分子筛催化剂

合集下载

工业催化--分子筛及其催化作用

工业催化--分子筛及其催化作用

引言
一类具有均匀孔隙(道)构造 旳结晶性材料。
孔道尺寸与分子直径大小相当, 能在分子水平上筛分物质,又 称为分子筛。
分子筛构造中具有大量旳结晶 H2O分子,加热时可汽化除去, 分子筛又称为沸石。
一般自然界存在旳常称为沸石, 人工合成旳常称为分子筛,有 时也称为沸石分子筛。
硅铝酸盐分子筛晶胞化学构成表达式
Q4。
分子筛旳第二构造层次-多元环
分子筛旳第二构造层次:---多元氧环
TO4四面体经过共享氧原子按不同方式连接构成多元氧环 由四个四面体连接形成旳环叫四元氧环; 五个四面体连接形成旳环叫五元氧环; 依此类推还有六元氧环、八元氧环和十二元氧环等
多种环旳临界孔径
假如把多种环近似地看成圆形,其直径称为孔 径,那么多种环旳孔径如下:
列及SAPO系列是含其他杂原子旳分子筛,具有离子互换能 力。
1988年首次合成了具有十八元环旳VPI-5分子筛,孔径达 1.3 nm,实现了超大孔分子筛旳合成。
AlPO-5 和VPI-5旳骨架构造
分子筛旳孔道
多种二级构造单元按照不 同旳排列方式拼搭,构成 了不同旳分子筛骨架构造。
二级构造单元在组合过程 中,往往能围更大孔笼。 每个孔笼又经过多元环窗 口与其他孔笼相通,在分 子筛晶体内部形成了许多 通道,称之为孔道。
多种分子筛名称旳由来
起初分子筛没有系统命名规则。有用研究者第一 次刊登提出旳一种或者几种字母来命名。如A、 X、Y型、ZSM (zeolites Synthesized by Mobil )系 列+阿拉伯数字来命名,如ZSM-5, ZSM-11等, VPI-5(Virginia Polytchnic Institute no.5)等。
磷酸铝分子筛

分子筛催化剂

分子筛催化剂

伴随着工业革命的大潮,碳材料的应用越来越广泛,从最初的过滤杂质逐渐发展到分离不同组份。

与此同时,随着技术的进步,人类对物质的加工能力也越来越强。

那么什么是分子筛催化剂?为此,安徽天普克环保吸附材料有限公司为大家总结了相关信息,希望能够为大家带来帮助。

分子筛催化剂又称沸石催化剂,指以分子筛为催化活性组分或主要活性组分之一的催化剂,工业上用量最大的是分子筛裂化催化剂,它属于固体酸催化剂。

此外,常用的还有具双功能催化作用的载金属分子筛催化剂,如钯-超稳Y型分子筛加氢裂化催化剂。

催化性质按分子筛的催化性质,可分为分子筛固体酸催化剂、金属分子筛双功能催化剂和分子筛择形催化剂三大类。

按分子筛的类型分类,则分子筛催化剂的分类和分子筛的分类相同。

分子筛催化剂中通常只含有5%~15%的分子筛,其余部分可称为基质,通常由难熔性无机氧化物或其混合物和粘土组成。

基质的作用是使分子筛良好分散,使分子筛易于粘结成形,甚至可使分子筛的热稳定性得到提高。

在催化过程中基质还起到热载体的作用。

制造催化剂时,分子筛原粉通常经胶体磨研磨后混入基质的胶体中,用喷雾、挤条或其他方法成形,再经干燥、焙烧等步骤最后制成催化剂。

安徽天普克环保吸附材料有限公司是原上海摩力克分子筛有限公司直属公司,本公司成立于2004年,由于生产量扩增,本公司在安徽合肥空港寿县新桥产业园投资建设生产基地。

公司目前拥有年产2000吨分子筛、1500吨活性氧化铝生产线各一条。

二期工程将建成4000吨分子筛生产线。

公司全面推行ISO9001质量管理体系,建有现代化的实验室和质量控制中心。

现有工程技术人员20人,其中工程师8人。

产品系列化、经营多元化,这些都是企业的发展方针,而OEM----更是公司多年的经营模式,并且得到广泛好评。

我们的用户涉及石油、化工、冶金、汽车、空调、电子仪表等行业,我们的客户群不仅是在国内而且遍及东南亚、欧美等地。

公司热忱欢迎国内外客商与我们真诚合作。

分子筛催化剂

分子筛催化剂

催化剂及其作用机理二分子筛催化剂1.分子筛的概念分子筛是结晶型的硅铝酸盐,具有均匀的孔隙结构。

分子筛中含有大量的结晶水,加热时可汽化除去,故又称沸石。

自然界存在的常称沸石,人工合成的称为分子筛。

它们的化学组成可表示为Mx/n[(Al3O2)x·(SiO2)y] ·ZH2O式中M是金属阳离子,n是它的价数,x是Al3O2的分子数,y是SiO2分子数,Z是水分子数,因为Al3O2带负电荷,金属阳离子的存在可使分子筛保持电中性。

当金属离子的化合价n = 1时,M的原子数等于Al的原子数;若n = 2,M的原子数为Al原子数的一半。

常用的分子筛主要有:方钠型沸石,如A型分子筛;八面型沸石,如X-型,Y-型分子筛;丝光型沸石(-M型);高硅型沸石,如ZSM-5等。

分子筛在各种不同的酸性催化剂中能够提供很高的活性和不寻常的选择性,且绝大多数反应是由分子筛的酸性引起的,也属于固体酸类。

近20年来在工业上得到了广泛应用,尤其在炼油工业和石油化工中作为工业催化剂占有重要地位。

2.分子筛的结构特征(1)四个方面、三种层次:分子筛的结构特征可以分为四个方面、三种不同的结构层次。

第一个结构层次也就是最基本的结构单元硅氧四面体(SiO4)和铝氧四面体(AlO4),它们构成分子筛的骨架。

相邻的四面体由氧桥连结成环。

环是分子筛结构的第二个层次,按成环的氧原子数划分,有四元氧环、五元氧环、六元氧环、八元氧环、十元氧环和十二元氧环等。

环是分子筛的通道孔口,对通过分子起着筛分作用。

氧环通过氧桥相互联结,形成具有三维空间的多面体。

各种各样的多面体是分子筛结构的第三个层次。

多面体有中空的笼,笼是分子筛结构的重要特征。

笼分为α笼,八面沸石笼,β笼和γ笼等。

(2)分子筛的笼:α笼:是A型分子筛骨架结构的主要孔穴,它是由12个四元环,8个六元环及6个八元环组成的二十六面体。

笼的平均孔径为1.14nm,空腔体积为760[Å]3。

《分子筛催化剂》课件

《分子筛催化剂》课件

分子筛催化剂在其他领域的应用拓展
能源化工领域
利用分子筛催化剂在燃料脱硫、 低碳烷烃异构化、生物质转化等 方面的应用,推动能源化工产业
的绿色化和高效化。
环境治理领域
利用分子筛催化剂进行氮氧化物还 原、挥发性有机物治理、污水处理 等方面的应用,为环境保护做出贡 献。
生物医药领域
探索分子筛催化剂在药物合成、生 物催化等方面的应用,为生物医药 产业提供新的技术支持。
献。
05
分子筛催化剂的发展趋势与展 望
Chapter
提高催化性能的新途径
优化分子筛的合成与改性
通过调整合成条件、引入功能性助剂或进行后处理改性,提高分 子筛的活性、选择性和稳定性。
纳米结构调控
利用纳米技术调控分子筛的晶型、孔径、酸性等性质,实现高效催 化。
多功能化设计
结合不同催化活性中心的协同作用,开发具有多功能性的分子筛催 化剂。
形貌分析
形貌是指催化剂的外观形状、尺寸和 表面结构等特征,形貌分析是了解催 化剂性能的重要手段。
形貌分析有助于了解催化剂的活性位 点分布、扩散性能和反应动力学等, 从而更好地优化催化剂的性能。
扫描电子显微镜(SEM)和透射电子 显微镜(TEM)是常用的形貌分析方 法,可以观察催化剂的表面形貌、粒 径分布和晶体结构等。
发展新型分研究新型分子筛结构,如拓扑结构、硅铝比、孔道排列等,以发 现具有优异性能的新型分子筛催化剂。
金属活性中心的引入
通过金属离子交换或负载金属纳米颗粒,引入金属活性中心,提高 分子筛催化剂的氧化还原性能。
复合分子筛的研发
将不同类型分子筛进行复合,实现优势互补,提高催化性能。
纳米合成方法的缺点
制备过程复杂、成本较高。

分子筛型催化剂

分子筛型催化剂

分子筛型催化剂摘要:一、分子筛型催化剂的概述二、分子筛型催化剂的分类与特点三、分子筛型催化剂的应用领域四、分子筛型催化剂的研究与发展趋势五、我国在分子筛型催化剂领域的进展正文:分子筛型催化剂是一种具有多孔结构的催化剂,其内部孔道具有特定的分子筛选功能,可以实现对不同分子的大小、形状和性质进行筛选和转化。

由于其独特的性能,分子筛型催化剂在化学、石油、环保等领域具有广泛的应用。

一、分子筛型催化剂的概述分子筛型催化剂是由分子筛载体和活性组分组成的复合催化剂。

分子筛载体具有较高的比表面积和孔容,能提供大量的活性位点,从而提高催化剂的活性和选择性。

活性组分可以是金属、金属氧化物或有机化合物等,根据不同的反应需求进行选择。

二、分子筛型催化剂的分类与特点根据分子筛的骨架结构和活性组分的不同,分子筛型催化剂可分为以下几类:1.硅铝酸盐分子筛:具有良好的酸性、碱性和中性环境,广泛应用于石油化工、环保等领域。

2.金属有机骨架分子筛(MOFs):具有高比表面积、可调结构和化学功能团,具有很高的活性和选择性。

3.磷酸盐分子筛:具有良好的酸性、碱性和中性环境,可用于催化剂和吸附剂等。

4.分子筛膜:具有较高的分离效率和稳定性,可用于气体分离、水处理等领域。

三、分子筛型催化剂的应用领域1.石油化工:用于催化裂化、重整、加氢等过程。

2.环保:用于气体净化、废水处理等。

3.化学工业:用于合成氨、醇类合成、氧化还原等过程。

4.能源领域:用于燃料电池、电解水制氢等。

四、分子筛型催化剂的研究与发展趋势1.分子筛的设计与合成:通过计算机模拟等技术,预测和设计具有特定功能的分子筛。

2.活性组分的引入:研究不同活性组分对分子筛催化性能的影响,提高催化剂的活性和选择性。

3.分子筛催化剂的制备工艺:优化制备工艺,提高催化剂的稳定性和寿命。

4.分子筛催化剂的应用研究:探索分子筛催化剂在新能源、环境保护等领域的应用。

五、我国在分子筛型催化剂领域的进展我国在分子筛型催化剂领域取得了显著的成果,不仅在理论和实践方面取得了突破,而且已在石油化工、环保等领域得到广泛应用。

hc 分子筛催化剂

hc 分子筛催化剂

hc 分子筛催化剂
HC 分子筛催化剂是一种具有特殊孔道和表面酸性的催化剂,广泛应用于化学反应中。

它的特殊孔道和表面酸性使得它在化学反应中具有很高的选择性和活性。

HC 分子筛催化剂通常由金属氧化物和分子筛结构材料组成,内部排列成有序的结构,孔道大小和形状可适应不同分子的大小和形状。

金属氧化物则提供了表面酸性位点,用于催化反应。

HC 分子筛催化剂的工作原理主要是利用它的内部孔道吸附反应物,并使反应物在其表面上发生催化反应。

由于分子筛的孔道和表面酸性特点,HC 分子筛催化剂有很高的选择性,能够在化学反应中产生特定的产物,同时对于某些反应,还能够提高反应速率和产率。

HC 分子筛催化剂的应用已经广泛涉及了化工、石油、医药、环境等多个领域,例如裂化反应、脱蜡反应、烷基化反应等。

此外,HC 分子筛催化剂还具有优良的耐热性、稳定性和再生性,使得它在工业生产中具有广泛的应用前景。

以上内容仅供参考,如需获取更准确的信息,建议查阅HC分子筛催化剂的相关资料或咨询相关领域专家。

分子筛催化原理

分子筛催化原理

分子筛催化原理
分子筛是一种具有特定孔径和分子筛选性的晶体材料,常用作催化剂的载体。

分子筛通过其特殊的孔结构,可以将分子按照其大小和形状进行筛选和吸附。

在催化反应中,分子筛通常用作固体酸或碱催化剂。

其催化原理可以解释如下:在分子筛的孔结构中,存在着酸性或碱性位点,具有与反应物相互作用的能力。

对于酸性分子筛催化剂,其酸性位点可以吸附和解离反应物的酸和碱,从而形成反应中间体或过渡态。

这些中间体或过渡态在分子筛内进行反应,产生所需的产物。

这种吸附和反应过程发生在分子筛的孔道中,限制了分子的运动,提高了反应的选择性和效率。

对于碱性分子筛催化剂,其碱性位点可以吸附和解离反应物中的酸性部分,从而形成相应的碱性中间体。

这些碱性中间体在分子筛内进行反应,生成所需的产物。

分子筛催化的另一个重要特点是其具有较高的热稳定性和抗蚀性,这使得其在高温、高压和腐蚀性环境下能够保持良好的催化活性和选择性。

总之,分子筛催化原理是通过其特殊的孔结构和酸碱性位点,将反应物限制在孔道内,促进反应的进行,并提高反应的选择性和效率。

分子筛类催化剂

分子筛类催化剂

分子筛类催化剂
分子筛类催化剂是一类利用分子筛作为载体的催化剂。

分子筛是一种具有高度结晶性、孔洞结构规则的多孔固体材料,由硅氧四面体和氧化硅锆、钝化金属等组成。

分子筛具有孔径可调、拓扑结构稳定等特点,能够选择性地吸附和催化分子,因此广泛应用于各种催化反应中。

分子筛类催化剂具有以下特点:
1. 高活性:分子筛中具有大量的酸性或碱性活性位点,能够提供高催化活性。

2. 选择性能好:分子筛具有特殊的孔洞结构和拓扑结构,能够选择性地吸附和催化分子,从而实现对目标反应产物的高选择性。

3. 可控调节孔径和孔结构:分子筛的孔径和孔结构可以通过合成方法来调节,使其适应不同类型的反应,实现对反应速率和产物选择性的调控。

4. 热稳定性好:分子筛具有良好的热稳定性,能够在高温条件下进行反应而不失活。

分子筛类催化剂广泛应用于石油化工、有机合成、环境保护等领域的反应中,如催化裂化、异构化、氧化、脱水、脱氢等反应。

其应用范围还在不断拓展,不断涌现出新的应用领域和新的催化反应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分子筛催化剂分子筛催化剂及其进化柴油机尾气的研究一、分子筛催化剂1、分子筛的相关解释分子筛, 常称沸石或沸石分子筛, 按经典的定义为“是具有可以被很多大的离子和水分占据孔穴(道) 骨架结构的铝硅酸盐”。

照传统定义,分子筛是具有均一结构,能将不同大小分子分离或选择性反应的固体吸附剂或催化剂。

狭义讲,分子筛是结晶态的硅酸盐或硅铝酸盐,由硅氧四面体或铝氧四面体通过氧桥键连相连形成孔道和空隙体系,从而具有筛分分子的特性。

基本可分为A、X、Y、M和ZSM几种型号,研究者常把它归属固体酸一类。

2、分子筛催化剂的分类及其特点分子筛按孔道大小划分,分别有小于2 nm、2—50 nm和大于50 nm的分子筛,它们分别称为微孔、介孔和大孔分子筛。

分子筛根据孔径大小可分为微孔、介孔和大孔分子筛3 大类。

微孔分子筛具有强酸性和高水热稳定性等优点和特殊“择形催化”性能,但也存在着孔径狭窄、扩散阻力大等缺点,从而大大限制了在大分子催化反应中的应用。

介孔分子筛具有比表面积高、吸附容量大、孔径大等特点,在一定程度上解决了传质扩散限制问题,但其酸性较弱且水热稳定性较差,导致其工业应用受到了限制。

为了解决上述问题,研究人员开发了多级孔分子筛,该分子筛结合了介孔和微孔分子筛的优点,在石油化工领域具有不可估量的应用前景。

3、分子筛的催化特性(1)催化反应的活性要求:比表面积大,孔分布均匀,孔径可调变,对反应物和产物有良好的形状选择;结构稳定,机械强度高,可耐高温(400~600℃),热稳定性很好,活化再生后可重复使用;对设备无腐蚀且容易与反应产物分离,生产过程中基本不产生“三废”,废催化剂处理简单,不污染环境。

如择形催化的研究体系,几乎包括了全部的烃类转化和合成,还有醇类和其它含氮、氧、硫有机化合物以及生物质的催化转化,这些都为基础研究、应用研究和工业开发开辟了广阔的领域。

一些含过渡金属的沸石分子筛不仅应用到传统的酸碱催化体系中,而且也应用到氧化一还原催化过程中。

(2)沸石分子筛的高效催化对于工业催化所用的沸石分子筛而言,高性能是基本的要求和目标。

催化材料活性中心的种类与数量,以及微孔扩散性能是影响其催化活性的内在本质因素。

催化选择性则与微孔孔道的择形性、副反应的发生、各反应分子的扩散快慢有密切关系,寿命一直是衡量催化材料性能优劣的重要指标,如何尽可能地延长催化剂寿命是催化过程的永恒话题.在催化剂活性达到要求的前提下,失活催化剂如果容易再生,结构可恢复,即可以反复再生,然后配以合适的反应工艺,将可以达到延长催化剂寿命的目的。

所以高性能不仅对沸石分子筛材料提出了更高的要求,而且需要催化材料与反应工艺、反应工程系统进行多尺度的结合与配合,最终使催化剂在工业化应用中实现高性能。

4、分子筛的结构与其性能(1)晶粒大小与形状的控制大多数沸石分子筛的孔道尺寸小于1 nm,小分子有机物在分子筛孔道中反应时,扩散会受到一定的限制,从而影响其孔道利用率及催化性能。

减小晶粒尺寸和改变晶粒形状是提高分子扩散性能和孔道利用率的手段,小晶粒或纳米分子筛比大晶粒分子筛孔道扩散路径短,其孔道利用率将大大提高,催化活性也将有提高。

(2)多级孔复合目前报道的大部分介孔材料都存在着材料热稳定性较差、缺少一定强度的表面酸性中心及酸中心易流失等缺点,其主要原因是尽管上述材料具有有序的介孔孔道,但其骨架为无定形结构。

沸石分子筛虽然具有良好的结构稳定性和较强的酸性中心,但存在分子扩散的限制,从而影响其催化反应的活性和选择性。

而微孔与介孔或大孔的多级孔复合材料有望结合二者优点并在实际应用中发挥优势。

多级孔沸石分子筛有望用于一些较大分子的催化反应及液相催化反应中。

(3)共结晶分子筛共结晶分子筛的催化本质实际上是孔道与酸性的精细调变,它是实现提高催化剂性能的一种手段。

结晶分子筛的催化性能有较大幅度的提高,例如ZSM-5/ZSM-11(MFI/MEL)共结晶分子筛应用于MTG反应时,可大范围调节汽油组分。

(4)分子筛表面修饰与其水热稳定性提高热稳定性和水热稳定性是分子筛催化剂需要考察的重要性质之一,许多工业催化反应对催化剂的热稳定性,尤其是水热稳定性要求很高,它们往往是决定催化剂寿命和反应工艺选择的关键。

以碳四烯烃催化裂解反应为例,由于该反应在水蒸气条件下进行,提高催化剂水热稳定性是碳四烯烃催化剂开发的关键.结果表明,通过对多孔材料催化活性中心进行磷氧化合物组装修饰、引入骨架杂原子等,可以提高催化材料在水蒸气条件下活性中心的稳定性。

5、分子筛催化剂的应用前景通过 20 世纪90 年代以来,随着石油化工、精细化工产业的发展和环保要求的日趋严格,对新催化剂材料的需求也不断增加。

目前,国内外相继开发出一批具有高功能化、多功能化、精密化的分子筛催化剂材料,这些催化剂在炼油和石油化工中有着广泛的应用。

分子筛的应用已经遍及石油化工、环保、生物工程、食品工业、医药等等领域,分子筛也成为炼油和石油化工中应用最广的催化材料。

而关于分子筛的研究已经成为一门独立的学科,一些已知结构的分子筛随着应用研究的深入,在一些特定过程中应用将成为可能,新结构分子筛已用于催化裂化、加氢裂化、汽油和柴油的加氢改质、润滑油加氢处理、烯烃齐聚等炼油过程和轻烯烃生产、二甲苯异构化、芳烃歧化、乙苯和异丙苯生产、不饱和烃氧化等石油化工过程。

除了石化行业,沸石分子筛在诸如选择氧化和SCR、NO等绿色化工与环保等领域将有越来越多的新的应用。

例如:纳米 ZSM-5 分子筛的合成及其在直馏汽油非临氢改质中的应用直馏汽油非临氢改质是指在催化剂的作用下, 直馏汽油和碳四组分通过选择性裂解、异构、叠合、环化和芳构化等一系列复杂的化学反应, 转化为低烯烃含量的高辛烷值汽油和优质液化气的过程. 该过程所用催化剂一般是 ZSM-5分子筛, 但存在稳定性差、操作周期较短 (一般为 1-2 月) 的问题. 这主要是由于结焦失活所致。

6、新结构分子筛的合成与催化应用(1)大孔与超大孔分子筛尽管沸石类催化剂在石油化工和精细化工中的应用已经取得了很大的进展,但由于许多分子太大(如重质原油组分、精细化学品和中间体分子等)而无法进入沸石孔道内,不能达到预期的催化效果甚至不能反应。

因此,制备具有大孔(12元环)或超大孔(大于12元环)多维结构的沸石及沸石类分子筛材料已成为近十年来人们努力追求的一个重要目标。

(2)手性分子筛目前高选择性反应在制药、发展农作物、农业化学品、食物添加剂等合成工业上都有重要的应用前景,以沸石分子筛为催化材料进行不对称合成反应时,往往需要以分子筛为主体,固载具有不对称结构的配合物和金属有机物等,以制成新的手性催化剂。

然而,这样制成的手性催化剂只能通过桥键或辅助试剂引入手性,所以催化剂的稳定性及催化寿命一直阻碍着其进一步的工业开发应用。

如果带有手性结构的分子筛材料能够被合成出来,其稳定性的问题就可能迎刃而解。

(3)分子筛的改性美国联合碳化公司(UCc)于1992年开发了非硅、铝骨架的新型分子筛,即磷、铝系列分子筛。

后来又将硅引入磷、铝系列分子筛,合成出一系列硅、磷、铝分子筛如sAP011,它的选择性优予ZSM-5。

此外,还可引入No、Fe、Co、Ti等杂原子,以增加分子筛骨架的电荷的调变作用并有效改变其催化功能。

7、分子筛催化剂研究面临的挑战随着世界经济对石化产品需求的不断增长,石油资源短缺的矛盾日益突出,从工业催化角度思考,围绕资源高效与综合利用、节能降耗、原子经济和环境友好等目标,如何进一步提高分子筛催化剂性能与效率、分子筛催化剂设计与制各是否能达到可控、分子筛的经济生产工艺、分子筛的催化新应用等诸多问题是分子筛催化剂研究面临的主要挑战,具体来说,可列举如下:(1)实际的工业催化反应千差万别,另外还面临市场需求及原料差异等变化,如何根据催化反应的特点和要求设计分子筛材料并做到“量体裁衣”是面临的挑战之一。

其中需要考虑的是孔道结构与大小、晶粒形貌(包括大小和形状)、材料组成、酸强度及其分布等能否做到可控甚至精细可控等问题。

(2)针对现有工业催化反应,能否不断提高原有分子筛的催化效率和性能。

需要考虑什么样的分子筛孔道结构对提高催化反应性能有利,如何提高孔道的有效利用率或催化效率,孔道是否可以更加丰富,分子筛骨架杂原子对催化性能有何影响,以及分子筛的表面化学与表面修饰科学应怎样发展等问题。

(3)寻找与合成具具有更高催化性能的分子筛材料,革新原有工艺。

这一点对创新能力的要求很高,难度也很大,其中包括合成水热稳定性高的大孔分子筛、手性分子筛及特殊结构分子筛等。

目前,分子筛拓扑结构已达190余种,每种分子筛都各有什么特点、哪种分子筛具有工业应用前景、采用什么样的分子筛会带来更高的催化性能等问题都需要思考和研究。

(4)目前,一些有工业应用前景的沸石分子筛在合成中使用价格较高的有机胺作结构导向剂,使得合成成本较高,影响其经济性,如何优化这些沸石分子筛的合成方法、降低合成成本是值得关注和面临的挑战。

(5)寻找沸石分子筛催化剂的新用途,如在精细化工、环保等方面。

8、分子筛的合成方法目前,分子筛合成方法主要是水热合成法和水热转化法两种。

除此之外,也有很多新兴的合成方法。

(1)水热合成法,早期的分子筛都是通过水热合成法来制备的。

(2)水热转化法,水热转化法是水热合成法是将合成分子筛所需的4 种高活性物质原料( 硅化合物、含铝化合物、碱和水) 按一定比例配制成反应混合物,在一定温度(100-300℃ ) 下进行晶华反应,再经过滤、洗涤、离子交换、成型、活化等工序即可制得。

用水热转化法可以制备A、X、Y 型分子筛,但由于工艺本身的限制,不能制备高硅分子筛。

并且受矿物本身纯度的限制,制得的分子筛纯度低,活性和结晶度较差。

(3)微波技术微波是一种频率在30-300 MHz( 波长在1cm-1m)区域内的电磁波,近年来, 微波技术在催化研究领域中的应用获得了较快的发展, 主要应用在分子筛及氧化铝制备,催化剂上负载活性组分以及催化剂干燥等方面。

(4)离子热法离子热合成法是采用离子液体作为溶剂模板剂,在常压下晶化反应实现分子筛的合成。

(5)纳米技术纳米催化剂是指采用颗粒尺寸为纳米量级( 颗粒直径一般在1-100nm 之间) 的纳米微料为主体的材料。

由于纳米粒子独特的性能, 使其催化活性和选择性大大高于传统催化剂。

目前纳米催化剂的应用研究有纳米金属离子催化剂,纳米金属氧化物催化剂,纳米半导体粒子的光催化,纳米固体超强酸催化剂,纳米复合固体超强酸催化剂,磁性纳米固体酸催化剂,碳纳米管催化剂等等。

二、分子筛催化剂净化柴油车尾气1、柴油车尾气SCR脱硝的特点及发展柴油车尾气排放的氮氧化物(NOx)已成为我国大气的主要污染源之一,是造成灰霾、酸雨和光化学烟雾污染的重要原因。

相关文档
最新文档