周衍柏《理论力学教程(第三版)》电子教案 第五章4分析力学

合集下载

理论力学课后答案第五章(周衍柏)上课讲义

理论力学课后答案第五章(周衍柏)上课讲义

理论力学课后答案第五章(周衍柏)第五章思考题5.1虚功原理中的“虚功”二字作何解释?用虚功原理理解平衡问题,有何优点和缺点?5.2 为什么在拉格朗日方程中,a θ不包含约束反作用力?又广义坐标与广义力的含义如何?我们根据什么关系由一个量的量纲定出另一个量的量纲?5.3广义动量a p 和广义速度a q 是不是只相差一个乘数m ?为什么a p 比a q 更富有意义?5.4既然a q T ∂∂是广义动量,那么根据动量定理,⎪⎪⎭⎫ ⎝⎛∂∂αq T dt d 是否应等于广义力a θ?为什么在拉格朗日方程()14.3.5式中多出了aq T ∂∂项?你能说出它的物理意义和所代表的物理量吗?5.5为什么在拉格朗日方程只适用于完整系?如为不完整系,能否由式()13.3.5得出式()14.3.5?5.6平衡位置附近的小振动的性质,由什么来决定?为什么22s 个常数只有2s 个是独立的?5.7什么叫简正坐标?怎样去找?它的数目和力学体系的自由度之间有何关系又每一简正坐标将作怎样的运动?5.8多自由度力学体系如果还有阻尼力,那么它们在平衡位置附近的运动和无阻尼时有何不同?能否列出它们的微分方程?5.9 dL 和L d 有何区别?a q L ∂∂和aq L ∂∂有何区别? 5.10哈密顿正则方程能适用于不完整系吗?为什么?能适用于非保守系吗?为什么?5.11哈密顿函数在什么情况下是整数?在什么情况下是总能量?试祥加讨论,有无是总能量而不为常数的情况?5.12何谓泊松括号与泊松定理?泊松定理在实际上的功用如何?5.13哈密顿原理是用什么方法运动规律的?为什么变分符号δ可置于积分号内也可移到积分号外?又全变分符号∆能否这样?5.14正则变换的目的及功用何在?又正则变换的关键何在?5.15哈密顿-雅可比理论的目的何在?试简述次理论解题时所应用的步骤.5.16正则方程()15.5.5与()10.10.5及()11.10.5之间关系如何?我们能否用一正则变换由前者得出后者?5.17在研究机械运动的力学中,刘维定理能否发挥作用?何故?5.18分析力学学完后,请把本章中的方程和原理与牛顿运动定律相比较,并加以评价.第五章思考题解答5.1 答:作.用于质点上的力在任意虚位移中做的功即为虚功,而虚位移是假想的、符合约束的、无限小的.即时位置变更,故虚功也是假想的、符合约束的、无限小的.且与过程无关的功,它与真实的功完全是两回事.从∑⋅=iii r F W δδ可知:虚功与选用的坐标系无关,这正是虚功与过程无关的反映;虚功对各虚位移中的功是线性迭加,虚功对应于虚位移的一次变分.在虚功的计算中应注意:在任意虚过程中假定隔离保持不变,这是虚位移无限小性的结果.虚功原理给出受约束质点系的平衡条件,比静力学给出的刚体平衡条件有更普遍的意义;再者,考虑到非惯性系中惯性力的虚功,利用虚功原理还可解决动力学问题,这是刚体力学的平衡条件无法比拟的;另外,利用虚功原理解理想约束下的质点系的平衡问题时,由于约束反力自动消去,可简便地球的平衡条件;最后又有广义坐标和广义力的引入得到广义虚位移原理,使之在非纯力学体系也能应用,增加了其普适性及使用过程中的灵活性.由于虚功方程中不含约束反力.故不能求出约束反力,这是虚功原理的缺点.但利用虚功原理并不是不能求出约束反力,一般如下两种方法:当刚体受到的主动力为已知时,解除某约束或某一方向的约束代之以约束反力;再者,利用拉格朗日方程未定乘数法,景观比较麻烦,但能同时求出平衡条件和约束反力.5.2 答 因拉格朗日方程是从虚功原理推出的,而徐公原理只适用于具有理想约束的力学体系虚功方程中不含约束反力,故拉格朗日方程也只适用于具有理想约束下的力学体系,αθ不含约束力;再者拉格朗日方程是从力学体系动能改变的观点讨论体系的运动,而约束反作用力不能改变体系的动能,故αθ不含约束反作用力,最后,几何约束下的力学体系其广义坐标数等于体系的自由度数,而几何约束限制力学体系的自由运动,使其自由度减小,这表明约束反作用力不对应有独立的广义坐标,故αθ不含约束反作用力.这里讨论的是完整系的拉格朗日方程,对受有几何约束的力学体系既非完整系,则必须借助拉格朗日未定乘数法对拉格朗日方程进行修正.广义坐标市确定质点或质点系完整的独立坐标,它不一定是长度,可以是角度或其他物理量,如面积、体积、电极化强度、磁化强度等.显然广义坐标不一定是长度的量纲.在完整约束下,广义坐标数等于力学体系的自由度数;广义力明威力实际上不一定有力的量纲可以是力也可以是力矩或其他物理量,如压强、场强等等,广义力还可以理解为;若让广义力对应的广义坐标作单位值的改变,且其余广义坐标不变,则广义力的数值等于外力的功由W q r F s i ni i δδθδααα==⋅∑∑==11 知,ααδθq 有功的量纲,据此关系已知其中一个量的量纲则可得到另一个量的量纲.若αq 是长度,则αθ一定是力,若αθ是力矩,则αq 一定是角度,若αq 是体积,则αθ一定是压强等.5.3 答 αp 与αq 不一定只相差一个常数m ,这要由问题的性质、坐标系的选取形式及广义坐标的选用而定。

周衍柏《理论力学教程(第三版)》电子教案第三章4-5刚体力学解析

周衍柏《理论力学教程(第三版)》电子教案第三章4-5刚体力学解析

所以可以把所有空间力化为过一点的力和力偶. P点叫简化中心, 力的矢量和叫主矢, 力偶矩的矢量 和叫对简化中心的主矩.
主矢使刚体平动状态发生变化 主矩使刚体转动状态发生变化
2 刚体运动微分方程
如果ri代表刚体中任一质点Pi 对静止系S原点O的位 矢, rC 为质心C对O的位矢, 而ri’ 为Pi 对质心C的位矢, 动 坐标系S’随质心作平动, 其原点与质心C重合.
2
a R
T
a mg 5 m s2
mm
mM 2
h 1 at 2 2.5 m T 40 N
mg
2
例3、一质量为 m 、长为 l 的均质细杆,转轴在 O 点, 距A端 l/3 . 杆从静止开始由水平位置绕O点转动. 求: (1)水平位置的角速度和角加速度. (2)垂直位置时的角速度和角加速度.
述位置仍处于平衡状态,求棍与地面的摩擦系数
解: 受力分析知本题是一共
y
面力系的平衡问题, 取棍子所 在的平面为xy平面, 则
Fx 0, N1 sin 0 f 0
B
N1
Cl
Fy 0, N1 cos0 N2 P 0
对A点
Pl cos0 N1h / sin 0 0
h P
O
l N2
0
x
f
A
第三章 刚体力学
导读
• 空间力系和平行力系的求和 • 刚体运动微分方程和平衡方程 • 简单转动惯量的计算 •转动惯量的计算
§3.4 刚体运动方程与平衡方程
1 力系的简化
F1 F2 F3
将所有空间力作用点都迁移到一点.
力是滑移矢量
F
F
F
F
力可沿作用线移动,不能随意移动

理论力学第五章

理论力学第五章

r Fi
g rri q
0
由虚功原理
P1 x1 P2 x2 F y3 0
x1
1 2
l1
sin
x2
l1 sin
1 2
l2
sin
y3 l1 cos l2 cos
P1 x1, y1 P2 x2, y2 B x3, y3
1 2
P1l1
cos
P2l1
cos
Fl1
sin
1 2
P2l2
2.理想约束
虚功:作用在质点上的力F在任意虚位移上做的功
理想约束:质点上的所有约束反力的虚功之和为零
n
r Ri
g
rr
0
i 1
引入虚位移可以消去这些约束反力 3.虚功原理
受理想约束的力学体系的平衡充要条件是所有主动力 的虚功之和等于零。
W
n
r Fi
g
rri
n
Fix xi Fiy yi Fiz zi 0
速度 s&2 r&2 r2&2 r2 sin2 &2
动能 T 1 ms&2 1 m r&2 r2&2 r2 sin2 &2
2
2
注意 Qr Fr , Q rF , Q r sin F
1 2
m
d dt
s&2 r&
s&2 r
Fr
1
2
1 2
m m
d
dt
2.稳定约束时
ri t
0 a ,a 0 T1 ,T0 0, T
T2
H T V 常量(E ) 能量积分
说明: L 不显含时间,且稳定约束条件下,系统能量守恒. 具有可加性(广延量)的运动积分称为守恒量.

周衍柏理论力学课件(PPT可修改版本)

周衍柏理论力学课件(PPT可修改版本)

爱因斯坦 (1879-1955)
1879年 3月14日生于德国乌耳姆一个经营电器作坊的 小业主家庭。一年后,随全家迁居慕尼黑。在任工程 师的叔父等人的影响下,爱因斯坦较早地受到科学和哲 学的启蒙。1894年,他的家迁到意大利米兰,继续在慕尼 黑上中学的爱因斯坦因厌恶德国学校窒息自由思想的 军国主义教育,自动放弃学籍和德国国籍,只身去米 兰。1895年他转学到瑞士阿劳市的州立中学;1896年 进苏黎世联邦工业大学师范系学习物理学,
自然和自然规律为黑暗 所蒙蔽上帝说,让牛 顿来!一切遂臻光 明!
一、理论力学研究对象
物理学是研究物质性质、结构、运动规律的科学。世界物质可分 为不同层次、不同运动级别,因而有相应的主要研究科学:
物质层 次
宇观
线度 >108m
宏观
10-1—103m
亚宏观
10-6—10-3m
原子
10-10—10-9m
矢量力学是以牛顿运动定律为基础,从分析质量和物体受 力情况,由此探讨物体的机械运动规律。在矢量力学中,涉及 的量多数是矢量,如力、动量、动量矩、力矩、冲量等。力是 分析力学中最关键的量。
分析力学以达朗伯原理为基础,从分析质量和质量系能量情 况,由此探讨物体机械运动规律。分析力学中涉及的量多数是 标量,如动能、势能、拉格朗日函数、哈密顿函数等。动能和 势能是最关键的量。
二、理论力学研究方法
观察、实验, 总结实验规律, 建立物理模型, 提出合 理假设, 数学演译、逻辑推理 , 探讨规律, 实验验 证。 理论力学与普通物理的力学不同点是:逻辑推理、数学演译 更强。主要数学要求是:微积分和解常系数微分方程。
三、理论力学的内容结构
理论力学分为矢量力学(即牛顿力学)和分析力学两大部 分。

高等教育出版社理论力学第三版(周衍柏)第5章习题解答

高等教育出版社理论力学第三版(周衍柏)第5章习题解答

m2
x22
以 x 面为零势面,体系势能:
其中 C2 为劈势能. 拉氏函数
V = m1g(x1 − x2 ) tanθ + C2
(4)
L =T −V =
[ ] 1
2 m1
x12 + (x1 − x2 )2 tan 2 θ
+
1 2
m2
x22

− m1g(x1 − x2 )tanθ − C2
代入拉格郎日方程
θ
⎟⎞ 2 ⎠
=
2m2a 2
sin 2 θθ
2
( ) T = TB + TD + Tc = m1 a 2θ 2 + Ω 2a 2 sin 2 θ + 2m2a 2 sin 2 θθ 2
取 Ox 为零势,体系势能为:
V = −2ga(m1 + m2 )cosθ
故力学体系的拉氏函数为:
L =T −V
( ) = m1a 2 θ 2 + Ω2 sin 2 θ + 2m2a 2 sin 2 θθ 2 + 2ga(m1 + m2 )cosθ
2
x = ± r2 −W k4
y =W k2 R = −k 2r
5.5 解 如题 5.5.1 图
Ω
A
θθ
aa
a
x
B
D
y m1 a
m1 a
C m2 z
按题意仅重力作用,为保守系。因为已知ψ = Ω ,故可认为自由度为 1.选广义坐 标θ = q ,在球面坐标系中,质点的 动能:
由于
( ) ( ) Ti
代入①得:
Q1 = 0.
在极坐标系下:

理论力学教程周衍柏第三版课件_图文

理论力学教程周衍柏第三版课件_图文
•释 的矛盾. 1)高速(与c比):相对论(爱因斯坦);2)微 观粒子: 量子力学(薛定谔);3)纳米技术:0.1~100nm 尺度起关键作用 (原子直径10-10m; 人头发10-4m;人100m).
9
§0.4 力学单位制
• 物理理论组成:概念、概念的数学表示假定、方程组(物理 量的关系) 单位制通过以
[P]

X X a1 a2 12

X
am m
上式取对数
ln[P] a1lnX1 a 2lnX2 amlnXm
把lnX1, lnX2, …,lnXm看做m维空间的“正交基矢”,则 (a1,a2,…,am)相当于“矢量”ln[P]在基矢上的投影.
22
定理
设某物理问题内涉及n个物理量(包括物理常量) P1, P2 ,, Pn, 而我们所选的单位制中有m个基本量(n>m),则由此可以组成n-m
• 在力学中CGS和MKS单位制的基本量是长度、质量和 来自间, 它们的量纲分别为L、M和T.
• 任何力学量Q的量纲为[Q]=LαMβTγ,式中, ,
为量纲指数.
21
量纲分析—— 定理
设我们在选定单位制中的基本量数目为m,它们的量纲 为X1,X2,…,Xm. 用[P]代表导出量P的量纲,则
由A=A1+A2得
c2Φ() a2Φ() b2Φ()
消去(),即得 c2 a2 b2
a
c


b
这样我们就利用量纲分析定量的得到了勾股定理.
27
§0.6 微积分预备知识
1 常见函数的导数
y xn
y' dy dxn nx n1 dx dx
y sin x

周衍柏《理论力学教程(第三版)》电子教案 3-4章作业解答


T
N
T
物体 : ma2 mg T 圆柱 : Ma1 T f d 1 T f R, I 0 MR 2 dt 2 xC a1 d xC R , dt R R a A 2a1 a2 I0
M
r
f Mg
m
mg
4mg 8mg a1 , a2 3M 8m 3M 8m 3Mmg T 3M 8m
4.10) 质量为m的小环M, 套在半径为a的光滑圆圈上, 并可沿着圆 圈滑动. 如圆圈在水平面内以匀角速绕圈上某点O转动, 试求小 y 环沿圆圈切线方向的运动微分方程. 解: 设坐标系如图, oxy为水平面,它绕z轴转 动,即圆圈为转动参照系 受力分析,重力和约束反力都在z轴方向, 没 有画出. 惯性离心力m2r , 科里奥利力为 FC= -2m×v
b2 tan (a 2b)a
3.5)一均质的梯子, 一端置于摩擦系数为1/2的地板上, 另一端 则斜靠在摩擦系数为1/3的高墙上,一人的体重为梯子的三倍, 爬到 梯的顶端时, 梯尚未开始滑动, 则梯与地面的倾角,最小当为若干? 解: 研究对象为梯子, 人在顶端时,梯子与地面的夹角为, 梯子 y 重量p, 人重3p. 平衡时:

B x b C
a b
2
2
a
解2:用寻找瞬心法,过A做vA垂线,瞬心在O点,距离A为vA/. 连OB, 因角+=90o, 所以
OB OA 2 AB 2 2OA AB cos 1

v 2 2v
ab a 2 b2
2a 2
vB OB v 2 2v
2y sin C1 x 2my sin x m 2 z cos x sin C2 2m z sin y cos x y m m gt 2y cos C3 z cos mg 2my z 2y sin x y 0, z v0 , 在t =0, x 2 z cos x sin y x y z0 z v0 gt 2y cos

理论力学第三版(周衍柏)全部习题答案

彗星轨道为抛物线,即 。近日点时 。故近日点有


又因为
所以

(彗星在单位时间内矢径扫过的面积 )
扫过扇形面积的速度

又因为

两边积分

从数学上我们可以得到两轨道交点为地球轨道半径处。
上升时 下降时
题1.19.1图
则两个过程的运动方程为:
上升

下降:

对上升阶段:

对两边积分
所以

即质点到达的高度.
对下降阶段:


由③=④可得
1.20解 作子弹运动示意图如题1.20.1图所示.
题1.20.1图
水平方向不受外力,作匀速直线运动有

竖直方向作上抛运动,有

由①得

代入化简可得
因为子弹的运动轨迹与发射时仰角 有关,即 是 的函数,所以要求 的最大值.把 对 求导,求出极值点.
因为
所以


上式化为
这是一个二阶常系数废气次方程。
解之得
微积分常数,取 ,故


所以
1.45证由题意可知,质点是以太阳为力心的圆锥曲线,太阳在焦点上。
轨迹方程为
在近日点处
在远日点处
由角动量守恒有
所以
1.46解 因为质点速率
所以
又由于

又因为
所以
两边积分

1.47证( )设地球轨道半径为 。则彗星的近日点距离为 。圆锥曲线的极坐标方程为
时, 得 ,故

同理,把⑦代入⑤可以解出
把⑦代入⑤
代入初条件 时, ,得 .所以

周衍柏《理论力学》第五章教案-分析力学

第五章分析力学本章要求(1)掌握分析力学中的一些基本概念;(2)掌握虚功原理;(3)掌握拉格朗日方程;(4)掌握哈密顿正则方程。

第一节约束和广义坐标一、约束的概念和分类加于力学体系的限制条件叫约束。

按不同的标准有不同的分类:按约束是否与时间有关分类:稳定约束、不稳定约束;按质点能否脱离约束分类:可解约束、不可解约束;按约束限制范围分类:几何约束(完整约束)、运动约束(不完整约束)。

本章只讨论几何约束(完整约束),这种约束下的体系叫完整体系。

二、广义坐标1、自由度描述一个力学体系所需要的独立坐标的个数叫体系的自由度。

设体系有n个粒子,一个粒子需要3个坐标(如x、y、z)描述,而体系受有K个约束条件,则体系的自由度为(3n-K)2、广义坐标描述力学体系的独立坐标叫广义坐标。

例如:作圆周运动的质点只须角度用θ描述,广义坐标为θ,自由度为1,球面上运动的质点,由极角θ和描述,自由度为2。

第二节虚功原理本节重点要求:①掌握虚位移、虚功、理想约束等概念;②掌握虚功原理。

一、实位移与虚位移质点由于运动实际上所发生的位移叫实位移;在某一时刻,在约束允许的情况下,质点可能发生的位移叫虚位移。

如果约束为固定约束,则实位移是虚位移中一的个;若约束不固定,实位移与虚位移无共同之处。

例如图5.2.1中的质点在曲面上运动,而曲面也在移动,显然实位移与虚位移不一致。

二、理想约束设质点系受主动力和约束力的作用,它们在任意虚位移中作的功叫虚功。

若约束反力在任意虚位移中对质点系所作虚功之和为零,则这种约束叫理想约束。

光滑面、光滑线、刚性杆、不可伸长的绳等都是理想约束。

三、虚功原理1、文字叙述和数学表示:受理想约束的力学体系,平衡的充要条件是:作用于力学体系的诸主动力在任意虚位移中作的元功之和为零。

即(1)适用条件:惯性系、理想不可解约束。

2、推论设系统的广义坐标为q1,……,q a,……,q S,虚位移可写为用广义坐标变分表示的形式:定义:称为相应于广义坐标q a的广义力,则虚功原理表述为:理想约束的力学体系平衡的充要条件为质点系受的广义力为零,即:(2)3、用虚功原理求解平衡问题的方法步骤一般步骤为:(1)确定自由度,选取坐标系,分析力(包括主动力、约束力);(2)选取广义坐标并将各质点坐标表示成广义坐标q a的函数:;(3)求主动力的虚功并令其为零:,由此求出平衡条件。

周衍柏《理论力学教程(第三版)》电子教案 第一章4-8质点力学

2) 非光滑约束
dv m dt F R v2 Fn Rn m 0 Fb Rb (1) ( 2) (3)
R RN Rn Rb
2
2
R R Rn Rb
2
2
2
4个方程4个未知数,可解
例题1 力仅是时间的函数
自由电子在沿x轴的振荡电场中运动:
(3)初始条件
t 0, r r0, v v0
(4)求解运动微分方程
r r (t )
x x( t ) y y( t ) z z(t )
2. 非自由质点
• 解决方法:去掉约束,用约束反作用力代替
d r d r • 运动微分方程 m F (r , , t ) R 2 dt dt
dt dt ds v sec f ( ) sec t t ( ) d ds d v g g
消去参量 可得运动方程
本问题还可在直角坐标系中处理,见 P25
例题3
力是坐标的函数
m r F ( x , y , z )
F ( x , y , z ) k x x i k y yj k z z k
2 力学相对性原理和伽利略变换
(i) 力学相对性原理 力学定律在一切惯性系中数学形式不变
对于描述力学规律而言,一切惯性系都是平权 的、等价的。 在一个惯性系中所做的任何力学实验,都不能 判断该惯性系相对于其它惯性系的运动。
觉不 而 行 舟
《关于托勒密和哥白尼两大世界体系的对话》伽利略 1632
(ii) 牛顿的绝对时空观
• • • • • 自由质点 非自由质点 受力分析 写出运动微分方程矢量式 建立适当的坐标系分解标量方程 解微分方程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2 1
x1 a x
2 2 1
1 x 2 x
2 a y2 a x y
2 2 2
x2 a x
2 2 2

1 2 2 2 2 2 V k x1 x2 mg a a x mg a a x 1 2 2
由于q值很小, 因此展开式中只保留头一项, 动能T变为
1 q T a q 2 , 1
1 s V c q q 2 , 1
现在式中系数a 是不变的. c 称为恢复系数或准弹 性系数, 而a 则称为惯性系数.
k k 2 2 V x2 x1 b x3 x2 b 2 2
m M m

1 1 2 2 1 x 3 Mx 2 2 T mx 2 2


令 q1 x1 , q2 x2 b, q3 x3 2b m m M k k 2 2 则 V q q q q 2 1 3 2 x3 x x 1 2 2 2 b b 1 1 2 2 2 1 q 3 Mq 2 T mq 2 2 本问题是三个自由度, 故q1,q2,q3就是广义坐标, 由拉氏 方程得 1 kq1 kq2 0 mq 2 kq1 2kq2 kq3 0 Mq mq 3 kq2 kq3 0
在稳定约束时, 动能T只是速度的二次齐次函数, 即
1 s q T a q 2 , 1
式中系数a是广义坐标q的显函数. 把a 在力学体系 平衡位形的区域内展成泰勒级数, 就得到

0 1 q
s
q O(q ) 0
相应的拉氏方程为
d T T V 0 dt l l l
所以
0 a cl l 0 0 l l
(l 1,2, ,s)
可得, 解
l Al cos l t Bl sin l t Cl cos l t l (l 1,2,, s)
2 简正坐标
多自由度体系的小振动问题比较复杂的原因是在势 能和动能中都有交叉项(相互作用). 消除之, 可以简化问 题. 因为动能总是正定的, 根据线性代数理论, 总能找到线 性变换
q g l l
l 1
s
使得T和V同时变成正则形式, 即没有交叉项. 变换后
1 s 0 2 1 s 0 2 T al l , V cl l 2 l 1 2 l 1
s
所以
s T , a q 1 q
d T dt q T 0 q
s a q , 1
s V c q q 1
把这些表示式代入拉格朗日方程式就得到力学体 系在平衡位置附近的动力学方程

a11 0 m, a22 0 m
1 mg 2 1 mg 2 V k x1 kx1 x2 k x2 2 a 2 a
故在平衡位置附近, V与T简化为
1 12 x 2 2 T mx 2


mg 1 k ( x1 x2 ) m x x1 a mg 2 k ( x1 x2 ) m x x2 a
e
A e
( 2 ) i 2t 1 ( 2 ) i 2t 2
A
( 2 ) i 2t 1
e
, ,
x2 A e
A
( 1) i 1t 2
e
A e
A
( 2 ) i 2t 2
e
把1,2代入行列式,得到
1 1 1 : 11 k , 12 k , A11 A2 A(1) , A11 A2 A( 1) 2 2 2 : 11 k , 12 k , A12 A2 A(1) , A12 A2 A( 2)
4个任意常数由初始条件决定.
1 1 如果令 1 x1 x2 , 2 x1 x2 2 2
则1, 2将以单一的
频率1, 2振动, 因此1, 2就是简正坐标.
例2 线对称三原子分子的振动 设两个质量为m的原子, 对称地位于质量为M的原子两侧, 三者皆处于一直线上, 其间的相互作用可近似地认为是准弹性的, 即相当于用 弹性系数为k的两个相同弹簧把它们联结起来. 如平衡时, M与每一m间的距离均等于b,求三者沿联线振动时的简 正频率. 解: 由图知, 若以水平轴x上某处 O为原点. 系统的势能为
(1) i 1t ( 1) i 1t ( 2 ) i 2t ( 2 ) i 2t x A e A e A e A e , 1 , i t i t i t i t (1) ( 1) ( 2) ( 2 ) 1 1 2 2 x A e A e A e A e 2

a y2
x2
耦合摆的势能等于弹簧的弹性势能与摆锤重力势能两
者之和,即
1 2 V k x1 x2 mgy1 mgy2 2
耦合摆的动能为
1 1 2 2 2 2 T m x1 y1 m x2 y2 2 2




因为
1 a y1 a x y
第五章 分析力学
拉格朗日 哈密顿
§5.4 小振动
导读
• 动能和势能的泰勒展开 • 线性齐次方程的求解 • 简正频率 • 简正坐标
1 多自由度力学体系的小振动
一个完整的稳定、保守的力学体系在平衡位置时的 广义坐标均等于零. 如果力学体系自平衡位置发生微小偏 移, 力学体系的势能可以在平衡位形区域内展成泰勒级数,
q A(l ) l2 ei l t A'(l ) l2 e i l t
s







实数解:l 1 s源自q a (l ) l2 cos l t b (l ) l2 sin l t
l 1





这里的l叫做简正频率, 它的数目共有 s个, 和力学体系 的自由度数相等.
V V V0 q 1
s
2 s 1 V q 2 q q 1 0 1
q q O(q 2 ) 0
利用保守体系的平衡方程, 略去二级以上的高级项并 令V0=0, 就得到 s
1 V c q q 2 , 1
c q 0, 1,2,, s a q
s 1
这是线性齐次常微分方程组, 它的解 q A e 式中A 及是常数. 把这表示式代回, 得
2 A a c 0, s
t
1


1,2,, s
此方程组有非零解的充要条件为
mg mλ k a
2
k mg mλ 2 k a
0
k
由此得到4个本征值如下:
g g 2k 1 i i 1 , 2 i i 2 a a m
这样得到通解
x1 A e
(1) i 1t 1 (1) i 1t 2
A
( 1) i 1t 1
2 2 2 1 x1 2 1 x2 x x m1 2 T m 1 2 2 1 2 2 2 a x1 2 a x2
为了算出在平衡位置附近的势能及动能, 按泰勒级数
展开, 可得
2V 2V 2V mg mg c11 2 k , c12 k , c22 2 k a a x1x2 x1 0 x1 x1 0 x2 x2 0
运用拉氏方程, 得动力学方程
这是二阶常系数线性齐次方程组,具有形式解
x1 A1e , x2 A2e
t
t
所以
2 mg A1 m k A2 k 0 a mg A1k A2 m2 k 0 a
从行列式
a112 c11 a122 c12 a1s 2 c1s a212 c21 a222 c22 a2 s 2 c2 s as12 cs1 as 2 2 cs 2 ass2 css
0
求出2s个的本征值l , (l=1,2,…,2s). 然后求出一组A(l), 方程式的解即是
q A e
l 1
2s
( l ) l t
( 1,2,, s)
为了物体在平衡位置附近振动, 则力学体系的势能V > 0 (即平衡位置V=0是极小值), 方程所有的根l为纯虚数. 既然l是纯虚数, 因此可令
s
这样, 解可以写为
实数 解为
q A ei l t A' e i l t
式中
cl0 l 0 al
坐标l叫做简正坐标, l仍为简正频率. 每一个简正坐标都做具有自己固有频率 l的谐振动, 而广义坐标, 作为简正坐标的线性函数, 将是s个谐 振叠加而成的复杂运动.
例1 耦合摆 两相同的单摆,长为a,摆锤的质量为m,用倔 强系数为k 且其自然长度等于两摆悬点之间距离的无重弹 簧相耦合.略去阻尼作用,试求此体系的运动. 解: 两个摆在同一平面内振动,取振动 平面为 xy平面, 并且令两个摆锤的坐 a 标为(x1, y1)及(x2,y2), 则由于约束关系 ( 两摆的摆长一定 ), 四个坐标中只有 x1 两个是独立的 . 选 x 1及 x 2作为两个广 y1 义坐标 , 而 x 1 及 x 2 等于零时相当于耦 合摆的平衡状态.


设解的形式为 q c sin( t )
带入动力学方程组, 得 c1 (k m 2 ) c2 k 0 0
相关文档
最新文档