二次方程根的判别式推导过程
一元二次方程的根的判定

一元二次方程的根的判定一元二次方程是指形如ax^2 + bx + c = 0的方程,其中a、b、c 为已知常数,且a ≠ 0。
解一元二次方程的关键在于判定方程是否有实根,即方程的解是否存在于实数范围内。
要判定一元二次方程的根的情况,可以通过计算方程的判别式来进行推断。
方程的判别式Δ = b^2 - 4ac,其中b、a、c分别是方程ax^2 + bx + c = 0中的系数。
根据判别式的值,可以得到以下结论:1. 当Δ > 0时,方程有两个不相等的实根。
判别式大于零意味着方程的平方项和一次项的系数平方之和大于二次项系数与常数项的乘积的四倍,表明方程的图像与x轴有两个不同的交点,即有两个实根。
2. 当Δ = 0时,方程有两个相等的实根。
判别式等于零意味着方程的平方项和一次项的系数平方之和等于二次项系数与常数项的乘积的四倍,表明方程的图像与x轴有一个重合的交点,即有两个相等的实根。
3. 当Δ < 0时,方程没有实根。
判别式小于零意味着方程的平方项和一次项的系数平方之和小于二次项系数与常数项的乘积的四倍,表明方程的图像与x轴没有交点,即没有实根。
通过判别式的计算和分析,可以确定一元二次方程的根的情况。
根据判别式的正负与零的关系,可以得到方程的解的个数和性质。
举例来说,对于方程x^2 + 2x + 1 = 0,其中 a = 1,b = 2,c = 1。
计算判别式Δ = 2^2 - 4*1*1 = 4 - 4 = 0。
由于Δ = 0,所以方程有两个相等的实根。
解方程得到x = -1为方程的解。
再举例来说,对于方程2x^2 + 3x - 4 = 0,其中a = 2,b = 3,c = -4。
计算判别式Δ = 3^2 - 4*2*(-4) = 9 + 32 = 41。
由于Δ = 41大于零,所以方程有两个不相等的实根。
解方程可以使用求根公式或其他方法得到方程的解。
需要注意的是,判别式只能判断方程的解的情况,而不能直接求解方程的根。
解一元二次方程——一元二次方程的根的判别式

2
当 − 4 < 0 时,方程没有实数根.
课后作业
1 利用判别式判断下列方程的根的情况.
3
2
2
1 2 − 3 − = 0,
2
3 − 4 2 + 9 = 0,
2
9
2
2 16 − 24 + = 0,
2
2
4 3 + 10 = 2 + 8.
2 在不解方程的情况下,判断关于 的一元二次方程
3 + 2 = − 2 2 − 1 +
2
4 + 2 2�� + 6 = 0.
9
;
2
3 + 2 = − 2 2 − 1 +
9
;
2
2
解: 化方程为 4 − 12 + 9 = 0.
= 4, = −12, = 9.
2
= − 4
2
= (−12) − 4 × 4 × 9
+ = 0.
移项,得
2
=−
.
2
+
=−
.
配方,得
2
+
+
2
+
2
2
2
=− +
2
− 4
=
.
2
4
2
,
2
2
+
2
2
− 4
=
.
九年级第二次课讲义一元二次方程的公式法,因式分解法,判别式

一元二次方程的公式法,因式分解法,判别式一、用公式法解一元二次方程1、概念:当240b ac -≥时,一元二次方程()200ax bx c a +=≠+的实数根可写为2b x a-=的形式,这个式子叫做一元二次方程20ax bx c +=+的求根公式.利用求根公式解一元二次方程的方法,叫做公式法.已知一元二次方程()200ax bx c a ++=≠,其求根公式推导过程如下: (1)移项得2ax bx c +=-;(2)二次项系数化为1得2b c x x a a +=-; (3)配方得22222b b c b x x a a a a ⎛⎫⎛⎫++=-+ ⎪ ⎪⎝⎭⎝⎭; (4)整理得222424b b ac x a a -⎛⎫+= ⎪⎝⎭;(5)直接开平方得2b x a +=;——注意是否可以开方呢?故当0∆≥时,一元二次方程()200ax bx c a ++=≠的实数根可写为x = 2、用公式法解一元二次方程的一般步骤:(1)解一元二次方程时,可以先将方程化为一般形式20ax bx c +=+;(2)正确确定出a ,b ,c 的值;(3)求出24b ac -的值;(4)若240b ac -≥,则方程有实数根,代入公式2b x a -=求解;若240b ac -<,则方程无实数根.例1.用公式法解下列方程:(1)22410x x -=- (2)()()2351x x -=-练习1.用公式法解下列方程:(1)22810x x -=+ (2)2523x x += (3)24310x x +=-二、用因式分解法解一元二次方程1.因式分解法解一元二次方程的理论依据如果两个因式的积等于零,那么这两个因式至少有一个等于零.即如果0a b ⋅=,那么0a =或0b =.2.因式分解法的概念先通过因式分解,使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解一元二次方程的方法叫做因式分解法.3.因式分解法解一元二次方程的一般步骤(1)将方程的右边化为0;(2)将方程的左边化为两个一次因式的积;(3)令每个因式都等于0;(4)解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解法是解一元二次方程的常用方法,在用因式分解法解一元二次方程时不要盲目的用约分的方法约掉含字母的代数式,这样容易丢掉方程的某个解.例2.用因式分解法解下列方程:(1)()()21321t t t =-- (2)()()2111x x -=-(3)269x x -=- (4)2760y y +=+练习2.用因式分解法解下列方程:(1)230x x -= (2)()()53210x x --=(3)()()2311x x x -+=+ (4)x 2﹣5x ﹣6=0(5)26120x x -=- (6)6x 2+19x ﹣36=0三、一元二次方程的根的个数的判别已知一元二次方程()200ax bx c a ++=≠,其判别式为24b ac ∆=-,其根的个数的情况如下:(1)当042>-=∆ac b 时,方程有两个实数根,且这两个实数根不相等;(2)当042=-=∆ac b 时,方程有两个实数根,且这两个实数根相等,写为ab x x 221-==; (3)当042<-=∆ac b 时,方程无实数根.方程20ax bx c ++=有实根的处理 1、一元二次方程有实根⇔00a ≠⎧⎨∆≥⎩, 2、方程有实根——需要分类讨论(1)0a =,是一元一次方程;(2)0a ≠,0∆≥.3、方程有两个实根⇔00a ≠⎧⎨∆≥⎩.要想判断一元二次方程的根的个数,只需求出其判别式,根据判别式的正负性来判断即可,需要注意的问题是在求判别式之前,一定要将已知的一元二次方程化为标准的一般式,这样才能准确找到a ,b ,c 的值,防止出错.例3. 一元二次方程214204x x +=-的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .无法判断 练习3. 一元二次方程22520x x -=-的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根下列题型考查一元二次方程的判别式.要记住:一元二次方程根的情况与判别式△的关系:(1)0∆>△方程有两个不相等的实数根;(2)0∆=△方程有两个相等的实数根;(3)0∆<△方程没有实数根.上述关系是一种等价关系,可以互相推导.例4.若关于x 的方程210x mx ++=有两个不相等的实数根,则m 的值可以是( )A .0B .﹣1C .2D .﹣3练习4. 若关于x 的一元二次方程()2450x x m +-=-有实数根,则m 的取值范围是( )A .1m >B .1m ≥C .1m <D .1m ≤与上一类求字母的取值范围型的问题相比,区别在于本类题型中二次项系数中含有字母,所以对于一个一元二次方程,必须保证二次项系数不为零!所以在求字母的取值范围时,又多了一个二次项系数不为零这一不等式.例5. 关于x 的一元二次方程()21320a x x -+-=有实数根,则a 的取值范围是( ) A .18a >- B .18a ≥- C .18a >-且1a ≠ D .18a ≥-且1a ≠ 练习5.1 若关于x 的一元二次方程2210kx x -=-有两个不相等的实数根,则实数k 的取值范围是( )A .1k >-B .1k >-且0k ≠C .1k <-D .1k <-或0k ≠练习5.2已知关于x 的一元二次方程2210mx x +-=有两个实数根,则m 的取值范围是()A .1m >B .1m ≥-C .1m >-且0m ≠D .1m ≥-且0m ≠与前两类求字母的取值范围型的问题相比,区别在于本类题型中二次项系数的位置中含有字母,并且通过已知条件无法确认已知的方程是否是一个一元二次方程,故需要进行分类讨论,主要分成两类:第一类,二次项系数为零,则方程为一个一元一次方程;第二类,二次项系数不为零,则方程为一个一元二次方程.两种情形下分别探究是否符合要求,再将两个答案进行合并即可.例题6.已知方程()2210mx m x m -+=-有实数根,求m 的取值范围。
二次方程的根与判别式的计算

二次方程的根与判别式的计算二次方程是高中数学中的重要概念之一,其形式通常为ax² + bx + c = 0,其中a、b和c为实数且a不等于0。
解二次方程的根需要通过判别式的计算来确定。
本文将介绍如何计算二次方程的根和判别式,并给出一些例题来加深理解。
一、二次方程的根的计算二次方程的根有三种情况:两个实根、一个重根或两个虚根。
计算二次方程的根可以使用求根公式:x = (-b ± √(b² - 4ac))/2a其中“±”表示两个根,具体的根的个数和情况取决于判别式的值。
二、判别式的计算判别式是用来判断二次方程的根的性质和个数的。
判别式的计算公式为:Δ = b² - 4ac1. 如果Δ大于零(Δ > 0),则方程有两个不相等的实根。
2. 如果Δ等于零(Δ = 0),则方程有两个相等的实根,即有一个重根。
3. 如果Δ小于零(Δ < 0),则方程没有实根,而是有两个虚根。
三、实例演练例题1:求解方程x² + 5x + 6 = 0的根和判别式的值。
解:根据上述求根公式和判别式的公式,我们可以得到:a = 1,b = 5,c = 6使用求根公式计算根:x = (-5 ± √(5² - 4×1×6))/2×1 = (-5 ± √(25 - 24))/2 = (-5 ± √1)/2 = (-5 ±1)/2因此,方程的两个根分别为x₁ = -3和x₂ = -2。
同时,计算判别式的值:Δ = 5² - 4×1×6 = 25 - 24 = 1由于Δ大于零,所以方程有两个不相等的实根。
例题2:求解方程2x² + 4x + 2 = 0的根和判别式的值。
解:根据上述求根公式和判别式的公式,我们可以得到:a = 2,b = 4,c = 2使用求根公式计算根:x = (-4 ± √(4² - 4×2×2))/2×2 = (-4 ± √(16 - 16))/4 = (-4 ± √0)/4 = -1因此,方程的根x = -1是一个重根。
一元二次方程的根的判别式

回顾与思考:
平方根的性质
用公式法求下列方程的根:
1) 2 x x 2 0;
2
用公式法解 一元二次方程 的一般步骤:
1 2 2) x x 1 0; 4 2 3) x x 1 0.
1)把方程化为一般形式 2)确定 a, b, c 的值 3)计算 b 2 4ac,并判断 其值与 0的关系
思考题
1、 m取什么值时,方程 x2+(2m+1)x+m2-4=0
有两个相等的实数解
2、关于x的一元二次方程ax2+bx+c=0 (a≠0)。 当a,b,c 满足什么条件时,方程的两根为 互为相反数?
例4:求证: (1)关于x的方程x ²+kx+k ² =0没有实数根 +1 (2)关于x的方程(x+a)(x-a)-x=2(x-1)总有两个不相等的 根。
5 5 (2)m= 4 4
(3)m>
5 4
2
看看你做的对不对?
1 (1) 解: x 2 3x 8 0 4
(2) 解:5t 2 7t 5 0
a 5, b 7, c 5 (7) 2 4 5 5 51 0
1 a , b 3, c 8 4 1 (3) 2 4 (8) 4
9 (1).当△>0 ,方程有两个不相等的实根, 8k+9 >0 , 即k 8 9 (2).当△ = 0 ,方程有两个相等的实根, 8k+9 =0 , 即 k 8 9 (3).当△ <0 ,方程有没有实数根, 8k+9 <0 , 即 K< 8
二次方程的判别式与根的性质

二次方程的判别式与根的性质二次方程是一个常见且重要的数学概念,在数学和物理等领域有着广泛的应用。
本篇文章将着重介绍二次方程的判别式和根的性质。
二次方程一般的形式是:ax^2 + bx + c = 0,其中a、b、c分别是实数常数,并且a不等于0。
解二次方程的关键是通过判别式来判断方程的根的性质。
一、二次方程的判别式判别式是二次方程的一个重要性质,它可以帮助我们快速判断方程的根的性质。
二次方程的判别式D的公式如下:D = b^2 - 4ac判别式的值可以分为三种情况来讨论:1. 当D > 0时,方程有两个不相等的实根。
这意味着二次曲线与x轴交于两个不同的点。
例如,对于方程x^2 + 2x - 3 = 0,判别式D = 16,大于0,因此方程有两个不相等的实根。
2. 当D = 0时,方程有两个相等的实根,也就是有一个重根。
这意味着二次曲线与x轴相切于一个点。
例如,对于方程x^2 + 4x + 4 = 0,判别式D = 0,因此方程有两个相等的实根。
3. 当D < 0时,方程没有实根,只有复数解。
这意味着二次曲线与x轴没有交点。
例如,对于方程x^2 + 3x + 4 = 0,判别式D = -7,小于0,因此方程没有实根。
二、二次方程的根的性质通过判别式可以判断方程的根的性质,接下来我们将详细讨论不同情况下的根的性质。
1. 当D > 0时,方程有两个不相等的实根。
这两个实根的性质如下:- 根的和:x1 + x2 = -b / a- 根的积:x1 * x2 = c / a例如,对于方程x^2 + 2x - 3 = 0,根的和为-2,根的积为-3。
2. 当D = 0时,方程有一个重根。
这个实根的性质如下:- 根的值:x = -b / (2a)例如,对于方程x^2 + 4x + 4 = 0,根的值为-2。
3. 当D < 0时,方程没有实根,只有复数解。
我们可以用复数的形式表示根,其中虚部可以由判别式D求得。
二次函数根的判别式韦达定理

一元二次方的应用及根的判别式、韦达定理一、根的判别式1.一元二次方程根的判别式的定义:运用配方法解一元二次方程过程中得到 2224()24b b acx a a -+=,显然只有当240b ac -≥时,才能直接开平方得:22424b b acx a a -+=± 也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ∆=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式.2.判别式与根的关系:在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ∆=-确定.判别式:设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-则①0∆>⇔方程20(0)ax bx c a ++=≠有两个不相等的实数根21,24b b acx -±-=.②0∆=⇔方程20(0)ax bx c a ++=≠有两个相等的实数根122bx x a==-.③0∆<⇔方程20(0)ax bx c a ++=≠没有实数根.若a ,b ,c 为有理数,且∆为完全平方式,则方程的解为有理根;若∆为完全平方式,同时24b b ac --2a 的整数倍,则方程的根为整数根.说明: (1)用判别式去判定方程的根时,要先求出判别式的值:上述判定方法也可以反过来使用,当方程有两个不相等的实数根时,0∆>;有两个相等的实数根时,0∆=;没有实数根时,0∆<.(2)在解一元二次方程时,一般情况下,首先要运用根的判别式24b ac ∆=-判定方程的根的情况(有两个不相等的实数根,有两个相等的实数根,无实数根).当240b ac ∆=-=时,方程有两个相等的实数根(二重根),不能说方程只有一个根. ① 当0a >时⇔抛物线开口向上⇔顶点为其最低点; ② 当0a <时⇔抛物线开口向下⇔顶点为其最高点.3.一元二次方程的根的判别式的应用:一元二次方程的根的判别式在以下方面有着广泛的应用: (1)运用判别式,判定方程实数根的个数;(2)利用判别式建立等式、不等式,求方程中参数值或取值范围; (3)通过判别式,证明与方程相关的代数问题;(4)借助判别式,运用一元二次方程必定有解的代数模型,解几何存在性问题,最值问题.二、韦达定理如果一元二次方程20ax bx c ++=(0a ≠)的两根为12x x ,,那么,就有 ()()212ax bx c a x x x x ++=--比较等式两边对应项的系数,得1212b x x ac x x a ⎧+=-⎪⎪⎨⎪⋅=⋅⎪⎩①,② ①式与②式也可以运用求根公式得到.人们把公式①与②称之为韦达定理,即根与系数的关系.因此,给定一元二次方程20ax bx c ++=就一定有①与②式成立.反过来,如果有两数1x ,2x 满足①与②,那么这两数12x x ,必是一个一元二次方程20ax bx c ++=的根.利用这一基本知识常可以简捷地处理问题.利用根与系数的关系,我们可以不求方程20ax bx c ++=的根,而知其根的正、负性. 在24b ac ∆=-≥0的条件下,我们有如下结论: 当0c a <时,方程的两根必一正一负.若0b a -≥,则此方程的正根不小于负根的绝对值;若0ba-<,则此方程的正根小于负根的绝对值. 当0c a >时,方程的两根同正或同负.若0b a ->,则此方程的两根均为正根;若0ba -<,则此方程的两根均为负根.⑴ 韦达定理:如果20(0)ax bx c a ++=≠的两根是1x ,2x ,则12b x x a +=-,12cx x a=.(隐含的条件:0∆≥)⑵ 若1x ,2x 是20(0)ax bx c a ++=≠的两根(其中12x x ≥),且m 为实数,当0∆≥时,一般地: ① 121()()0x m x m x m --<⇔>,2x m <② 12()()0x m x m -->且12()()0x m x m -+->1x m ⇔>,2x m > ③ 12()()0x m x m -->且12()()0x m x m -+-<1x m ⇔<,2x m <特殊地:当0m =时,上述就转化为20(0)ax bx c a ++=≠有两异根、两正根、两负根的条件. ⑶ 以两个数12,x x 为根的一元二次方程(二次项系数为1)是:21212()0x x x x x x -++=. ⑷ 其他:① 若有理系数一元二次方程有一根a b +a b a ,b 为有理数). ② 若0ac <,则方程20(0)ax bx c a ++=≠必有实数根. ③ 若0ac >,方程20(0)ax bx c a ++=≠不一定有实数根. ④ 若0a b c ++=,则20(0)ax bx c a ++=≠必有一根1x =.⑤ 若0a b c -+=,则20(0)ax bx c a ++=≠必有一根1x =-. ⑸ 韦达定理主要应用于以下几个方面:① 已知方程的一个根,求另一个根以及确定方程参数的值; ② 已知方程,求关于方程的两根的代数式的值; ③ 已知方程的两根,求作方程;④ 结合根的判别式,讨论根的符号特征;⑤ 逆用构造一元二次方程辅助解题:当已知等式具有相同的结构时,就可以把某两个变元看作某个一元二次方程的两根,以便利用韦达定理;⑤ 利用韦达定理求出一元二次方程中待定系数后,一定要验证方程的∆.一些考试中,往往利用这一点设置陷阱.例题一、判断方程根的情况【例1】 不解方程,判别下列方程的根的情况:(1)22340x x +-=;(2)216924y y +=;(3)()25170x x +-=。
一元二次方程的根的判别式

一元二次方程的根的判别式Ting Bao was revised on January 6, 20021一元二次方程的根的判别式学习指导一、基本知识点:1.根的判别式:对于任何一个一元二次方程ax2+bx+c=0(a≠0)可以用配方法将其变形为:(x+)2=因为a≠0,所以4a2>0,这样一元二次方程ax2+bx+c=0的根的情况可由b2-4ac来判定。
我们把b2-4ac叫做一元二次方程ax2+bx+c=0的根的判别式,用希腊字母⊿来表示,即⊿=b2-4ac。
一元二次方程ax2+bx+c=0(a≠0),当⊿=b2-4ac>0时,有两个不相等的实数根;当⊿=b2-4ac=0时,有两个相等的实数根;当⊿=b2-4ac<0时,没有实数根。
上述性质反过来也成立。
2.判别式的应用(1)不解方程,判断方程的根的情况;(2)根据方程的根情况确定方程的待定系数的取值范围;(3)证明方程的根的性质;(4)运用于解综合题。
二、重点与难点一元二次方程的根的判别式的性质是初中数学中的一个重要内容,在高中数学中也有重要应用。
正确理解判别式的性质,熟练灵活地运用它,是本节的重点,同时也是难点。
三、例题解析例1不解方程,判断下列方程根的情况(1)2x2-5x+10=0(2)16x2-8x+3=0(3)(-)x2-x+=0(4)x2-2kx+4(k-1)=0(k为常数)(5)2x2-(4m-1)x+(m-1)=0(m为常数)(6)4x2+2nx+(n2-2n+5)=0(n为常数)解:(1)⊿=(-5)2-4×2×10=-55<0∴方程没有实数根(2)⊿=(-8)2-4×16×3=0∴方程有两个相等的实数根(3)⊿=(-)2-4(-)×=5-4+8>0∴方程有两个不相等实根(4)⊿=(-2k)2-4×1×4(k-1)=4k2-16k+16=4(k2-4k+4)=4(k-2)2≥0∴方程有实数根(5)⊿=〔-(4m-1)〕2-4×2×(m-1)=16m2-8m+1-8m+8=16m2-16m+9=4(2m-1)2+5>0∴方程有两个不相等实根(6)⊿=(2n)2-4×4(n2-2n+5)=4n2-16n2+32n-80=-12n2+32n-80=-12(n-)2-<0∴方程没有实数根说明:①解这类题目时,一般要先求出⊿=b2-4ac,然后对⊿=b2-4ac进行化简或变形,使⊿=b2-4ac的符号明朗化,进而说明⊿=b2-4ac的符号情况,得出结论。