灰色系统预测模型GM

合集下载

基于GM_(0,n)灰色预测模型的构造预测及定量评价

基于GM_(0,n)灰色预测模型的构造预测及定量评价

的预测评价结果,基于对井田构造发育规律的充分
分析,选取最优评价指标,结合灰色模糊综合评价
和灰色系统建模的方法对井田未采区域地质构造的
复杂程度进行了量化研究和综合评价.
1 井田概况
芦岭井田位于宿东向斜西南翼的东南段,含煤
地层为石炭、二叠系,主采 8# 、9# 、10# 煤层.斜
切断层在井田 内 较 为 发 育,走 向 以 NNE、NE 向 为
度.
(
3)
(
2)断层强度 (
F).它反映断裂构造的发育程
t
2 定量评价指标的确定
作为定量评价地质构造复杂程度的基础,评价
指标的确定直接关系到评价结果的准确性.鉴于不
同区域不同井田多 样 化 的 构 造 条 件 以 及 开 采 方 式、
生产机械化程度的差异,统一的指标体系套用是不
可取的,必须与矿井实际情况紧密结合.在此基础
va
l
ua
t
i
onc
r
i
t
e
r
i
ao
ft
hege
o
l
og
i
c
a
ls
t
r
uc
t
u
r
ec
omp
l
ex
i
t
ft
hemi
neda
r
e
awe
r
ee
s
t
ab

yo
l
i
shedbyus
i
ngt
heg
r
eyf
u
z
z
va
l
ua
t
i
onme

灰色系统GM(1,1)预测模型

灰色系统GM(1,1)预测模型

5.1.2 灰色系统GM(1,1)预测模型GM(1,1)模型的建立由于统计数据信息不完整,故有部分日用水量数据和70%以上的水厂日供水量数据采用曲线拟合法进行回归分析不能得到令人满意的结果,所以我们考虑用对信息质量要求不高的灰色系统分析法进行预测,建立GM(1,1)模型。

记)),(),...2(),1((n x x x x =其中)(i x 表示第i 年数值。

Step1:令)0(x 为GM (1,1)建模序列,表示灰导数(0)(0)(0)(0)((1),(2),...,())x x x x n =其中)()()0(k x k x =,...3,2,1=kStep2:令)1(x 为)0(x 的AGO 序列,对)0(x 作累加生成,即得到新的序列)1(x ,(1)(1)(1)(1)((1),(2),...,())x x x x n =(1)(0)(1)(1)x x =(1)(0)1()()km x k x m ==∑Step3:令)1(z 为)1(x 的均值(MEAN )序列,表示白化背景值(1)(1)(1)()0.5()0.5(1)z k x k x k =+- (5.9)(1)(1)(1)(1)((2),(3),...,())z z z z n =则得到GM(1,1)的灰微分方程模型为b k az k x =+)()()1()0( (5.10)式中:b a 、为待估计参数,分别称为发展灰度和内生控制灰度。

其中,∑∑∑∑∑∑∑∑∑∑∑===========---=----=n k nk n k n k n k n k n k n k n k n k n k k z k z n k x k z k z k z k z b k z k z n k x k z n k x k z a 222)1(2)1(22)0(22)1()1(2)1()1(222)1(2)1(2)0()1(22)0()1())(()()1()()()()()(;))(()()1()()()1()()( 经变换后得到)()()1()0(k az b k x -= (5.11)GM(1,1)模型的求解在(5.11)两端同时乘以ak e 得,(0)(1)()()ak ak ak e x k e az k e b +=即(1)()()ak ak t z k e be d C -=+⎰ ak b Ce a-=+ 将代入上式中,可得0(1)b C x a=- 于是得出时间函数(1)(1)x k +的估计值(1)0ˆ(1)[(1)]ak b b x k x e a a-+=-+ (5.12) 我们把上式(5.12)作为预测方程。

灰色预测GM模型实现过程

灰色预测GM模型实现过程

灰色预测GM模型实现过程灰色预测GM(1,1)模型是一种基于灰色系统理论的预测模型,广泛应用于各个领域的预测和决策中。

该模型通过对原始序列进行累加、一次指数平滑运算,从而建立灰色微分方程,并利用该方程进行预测。

下面将详细介绍GM(1,1)模型的实现过程。

GM(1,1)模型的基本思想是将原始数据序列进行累加,然后进行一次指数平滑运算,得到一次累加生成序列的差分方程,建立灰色微分方程。

具体实现过程如下:1.数据序列的累加:将原始数据序列进行累加,得到累加序列。

累加操作可以使数据序列趋于线性。

2.累加序列的一次指数平滑:对累加序列进行一次指数平滑运算,得到平滑累加序列。

一次指数平滑可以使得序列的趋势更加明显。

3.灰色微分方程的建立:根据平滑累加序列可以建立灰色微分方程。

假设平滑累加序列为X(0),X(1),...,X(n),则灰色微分方程可以表示为:X(n)+a*X(1)=b其中,a为发展系数,b为灰色作用量。

4.参数估计:通过最小二乘法求解灰色微分方程中的参数a和b。

具体方法是:将方程改为矩阵形式,即[A][X]=[B],其中A为系数矩阵,X为参数向量,B为常数向量。

通过对矩阵A和B进行求逆运算,可以得到参数向量X,进而求得a和b的值。

5.模型检验:通过残差检验、相关系数检验、后验差检验等方法对模型的准确性进行检验。

如果模型通过检验,则认为预测结果可靠;否则,需要进行修正或重新建模。

6.模型预测:利用建立的灰色微分方程进行未来数值的预测。

根据已有的序列,可以求得发展系数a和灰色作用量b的值,从而可以插入到灰色微分方程中,得到未来数值的预测。

总结:GM(1,1)模型是一种简单且有效的预测模型,适用于非线性和不稳定的数据序列。

它基于灰色系统理论,通过累加和一次指数平滑运算建立灰色微分方程,利用最小二乘法估计参数,并进行模型检验和预测。

在实际应用中,可以根据具体情况调整模型中的参数和方法,以提高预测的精度和可靠性。

灰色预测模型GM(1_1)及其应用

灰色预测模型GM(1_1)及其应用

灰色预测模型GM(1,1)的应用一、问题背景:蠕变是材料在高温下的一个重要性能。

处于高温状态下的材料长期受到载荷作用时,即使其载荷较低,并且在短时间的高温拉伸试验中材料不发生变形,但在此情况下仍会有微小的蠕变,极端的情况下,甚至会使材料发生破坏。

高温材料多应用于各种车辆的发动机及冶金厂中各种设备上,如果因蠕变引起破坏,可能造成很大的事故。

为了保证设备的安全可靠,在某一使用温度下,预先知道该材料对不同载荷应力下断裂的时间是很重要的。

过去,人们都是通过蠕变试验测量断裂时间。

而做蠕变试验时,需要很长时间才能得到结果,即使通过试验得出的数据,也只是对某几个具体试样而言,存在很大的偶然性,不能代表普遍的规律。

如果将实测的数据用灰色系统理论来处理,可以预测在某一温度下的任何载荷应力的断裂时间。

二、低合金钢铸件蠕变性能的灰色预测下面是对Cr-mo-0.25V 低合金钢铸件高温蠕变情况利用灰色系统理论进行研究。

在500℃的高温下,已测得此铸件在载荷分别为37,36,35,34,33(kg/mm 2)情况下的蠕变断裂时间见下表。

数 列 序 数 K1 2 3 4 5载荷应力(kg/mm 2) 37 36 35 34 33 断裂时间()(100)0(K X ⨯小时)2.38 2.80 4.25 6.85 11.30 一次累加数列)()1(K X 2.38 5.18 9.43 16.28 27.581、建立GM (1,1)模型(1)数据处理:将同一数据列的前k 项元素累加后生成新数据列的第k 项元素。

即根据断裂时间数列)()0(k X 由∑==kn n X k X 1)0()1()()(得到 )()1(k X 。

(2)建立矩阵B,y:根据⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+--+-+-=1)]()1([5.01)]3()2([5.01)]2()1([5.0)1()1()1()1()1()1(N X N X X X X X B 得到 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=19.2118.12130.7178.3B根据 T N N X X X Y )](,),3(),2([)0()0()0( =,得到 T N Y ]3.11,85.6,25.4,80.2[=(3)求出逆矩阵1()T BB - (4)作最小二乘估计,求参数u a ,N T T Y B B B u a 1)(ˆ-=⎪⎪⎭⎫⎝⎛=α 可得,⎪⎪⎭⎫ ⎝⎛-=97.05.0ˆα a = -0.5, u=0.97(5)建立时间响应函数,计算拟合值把a 和u 分别代入au e a u X t X at +-=+-))1(()1(ˆ)0()1(可得到解为2.24.4)1(ˆ5.0)1(-=+t e t X, 取t 为应力序数k 时,即得到时间响应方程为:2.24.4)1(ˆ5.0)1(-=+k e k X即可得到生成累加数列),2,1()1(ˆ)1( =+k k X 。

灰色预测GM(1,1)

灰色预测GM(1,1)

南昌市民用汽车保有量灰色GM(1,1)模型预测灰色预测是一种对含有不确定因素的系统进行预测的方法。

灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。

其用等时距观测到的反应预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。

灰色模型适合于小样本情况的预测,当然对于大样本数据,灰色模型也可以做,并且数据个数的选择有很大的灵活性。

原始序列X (0):表1 南昌市民用汽车保有量年份 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 南昌市民用汽车保有量(万辆)24.410926.730730.387836.380741.016143.7348.41615763.1第一步:构造累加生成序列X (1); 第二步:计算系数值;通过灰色关联分析软件GM 进行灰色模型拟合求解,得到:α= -0.101624 , μ=25.290111 , 平均相对误差为4.685749%第三步:得出时间响应预测函数模型为:()()858996.248269896.2731101624.01-=+⋅k e k X第四步:进行灰色关联度检验。

真实值:{24.4109,26.7307,30.3878,36.3807,41.0161,43.7300,48.4100,61.0000,57.0000,63.1000} 预测值:{24.4109,29.2310,32.3578,35.8190,39.6504,43.8917,48.5867,53.7839,59.5371,65.9056}计算得到关联系数为: {1,0.906683,0.444273,0.416579,0.82377,0.357133,0.715694,0.843178,0.333333,0.770986} 于是灰色关联度:r=0.661163关联度r=0.661163满足分辨率ρ=0.5时的检验准则r>0.60,关联性检验通过。

灰色系统预测GM(1,m)

灰色系统预测GM(1,m)

灰色GM (1,1)模型及其原理1灰色GM (1,1)模型的构建GM (1,1)模型是将离散的随机数经过依次累加成算子,削弱其随机性,得到较有规律的生成数,然后建立微分方程、解方程进而建立模型。

设所要预测的某项指标的原始数据序列为:()()()()()()()()(){}n X X X X X 00000,,3,2,1 =对原始数据序列作一次累加生成处理,获得新的数据序列: ()()()()()()(){}n X X X X1111,,2,1 = 式中:()()()()∑==i k k X i X 101 n i 3,2,1=经过累加处理,新生成的数据序列与原始的数据序列相比,具有平稳性增强而波动性减弱的特点。

对生成数列建立GM (1,1)白化形式的微式方程[4]:()()()u aX dt t dX =+11式中:a 称为发展系数,u 称为内控发展灰数。

利用最小二乘法拟合求得估计参数:()n TT X B BB u a 1-=⎥⎦⎤⎢⎣⎡ 式中:()()()()[]()()()()[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+-=1121121211111n X n X X X B()()()()()()[]n X X X X n 000,,3,2 =将B 带入公式,最终确定GM (1,1)预测模型()()()()a e a X t X at μμ+⎥⎦⎤⎢⎣⎡-=-∧∧100 n t 2,1,0= 将值代入离散模型公式求()()t X ∧1,预测的累加值还原为预测值:()()()()()()1110--=∧∧∧t X t X t X2模型精度的检验2.1残差检验计算残差()()t 0ε及其相对残差()()t q 0,即:()()()()()()1000--=∧t x t x t ε,()()()()()()%100000⨯=t x t t q ε n t ,,2,1 =相对残差()0q 越小,表示模型精度越高。

GM(1,1)模型的适用范围

GM(1,1)模型的适用范围

GM(1,1)模型的适用范围摘要GM(1,1)模型是一种常用的灰色系统数学模型,在许多领域得到了广泛的应用。

本文将介绍GM(1,1)模型的基本原理及其适用范围,并针对不同领域中GM(1,1)模型的具体应用进行详细讨论。

简介灰色系统理论是一种将统计学、数学和信息科学相结合的新兴跨学科领域,其研究的对象是具有不确定性、非完备信息的系统。

GM(1,1)模型是灰色系统理论中最常用的一种数学模型,用于预测和分析时间序列数据。

GM(1,1)模型的原理是基于灰色系统理论的灰色模型建模方法,该方法根据数据序列的变化规律,建立数据的动态变化模型,并通过建立灰色微分方程来进行预测。

GM(1,1)模型主要适用于简单的时间序列数据的预测和分析,具有简单、快速和高效等特点。

GM(1,1)模型的适用范围GM(1,1)模型适用于许多领域,主要包括以下几个方面:经济领域GM(1,1)模型在经济领域中的应用非常广泛,用于进行经济增长预测、市场趋势分析和投资策略制定等。

例如,可以将GM(1,1)模型应用于GDP季度数据的预测和分析,对经济增长趋势进行精确预测,为决策者提供科学依据。

工程领域GM(1,1)模型在工程领域中主要应用于生产和管理技术的改进、质量控制和生产计划制定等。

例如,可以将GM(1,1)模型应用于生产过程中某个指标的预测和分析,帮助工程师优化生产过程,提高生产效率。

自然科学领域GM(1,1)模型在自然科学领域中主要应用于气象、环境、水资源和地震等领域的数据分析和预测。

例如,可以将GM(1,1)模型应用于气象领域的气温预测和降雨量预测,为决策者提供准确的气象数据,为灾害防治提供科学依据。

社会科学领域GM(1,1)模型在社会科学领域中主要应用于人口、教育、医疗和农业等领域的数据分析和预测。

例如,可以将GM(1,1)模型应用于人口结构和教育发展趋势的预测和分析,帮助政府制定科学的人口和教育政策。

GM(1,1)模型的优缺点GM(1,1)模型具有以下优点:1.GM(1,1)模型具有简单、快速和高效等特点;2.GM(1,1)模型可以使用少量的数据进行分析和预测;3.GM(1,1)模型对数据的数量级和分布形态要求不高。

灰色系统GM11模型

灰色系统GM11模型

响应函数)为
x1(t)
( x1
1
b )eat a
b a
❖ 2. GM(1,1)模型x0 (k) az1(k) b 的时间响应
序列为
x1
(k
1)
( x0
1
b )eak a
b a
k 1, 2,L , n
❖ 3.还原值 x0 (k 1) x1 (k 1) x1 (k)
1 ea
x0
1
b a
❖ 例1河南省长葛县乡镇企业产值(数据来源于 长葛县统计局)。
❖ 解 :由统计资料查得产值序列为
X0 (x0 (1), x0 (2), x0 (3), x0 (4)) 10155,12588,23480,35388
❖ 引入二阶弱化算子 D2,令
X 0 D ( x0 (1)d , x0 (2)d , x0 (3)d , x0 (4)d )
❖ 在建模过程中,要不断的将下一阶段中所得的结果 回馈,经过多次循环往返,使整个模型逐步趋于完 善。
1. GM(1,1)模型
❖ G表示grey(灰色),M表示model(模型), GM(1,1)表示1阶的、1个变量的模型。
❖ 定义1.1设
X 0 ( x0 (1), x0 (2),L , x0 (n))
灰色系统模型
❖ 研究一个系统,一般应首先建立系统的数学模型, 进而对系统的整体功能,协调功能以及系统各因素 之间的关联关系,因果关系进行具体的量化研究。 这种研究必须以定性分析为先导,定量与定性紧密 结合。系统模型的建立,一般要经过思想开发,因 素分析,量化,动态化,优化五个步骤。即语言模 型,网络模型,量化模型,动态模型,优化模型。
x0
k k

k 点的模拟相
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

灰色系统预测模型GM重点内容:灰色系统理论的产生和发展动态,灰色系统的基本概念,灰色系统与模糊数学、黑箱方法的区别,灰色系统预测GM (1,1)模型,GM(1,N)模型,灰色系统模型的检验,应用举例。

1灰色系统理论的产生和发展动态1982邓聚龙发表第一篇中文论文《灰色控制系统》标志着灰色系统这一学科诞生。

1985灰色系统研究会成立,灰色系统相关研究发展迅速。

1989海洋出版社出版英文版《灰色系统论文集》,同年,英文版国际刊物《灰色系统》杂志正式创刊。

目前,国际、国内200多种期刊发表灰色系统论文,许多国际会议把灰色系统列为讨论专题。

国际著名检索已检索我国学者的灰色系统论著500多次。

灰色系统理论已应用范围已拓展到工业、农业、社会、经济、能源、地质、石油等众多科学领域,成功地解决了生产、生活和科学研究中的大量实际问题,取得了显著成果。

2灰色系统的基本原理2.1灰色系统的基本概念我们将信息完全明确的系统称为白色系统,信息未知的系统称为黑色系统,部分信息明确、部分信息不明确的系统称为灰色系统。

系统信息不完全的情况有以下四种:1.元素信息不完全2.结构信息不完全3.边界信息不完全4.运行行为信息不完全2.2灰色系统与模糊数学、黑箱方法的区别主要在于对系统内涵与外延处理态度不同;研究对象内涵与外延的性质不同。

灰色系统着重外延明确、内涵不明确的对象,模糊数学着重外延不明确、内涵明确的对象。

“黑箱”方法着重系统外部行为数据的处理方法,是因果关系的两户方法,使扬外延而弃内涵的处理方法,而灰色系统方法是外延内涵均注重的方法。

2.3灰色系统的基本原理公理1:差异信息原理。

“差异”是信息,凡信息必有差异。

公理2:解的非唯一性原理。

信息不完全,不明确地解是非唯一的。

公理3:最少信息原理。

灰色系统理论的特点是充分开发利用已有的“最少信息”。

公理4:认知根据原理。

信息是认知的根据。

公理5:新信息优先原理。

新信息对认知的作用大于老信息。

公理6:灰性不灭原理。

“信息不完全”是绝对的。

2.4灰色系统理论的主要内容灰色系统理论经过10多年的发展,已基本建立起了一门新兴学科的结构体系,其主要内容包括以“灰色朦胧集”为基础的理论体系、以晦涩关联空间为依托的分析体系、以晦涩序列生成为基础的方法体系,以灰色模型(G,M)为核心的模型体系。

以系统分析、评估、建模、预测、决策、控制、优化为主体的技术体系。

灰色关联分析灰色统计 灰色聚类3灰色系统预测模型灰色预测方法的特点表现在:首先是它把离散数据视为连续变量在其变化过程中所取的离散值,从而可利用微分方程式处理数据;而不直接使用原始数据而是由它产生累加生成数,对生成数列使用微分方程模型。

这样,可以抵消大部分随机误差,显示出规律性。

3.1灰色系统理论的建模思想下面举一个例子,说明灰色理论的建模思想。

考虑4个数据,记为)4(),3(),2(),1()0()0()0()0(X X X X ,其数据见下表:将上表数据作图得上图表明原始数据)0(X 没有明显的规律性,其发展态势是摆动的。

如果将原始数据作累加生成,记第K 个累加生成为)()1(K X ,并且1)1()1()0()1(==X X321)2()1()2()0()0()1(=+=+=X X X5.45.121)3()2()1()3()0()0()0()1(=++=++=X X X X5.735.121)4()3()2()1()4()0()0()0()0()1(=+++=+++=X X X X X得到数据如下表所示上图表明生成数列X 是单调递增数列。

3.2灰色系统预测模型建立 1. 数列预测GM (1,1)模型灰色系统理论的微分方程成为Gm 模型,G 表示gray (灰色),m 表示model (模型),Gm (1,1)表示1阶的、1个变量的微分方程模型。

Gm (1,1)建模过程和机理如下:记原始数据序列)0(X 为非负序列其中,n k k x ,,2,1,0)()0( =≥ 其相应的生成数据序列为)1(X其中,n k i x k x k i ,,2,1,)()(1)0()1( ==∑=)1(Z 为)1(X 的紧邻均值生成序列{})(,),2(),1()1()1()1()1(n z z z Z =其中,n k k x k x k Z ,2,1),1(5.0)(5.0)()1()1()1(=-+=称b k az k x =+)()()1()0(为Gm(1,1)模型,其中a ,b 是需要通过建模求解的参数,若T =),(b a a 为参数列,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=)()3()2()0()0()0(n x x x Y ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=)5(1)4(1)3(1)2()1()1()1()1(z z z z B则求微分方程b k az k x =+)()()1()0(的最小二乘估计系数列,满足Y B B B aT T 1)(ˆ-= 称b ax dtdx =+)1()1(为灰微分方程,b k az k x =+)()()1()0(的白化方程,也叫影子方程。

如上所述,则有1.白化方程b ax dtdx =+)1()1(的解或称时间响应函数为 abe a b x t xat +-=-))0(()(ˆ)1()1( 2.Gm(1,1)灰微分方程b k az k x =+)()()1()0(的时间响应序列为n k abe a b x k xak ,,2,1,))0(()1(ˆ)1()1( =+-=+- ()()()()()()()()(){}n x x x x X 00000,...,3,2,1=()()()()()()()()(){}n x x x x X 11111,..,.3,2,1=3.取)1()0()0()1(x x =,则n k abe a b x k xak ,,2,1,))1(()1(ˆ)0()1( =+-=+- 4.还原值n k k x k x k x,,2,1),(ˆ)1(ˆ)1(ˆ)1()1()0( =-+=+ 2. 系统综合预测GM (1,N )模型P1344灰色系统模型的检验定义1. 设原始序列{})(,),2(),1()0()0()0()0(n x x x X =相应的模型模拟序列为{})(ˆ,),2(ˆ),1(ˆˆ)0()0()0()0(n x x x X= 残差序列{})(),2(),1()0(n εεεε ={})(ˆ)(,),2(ˆ)2(),1(ˆ)1()0()0()0()0()0()0(n x n x x x xx ---= 相对误差序列⎭⎬⎫⎩⎨⎧=∆)()(,,)2()2(,)1()1()0()0()0(n x n x x εεε{}nk 1∆=1.对于k <n,称)()()0(k x k k ε=∆为k 点模拟相对误差,称)()()0(n x n n ε=∆为滤波相对误差,称∑=∆=∆nk k n 11为平均模拟相对误差;2.称∆-1为平均相对精度,n ∆-1为滤波精度;3.给定α,当α<∆,且α<∆n 成立时,称模型为残差合格模型。

定义2设)0(X 为原始序列,)0(ˆX 为相应的模拟误差序列,ε为)0(X 与)0(ˆX的绝对关联度,若对于给定的00,0εεε>>,则称模型为关联合格模型。

定义3设)0(X 为原始序列,)0(ˆX为相应的模拟误差序列,)0(ε为残差序列。

∑==n k k x n x 1)0()(1为)0(X 的均值, 21)0(21))((1x k x n s n k -=∑=为)0(x 的方差,∑==nk k n 1)(1εε为残差均值,∑=-=n k k n s 1222))((1εε为残差方差,1.称12s sc =为均方差比值;对于给定的00>c ,当0c c <时,称模型为均方差比合格模型。

2.称()16745.0)(s k p p <-=εε为小误差概率,对于给定的00>p ,当0p p >时,称模型为小误差概率合格模型。

精度检验等级参照表一般情况下,最常用的是相对误差检验指标。

5应用举例例 1 设原始序列{})5(),4(),3(),2(),1()0()0()0()0()0()0(x x x x x X =()679.3,390.3,337.3,278.3,874.2=建立Gm(1,1)模型,并进行检验。

解:1)对)0(X 作1-AGO ,得[D 为)0(X 的一次累加生成算子,记为1-AGO ,A cumulated Generating Operator]{})5(),4(),3(),2(),1()1()1()1()1()1()1(x x x x x X =()558.16,579.12,489.9,152.6,874.2=2)对)1(X 作紧邻均值生成,令)1(5.0)(5.0)()1()1()1(-+=k x k x k Z {})5(),4(),3(),2(),1()1()1()1()1()1()1(z z z z z Z =()718.14,84.11,820.7,513.4,874.2=于是,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=1718.14184.111820.71513.41)5(1)4(1)3(1)2()1()1()1()1(z z z z B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=679.3390.3337.3278.3)5()4()3()2()0()0()0()0(x x x x Y⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----∙⎥⎦⎤⎢⎣⎡----=T 1718.14184.111820.71513.41111718.14184.11820.7513.4B B ⎥⎦⎤⎢⎣⎡--=4235.38235.38221.423 ⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡--=--T832371.11665542.0165542.0017318.04235.38235.38221.423)(11B B⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-⨯=221.423235.38235.384969.2301221.423235.38235.384235.384221.42312⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∙⎥⎦⎤⎢⎣⎡----∙⎥⎦⎤⎢⎣⎡==T -T 679.3390.3337.3278.31111718.14184.11820.7513.4832371.11665542.0165542.0017318.0)(ˆ1Y B B B a⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∙⎥⎦⎤⎢⎣⎡---=679.3390.3337.3278.3604076.10019051.0537833.0085280.1089344.0028143.0030115.0087386.0 ⎥⎦⎤⎢⎣⎡-=065318.3037156.03)确定模型065318.3037156.0)1()1(=-x dtdx 及时间响应式abe a b x k xak +-=+-))1(()1(ˆ)0()1( 4986.823728.85037156.0-=k e 4)求)1(X 的模拟值{})5(ˆ),4(ˆ),3(ˆ),2(),1(ˆˆ)1()1()1()1()1()1(x x x xx X = =(2.8740,6.1058,9.4599,12.9410,16.5538) 5)还原出)0(X 的模拟值,由)(ˆ)1(ˆ)1(ˆ)1()1()0(k x k x k x-+=+ 得 {})5(ˆ),4(ˆ),3(ˆ),2(ˆ),1(ˆˆ)0()0()0()0()0()0(x x x x x X= =(2.8740,3.2318,3.3541,3.4811,3.6128) 6)误差检验残差平方和[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∙==T )5()4()3()2()5()4()3()2(εεεεεεεεεεs []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--∙--=0662.00911.00171.00462.00662.00911.00171.00462.0 =0.0151085 平均相对误差%)80.1%69.2%51.0%41.1(414151+++=∆=∆∑=k k=1.0625%计算X 与Xˆ的灰色关联度 ))1()5((21)1()((42x x x k x S k -+-=∑= =)874.2679.3(21)874.2390.3()874.2337.3()874.2278.3(-+-+-+-0.40250.5160.4630.404+++==1.7855)1(ˆ)5(ˆ(21)1(ˆ)(ˆ(ˆ42x x x k x Sk -+-=∑= )874.26128.3(21)874.24811.3()874.23541.3()874.22318.3(-+-+-+-=3694.06071.04801.03578.0+++==1.8144[][]∑=---+---=-42))1(ˆ)5(ˆ())1()5((21))1(ˆ)(ˆ())1()((ˆk x x x x x k x x k x S S)4025.03694.0(21)516.06071.0()463.04801.0()404.03578.0(-+-+-+-=01655.0091.00171.00462.0-++-==0.0453564525.45999.404535.08144.17855.118144.17855.11ˆˆ1ˆ1=+++++=-+++++=S S SS S S ε=0.9902>0.90精度为一级,可以用4986.823728.85)1(ˆ037156.0)1(-=+k e k x )(ˆ)1(ˆ)1(ˆ)1()1()0(k x k x k x-+=+预测。

相关文档
最新文档