=8得a =﹣6,∵存在实数a =﹣6,使﹣(m +n )(7m 2﹣14m +a )(3n 2﹣6n ﹣7)的值等于8. 【点拨】本题考查了一元二次方程的解、根与系数的关系,解题的关键是得出m 2-2m =1,n 2-2n =1,m +n =2,注意解题中的整体代入思想.【变式1】阅读材料:已知方程p 2﹣p ﹣1=0,1﹣q ﹣q 2=0且pq ≠1,求1pq q+的值. 解:由p 2﹣p ﹣1=0,及1﹣q ﹣q 2=0可知p ≠0, 又∵pq ≠1,∵p ≠1q.∵1﹣q ﹣q 2=0可变形为211()-q q ﹣1=0,根据p 2﹣p ﹣1=0和211()-q q﹣1=0的特征,∵p 、1q 是方程x 2﹣x ﹣1=0的两个不相等的实数根,则p +1q,即11pq q +=. 根据阅读材料所提供的方法,完成下面的解答. 已知:2m 2﹣5m ﹣1=0,21520n n+-=,且m ≠n ,求: (1)mn 的值; (2)2211m n +. 【答案】(1)12-;29.【分析】(1)由题意可知:可以将方程22510m m --=化简为21520m m+-=的形式,根据根与系数的关系直接得:11m n的值; (2)将2211m n +变形为2112m n mn ⎛⎫=+- ⎪⎝⎭求解.解:由22m 5m 10--=知m≠0,∵21520m m+-=, ∵21520n n+-=,m ≠n , ∵11m n≠, ∵1m 和1n是方程2520x x +-=的两个根, (1)由1m 和1n 是方程2520x x +-=的两个根得112m n⋅=-, ∵12mn =-;经检验:12mn =-是原方程的根,且符合题意.(2)由1m和1n是方程2520x x+-=的两个根得115m n+=-,112m n⋅=-,∵2221111225429 m n m n mn⎛⎫+=+-=+=⎪⎝⎭.【点拨】本题考查一元二次方程根与系数关系,代数式的值,乘法公式,掌握一元二次方程根与系数关系与乘法公式恒等变形是解题关键.【变式2】定义:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根为x1,x2(x1<x2),分别以x1,x2为横坐标和纵坐标得到点M(x1,x2),则称点M为该一元二次方程的衍生点.(1)若方程为x2﹣2x=0,写出该方程的衍生点M的坐标.(2)若关于x的一元二次方程x2﹣(2m+1)x+2m=0(m<0)的衍生点为M,过点M向x轴和y轴作垂线,两条垂线与坐标轴恰好围成一个正方形,求m的值.(3)是否存在b,c,使得不论k(k≠0)为何值,关于x的方程x2+bx+c=0的衍生点M始终在直线y=kx﹣2(k﹣2)的图象上,若有请直接写出b,c的值,若没有说明理由.【答案】(1)衍生点为M(0,2);(2)12-;(3)存在,b=﹣6,c=8;【分析】(1)求出方程的两根,根据一元二次方程的衍生点即可解决问题;(2)求出方程的两根,根据一元二次方程的衍生点的定义,再利用正方形的性质构建方程即可解决问题;(3)求出定点,利用根与系数的关系解决问题即可;解:(1)∵x2﹣2x=0,∵x(x﹣2)=0,解得:x1=0,x2=2故方程x2﹣2x=0的衍生点为M(0,2).(2)x2﹣(2m+1)x+2m=0(m<0)∵m<0∵2m<0解得:x1=2m,x2=1,方程x2﹣(2m+1)x+2m=0(m<0)的衍生点为M(2m,1).点M在第二象限内且纵坐标为1,由于过点M向两坐标轴做垂线,两条垂线与x 轴y轴恰好围城一个正方形,所以2m =﹣1,解得12m =-.(3)存在.直线y =kx ﹣2(k ﹣2)=k (x ﹣2)+4,过定点M (2,4), ∵x 2+bx+c =0两个根为x 1=2,x 2=4, ∵2+4=﹣b ,2×4=c , ∵b =﹣6,c =8.【点拨】本题考查一元二次方程的解法及根与系数的关系、正方形的性质等知识,解题的关键是理解题意,学会用转化的思想思考问题.类型五、根与系数关系拓展应用25、如图,在平面直角坐标系中,∵ABC 的BC 边与x 轴重合,顶点A 在y 轴的正半轴上,线段OB ,OC (OB OC <)的长是关于x 的方程2760x x -+=的两个根,且满足CO =2AO .(1)求直线AC 的解析式;(2)若P 为直线AC 上一个动点,过点P 作PD ∵x 轴,垂足为D ,PD 与直线AB 交于点Q ,设∵CPQ 的面积为S (0S ≠),点P 的横坐标为a ,求S 与a 的函数关系式;(3)点M 的坐标为()m,2,当∵MAB 为直角三角形时,直接写出m 的值.【答案】(1)132y x =+; (2)22721,6042721,6042a a a a S a a a ⎧+-⎪⎪=⎨⎪---<<⎪⎩或;(3)m 的值为-3或-1或2或7;【分析】(1)根据一元二次方程的解求出OB 和OC 的长度,然后得到点B ,点C 坐标和OA 的长度,进而得到点A 坐标,最后使用待定系数法即可求出直线AC 的解析式;(2)根据点A ,点B 坐标使用待定系数法求出直线AB 的解析式,根据直线AB 解析式和直线AC 解析式求出点P ,Q ,D 坐标,进而求出PQ 和CD 的长度,然后根据三角形面积公式求出S ,最后对a 的值进行分类讨论即可;(3)根据∵MAB 的直角顶点进行分类讨论,然后根据勾股定理求解即可.(1)解:解方程2760x x -+=得16x =,21x =,∵线段OB ,OC (OB OC <)的长是关于x 的方程2760x x -+=的两个根,∵OB =1,OC =6,∵()10B ,,()6,0C -, ∵CO =2AO ,∵OA =3,∵()0,3A ,设直线AC 的解析式为()0y kx b k =+≠,把点()0,3A ,()6,0C -代入得603k b b -+=⎧⎨=⎩, 解得123k b ⎧=⎪⎨⎪=⎩, ∵直线AC 的解析式为132y x =+; (2)解:设直线AB 的解析式为y =px +q ,把()0,3A ,()10B ,代入直线AB 解析式得30q p q=⎧⎨=+⎩, 解得33p q =-⎧⎨=⎩, ∵直线AB 的解析式为33y x =-+,∵PD ∵x 轴,垂足为D ,PD 与直线AB 交于点Q ,点P 的横坐标为a , ∵1,32P a a ⎛⎫+ ⎪⎝⎭,(),33Q a a -+,(),0D a , ∵()1733322PQ a a a ⎛⎫=-+-+= ⎪⎝⎭,6CD a =+, ∵1176222S PQ CD a a =⋅=⨯⋅+,当点P 与点A 或点C 重合时,即当a =0或6a =-时,此时S =0,不符合题意,当6a <-时,()21772162242S a a a a ⎛⎫⎡⎤=⨯--+=+ ⎪⎣⎦⎝⎭, 当60a -<<时,()21772162242S a a a a ⎛⎫=⨯-+=-- ⎪⎝⎭, 当0a >时,()21772162242S a a a a =⨯+=+, ∵22721,6042721,6042a a a a S a a a ⎧+-⎪⎪=⎨⎪---<<⎪⎩或; (3)解:∵()0,3A ,()10B ,,(),2M m , ∵AB ==AM ==,BM =当∵MAB =90°时,222AM AB BM +=,∵222+=, 解得3m =-,当∵ABM =90°时,222AB BM AM+=,∵222+=, 解得m =7, 当∵AMB =90°时,222AM BM AB +=,∵222+=, 解得11m =-,22m =,∵m 的值为-3或-1或2或7.【点拨】本题考查解一元二次方程、待定系数法求一次函数解析式、三角形面积公式、勾股定理,正确应用分类讨论思想是解题关键.【变式1】PAC △在平面直角坐标系中的位置如图所示,AP 与y 轴交于点(0,2)B ,点P 的坐标为(1,3)-,线段OA ,OC 的长分别是方程29140x x -+=的两根,OC OA >.(1)求线段AC 的长;(2)动点D 从点O 出发,以每秒1个单位长度的速度沿x 轴负半轴向终点C 运动,过点D 作直线l 与x 轴垂直,设点D 运动的时间为t 秒,直线l 扫过四边形OBPC 的面积为S ,求S 与t 的关系式;(3)M 为直线l 上一点,在平面内是否存在点N ,使以A ,P ,M ,N 为顶点的四边形为正方形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.【答案】(1)9 (2)()()221201217317424t t t S t t t ⎧+<≤⎪⎪=⎨⎪-+-<≤⎪⎩ (3)存在满足条件的N 点,其坐标为(2,3)或(-4,0)或(-1,-3).【分析】(1)解方程可求得OA 、OC 的长,则可求得A 、C 的坐标,从而可得AC 长;(2)分两种情况:∵当0<t ≤1时;∵当1<t ≤7时,利用梯形的面积公式即可求解; (3)分两种情况:∵AP 为正方形的对角线时,∵AP 为正方形的边时,根据正方形以及等腰直角三角形的性质,可求得N 点坐标.(1)解:解方程x 2﹣9x +14=0可得x =2或x =7,∵线段OA ,OC 的长分别是方程x 2﹣9x +14=0的两根,且OC >OA ,∵OA =2,OC =7,∵A (2,0),C (﹣7,0),279.AC(2) 解:过点P 作PH ∵OC 于H ,而()1,3P - ,1OH ∴=,3PH = ,6CH =设直线AB 解析式为y =kx +b ,而点B (0,2),∵32k b b -+=⎧⎨=⎩, 解得12k b =-⎧⎨=⎩, ∵直线AB 解析式为y =﹣x +2,∵如图1所示,当0<t ≤1时,点E (﹣t ,t +2),∵S =S 梯形OBED =21122222t t t t (0<t ≤1); ∵如图2所示,当1<t ≤7时,设直线CP 解析式为y =mx +n ,∵C (﹣7,0),点P 的坐标为(﹣1,3),∵703m n m n -+=⎧⎨-+=⎩ ,解得1272m n ⎧=⎪⎪⎨⎪=⎪⎩, ∵直线CP 解析式为1722y x =+, 设17,22E t t , ∵DE =1722t , ∵S =S 梯形OBPH +S 梯形HPED =11172+31+132222t t 217317424t t t ;综上,()()221201217317424t t t S t t t ⎧+<≤⎪⎪=⎨⎪-+-<≤⎪⎩;图1 图2(3) 分两种情况:∵AP 为正方形的对角线时,如图3所示,∵A (2,0),B (0,2),∵∵OAB =45°,∵四边形AMPN 是正方形,∵∵P AN =45°,∵NAM =90°,∵∵OAB +∵P AN =90°,∵点M 在x 轴上,NA ∵x 轴,NP x ∥轴,∵N (2,3);∵AP 为正方形的边时,如图4所示,∵∵OAB =45°,四边形AMNP 是正方形,∵∵NAM =∵OAB =45°,AP =AM ,∵HN =PH =3,∵N (-4,0);如图5所示,四边形ANMP 是正方形,∵PH =NH =3,∵()1,3N --;∵N (-4,0)或(-1,-3),综上可知,存在满足条件的N 点,其坐标为(2,3)或(-4,0)或(-1,-3).图3 图4 图5【点拨】本题为四边形的综合题,考查了一元二次方程、勾股定理、待定系数法、正方形的性质、等腰直角三角形的性质等知识.在(1)中求得OA 、OC 的长是解题的关键,在(2)中分类讨论是解题的关键,在(3)中分类思想的运用是解题的关键.本题考查知识点较多,综合性较强,难度适中.【变式2】 菱形ABCD 的边长为5,两条对角线AC 、BD 相交于O 点,且AO ,BO 的长分别是关于x 的方程22(21)30x m x m +-++=的两根,求m 的值.【答案】3m =-.【分析】由题意可知:菱形ABCD 的边长是5,则AO 2+BO 2=25,则再根据根与系数的关系可得:AO +BO =−(2m −1),AO ∙BO =m 2+3;代入AO 2+BO 2中,得到关于m 的方程后,即可求得m 的值.解:∵AO ,BO 的长分别是关于x 的方程22(21)30x m x m +-++=的两根,设方程的两根为1x 和2x ,可令1OA x =,2OB x =,∵四边形ABCD 是菱形,∵AC BD ⊥,在Rt AOB 中:由勾股定理得:222OA OB AB +=,∵222125+=x x ,则()21212225x x x x +-=,由根与系数的关系得:12(21)x x m +=--,2123x x m ⋅=+,∵[]()22(21)2325m m ---+=, 整理得:22150m m --=,解得:15m =,23m =-又∵0∆>,∵()22(21)430--+>m m ,解得114m <-, ∵3m =-.【点拨】此题主要考查了菱形的性质、勾股定理、以及根与系数的关系,将菱形的性质与一元二次方程根与系数的关系,以及代数式变形相结合解题是一种经常使用的解题方法.。