6含煤沉积体系

合集下载

鄂尔多斯盆地低阶煤煤层气资源评价

鄂尔多斯盆地低阶煤煤层气资源评价

延6期沉积体系与煤层分布特征图3 鄂尔多斯盆地侏罗系延安期延6沉积相图图4 延安组延6煤层厚度及埋深图(3)煤岩煤质特征A、煤岩显微组分分布特征盆地北部煤岩显微组分中镜质组含量略高于南部,北部的煤岩显微组分特征如表3所示,从统计结果看,镜质组平均含量57.85%,半丝和丝质组平均含量39.65%,稳定组含量1.82%。

镜质体反射率变化在0.48~0.58%之间,总体来说镜质组和丝质组含量均属中等。

类煤的主要化学指标变化均较大,水分为20.97~47.4889.75%侏罗系延安组煤岩镜煤反射率(Ro)0.3%~1.0%,为褐煤~气煤。

总体煤阶北低南高,高煤级分布位于盆地南部的庆阳—吴旗—富县之间。

C、煤热演化程度及含气量鄂尔多斯盆地侏罗系延安组煤岩热演化程度图(1)构造条件延T T 宁探1宁129煤层反射N低角度单斜式向斜式高角度单斜式图5 侏罗系煤层气成藏模式图(2)顶板岩性延安组延9煤层顶板岩性及厚度图由延安组延9煤层顶板岩性及厚度图可以看出,延9煤顶板岩性主要有泥岩和砂岩(泥质砂岩)两类,泥岩顶板分布面积约占区块总面积的3/4,砂岩顶板区占1/4弱,对于煤层气勘探而言砂岩顶板区不利于煤层气成藏,也不利于煤层气开发,泥岩顶板区煤层气保存条件好,有利于煤层气开发。

煤顶砂岩分布区,煤层缺失、减薄或分叉,砂岩顶板不但使煤层变薄或尖灭,甚至连煤层都不存在,更谈不上煤层气成藏,可见,煤层顶板岩性对延安组煤层气成藏具有极为重要的控制作用。

(3)水文地质条件延5―延7期水化学性质分布图延9―延10期水化学性质分布图(1)煤岩储集性能煤样进行实验室分析,内容包括扫描电镜、压汞法、铸体薄片鉴定、孔隙度测定等。

煤层割理系统是煤层甲烷从煤基质中解吸扩散出来后渗流并向井筒移动的主要通道,研究并预测割(2)煤层含气性(3)煤层气资源潜力应用体积法,对侏罗系延安组区带煤层气资源量进行了计算。

计算结果表明,鄂尔多斯盆地侏罗系延安组煤层埋深300~2000m 埋深内,含煤总面积8.35×104km2,煤层气总资源量8.08×1012m3。

煤矿地质地层及水文地质资料

煤矿地质地层及水文地质资料

1.1.2 位置及交通磨心坡煤矿位于重庆市北碚区N50°E,直距5km,公路运距8km,行政区划属北碚区东阳街道磨心坡村所辖,主平硐井口的平面直角坐标为(1954年北京坐标系):X=3305715.256Y=36352543.386H=+222.420m井口的地理坐标为:东经:106°28′26″北纬:29°51′39″襄渝铁路、仪(陇)北(碚)公路由南向北纵贯矿区西侧,渝遂铁路、渝武高速公路从矿井南端经过。

矿井生产的煤炭经磨心坡洗煤厂洗选后,主要经皮带走廊上襄渝铁路运达各地用户,矿区交通方便。

详见交通位置图1-1。

图1-1:磨心坡煤矿交通位置图比例尺1:200万1.1.4 自然地理1、地形地貌磨心坡煤矿地处华蓥山脉南段,两排近于平行的山脊(内山和外山)走向基本与构造线一致,呈N25°~35°E。

总的地形是北东高、南西低,两山之间为嘉陵江组石灰岩溶蚀槽谷,山脊高一般在+600~+700m以上,最高峰位于北西部的马鞍山,标高+815.84m,最低点位于矿区南西角麻柳湾,标高+400m,亦为矿区最低侵蚀基准面,相对高差415.84m,属低山地貌。

山脊两侧近于东西向的横向冲沟发育。

矿区内嘉陵江组、飞仙关组第二段、四段、长兴组及龙潭组石灰岩的岩溶漏斗、落水洞等发育。

本区属溶蚀、剥蚀低山地貌。

2、气候该区气候属亚热带季风湿润气候区,具有冬暖夏热,春秋多变,降水充沛,分配不均,空气湿润等特点。

据北碚区气象局资料,年最大降雨量1544.3mm(1981年),年最小降雨量783.2mm(1990年),多年平均降雨量1163.3mm,降雨集中在每年的5~9月,降雨量约占全年降雨量的65%,多年平均最大日降雨量100mm,最近10年日最大降雨量177.3mm(2003年7月19日)。

多年平均气温18.4℃,极端最低气温-2.5℃(1977年1月29日),极端最高气温43℃,(1951年8月15日)。

6-含煤沉积体系

6-含煤沉积体系

2024/8/2
23
湖北早二叠世梁水组煤层形态
2024/8/2
24
A
B A′
A′ A
B
B′
+140 +130 +120 +110 +100 B ′
(a)
辽宁阜新煤盆地泥炭沼泽基底不平图示
(a)-平面图;(b)、(c)-剖面图 1-泥岩;2-砂岩;3-砾岩;4-巷道;5-煤层底板等高线
(b)
1 3 110 5
后生变化:
指泥炭层被新的沉积物覆盖以后,由于构造变动、河流 冲蚀等后期地质作用所引起的煤层形态和煤 层厚度的变化。
2024/8/2
22
六、煤层厚度及其变化
1、泥炭沼泽基底不平
特征:“顶平底不平”; 往往在含煤岩系的底部或下部的煤层 煤厚变化极不规则;基底古地形低洼处煤层增厚,向突起部位 尖灭变薄,呈现超覆样式;煤层及夹石层的层理与顶板岩层平 行,在底板隆起处可见煤分层及夹石层被隔开而不连续。
(c) 2 4
2024/8/2图 4-3 辽宁阜新煤盆地泥炭
25
六、煤层厚度及其变化
2、地壳不均衡沉降:
含煤岩系形成过程中,聚煤拗陷基底沉降速度往往不平 衡,这种差异性(同沉积褶皱、同沉积断裂,以及差异小振 荡运动等)可导致煤层形态和厚度的变化。在沉降速度与植 物遗体堆积速度近于一致的地段,形成较厚的煤层;其它地 段煤厚较薄。
2024/8/2
29
六、煤层厚度及其变化
另外,按照国家目前有关政策,根据煤种、产状、开采方法和不 同地区的资源情况等,所规定的可采厚度的下限标准,称为最低可 采厚度。这个标准在各个国家往往是不同的,甚至同一国家在不同 时期也可根据技术的发展和国民经济对煤的需要情况而有所变动。

宁武煤田朔南矿区5、6号煤层沉积环境及对比研究

宁武煤田朔南矿区5、6号煤层沉积环境及对比研究
煤 层组 成 。 岩性 呈下 粗上 细 的组合 特征 。 岩 主要 为 砂 粗 、 、 粒 砂 岩 , 多 位 于 中下 部 , 体 厚 度 变 化 中 细 大 砂 大 , 为透 镜状 , 部岩性 较 细 , 般 为粉砂 岩 、 质 多 上 一 砂 泥岩 、 岩及少 量铝 土质 泥 岩 。1 泥 号煤 层为 不可 采煤 层 ,、 2 3号煤 层为 局部 可采煤 层 。
j 角 洲平 原水 下 沉 积体 系 的 两个 不 同旋 回 。运 用 岩 性标 志 , 性 参 数及 煤 质 特 征 可 有 效 区 分 5 6号 煤 层 , 进 行 追 物 、 并 踪对比 , 进一步勘探和煤矿开采提供了资料。 为
关 键 词 : 原 组 上 段 煤 层 ; 积 环 境 ; 层 对 比 ; 南 矿 区 太 沉 煤 朔
组 合特 征 可分 为上 下两段 ① 下 段 主要 由 中 、 细砂 岩 、 砂 岩 、 岩 和 4号 粉 泥
煤 组 成 , 中 4号 煤 为稳 定 可 采煤 层 , 岩 以 K 、 5 其 砂 l ( 砂 岩较 为 发育 。
② 上段 主要 由砂 岩 、 泥岩 、 砂质 泥 岩和 12 3号 、、
5 6号煤 层组 成 , K 砂岩 较为 发育 。 、 K 、
12山西组 岩性 特征 _
宁武煤 田位 于 山西 陆 台的北 端 ,是祁 吕贺 山字 型前 弧 与东 翼反 射弧 的过 渡 部位 ,属 于新 华夏 系 第
三 隆起 带 中坳 陷所形 成 的雁行 斜 列 的多字 型 含煤 盆
维普资讯
第2 0卷 5期 20 0 8年 5 月
文章 编号 :64 10 (0 8 0— 0 7 0 17 — 83 20 )5 00 — 3

第9章 地质说明书

第9章 地质说明书
第9章 地质说明书与地质报告的编制
一、地质说明书 地质说明书是矿井地质部门为各项工程设计和管 理提供的地质预测资料。 (一)地质说明书的种类
1.建井(或基建)地质说明书 矿井基建工程设计、施工和管理的地质依据; 根据精查勘探报告、钻孔资料,按照建井设 计与施工要求编制而成。

文字部分: (1)简要论述地质、水文地质和工程地质条件; (2)重点说明基岩风化带、断裂破碎带、强含水 层、流砂层、不稳固岩土层、煤层、瓦斯和地温 对基建工程设计与施工的影响; (3)明确提出设计和施工中应注意的问题和建议
③掌握区内可采煤层顶板(伪顶、直接顶、基本顶) 的厚度、岩性、含水性及各煤层变化的情况
④查明与老采区、小窑等的空间关系和确定防水煤 柱
4.掘进地质说明书 开拓巷道和准备巷道施工的地质依据。 在下列情况下编制说明书: (1)地质构造比较复杂,煤岩层层位不易掌握,巷 道设计要求较高的开拓和准备巷道施工之前。 (2)多煤层、构造复杂采区,主要巷道掘完后,出 现较大的构造变化,致使原采区设计要作较大的调 整,为了合理划分采区工作面,指导采区巷道施工。 编制方法基本同采区地质说明书








4水文地质 4.1采区水文地质条件 4.1.1含水层 4.1.2隔水层组 4.1.3含水层间的水力联系 4.2底板突水危险性分析 4.2.1十三~十四灰、奥灰富水性 4.2.2根据底板隔水层阻水能力进行的底板突水性 分区 4.2.3采区十四灰、奥灰突水危险性分析 4.3采区涌水量预计 4.4防治水工作建议

第三章 煤系、煤层及煤质特征 煤系地层:煤系地层的地质年代、厚度、岩性、含 煤层数、可采层数、煤层总厚度以及煤系变化情况; 煤层:煤层特征,煤层分层的最小、最大厚度和一 般厚度,层间距,结构,顶(底)板岩性及稳定性, 以及煤质特征。 第四章 开采地质条件 煤层顶、底板特征,煤的自燃、煤尘和瓦斯等情况。 第五章 井田水文地质特征 井田水文地质条件及各含水层(组)分布规律和特 征;井巷实见涌(突)水点位置,涌(突)水量及 处理情况;井巷涌水量与巷道长度的关系;矿井充 水因素,矿井涌水量大小,变化趋势及防治水措施。

沉积学 知识点及试题汇总

沉积学 知识点及试题汇总

一、名词解释1、沉积学:研究沉积物、沉积过程、沉积岩和沉积环境的科学叫做沉积学。

2、沉积岩:是组成岩石圈三大类岩石(岩浆岩、变质岩、沉积岩)之一,是在地壳表层条件下,由母岩(岩浆岩、变质岩、先成的沉积岩)的风化产物、火山物质、生物来源的物质、宇宙物质等沉积岩原始物质,经过搬运作用、沉积作用和沉积后作用而形成的岩石。

3、牛顿流体:服从牛顿内摩擦定律的流体称作牛顿流体,服从牛顿内摩擦定律,是指在时间不变的条件下,随着流速梯度的变化,流体动力粘度系数始终保持一个常数。

牵引流属于牛顿流体。

[非牛顿流体]从流体力学性质来说,凡不服从牛顿内磨擦定律的流体称为非牛顿流体。

非牛顿流体在流速梯度变化时,流体动力粘度系数亦发生变化。

4、佛罗得数:惯性力和重力之间的一个比值参数,r F =惯性力/重力=22(/)//()v L g v Lg =,在明渠流中,一些科技人员定义为:12/()r F v Dg =,D 为明渠流水深。

1r F >,为水浅激流的情况,1r F <为水身缓流的情况。

5、风化作用:是地壳表层岩石的一种破坏作用,指因温度压力的变化、水以及各种酸的溶蚀作用,生物的作用以及各种地质营力的剥蚀作用等破坏作用,地壳表层的岩石处于不稳定状态,逐渐遭受破坏,转变为风化产物的过程。

6、风化壳:指母岩风化残余物质构成的地表岩石的表层部分。

7、物理风化作用:指因温度的变化、晶体生长、重力作用、生物活动、水、冰及风等的破坏作用,母岩发生机械破碎,而化学成分不改变,形成新的岩石碎屑和矿物碎屑等碎屑物质的过程。

8、化学风化作用:在氧、水和溶于水中的各种酸的作用下,母岩遭受氧化、水解和溶滤等化学变化,使其分解而产生新矿物的过程。

9、生物风化作用(书上无明确定义):指因生物活动或生物分泌出的有机酸的破坏作用,岩石发生机械破坏、溶解形成新矿物的过程。

10、沉积分异作用:是指母岩风化产物及其他来源的沉积物,在搬运、沉积的过程中会按照颗粒大小、形状、相对密度、矿物成分和化学成分在地表依次沉积下来的现象。

含煤沉积体系

含煤沉积体系

二、煤 层
4、煤层厚度、煤层形态及其控制因素 (4)煤层形态和煤厚变化的同沉积构造控制
②盆内次级隆起和拗陷所引起的煤厚变化
聚煤盆地内部往往发育次级隆起和拗陷,或次级同沉积褶皱,它们对煤层形 态和煤层厚度具有不同程度的控制作用。由于构造分异和沉积补偿之间的不同状 态,煤层的发育状况亦多种多样。
一般情况下,盆地内的次级隆起、同沉积背斜构成蓄水盆地内的浅水地带, 沼泽持续发育,出现厚煤层或聚结煤层带,煤层向拗陷部位分岔、尖灭,但也可 出现相反的情况,即盆地内的次级拗陷部位,湖沼相持续发育,而隆起部位冲积 相发育,并存在频繁的层序间断。
二、煤 层
4、煤层厚度、煤层形态及其控制因素 (3)煤层形态和厚度变化的沉积控制 ①沉积体系和煤层厚度、形态变化特征
冲积扇、河流、湖泊、三角洲、障壁岛、碳酸盐台地等沉积体系等 各种成煤模式,可以确定沉积环境和煤层特征的关系。冲积扇体系是聚 煤盆地的边缘环境;河流体系可区分为曲流河、辫状河和网状河体系。 曲流河体系中,泥炭沼泽主要发育于堤后、河道间泛滥盆地和废弃河道 上;三角洲体系是由各种亚环境组成的复合体,泥炭沼泽发育于支流间 泛滥盆地、间湾和废弃的分流河道和叶体上;泻湖-障壁岛体系中,泥 炭沼泽发育于障壁后、潮汐三角洲、潮坪和泻湖填积的泥炭沼泽。
二、煤 层
单一煤层分岔为两个煤分层或独立的煤层;被很厚的非煤沉积体分 隔的两个煤层,也可合并而变成单一煤层。 煤层分岔可以表现为多种样式:在最简单的情况下,分岔是由于煤 层夹有沉积透镜体所致;如果存在若干非煤沉积透镜体,并且在区域内逐 渐分岔,可形成连续分枝型式(煤层的分岔也可以是从一个煤分层分离,
二、煤 层
4、煤层厚度、煤层形态及其控制因素 (3)煤层形态和厚度变化的沉积控制 ②煤层分岔的主要类型

煤的形成过程

煤的形成过程

3 成煤原始物质-植物的演化史
l 蕨类、种子蕨类时期: D3~ P1。半陆生转变为陆 生的重要时期,也是第一个重要聚煤史。
l 裸子植物时期: D3~T1。海西和印支运动,陆地面 积增大,地形分化,气候改变,适应干旱气候的被 子植物繁盛。第二个重要聚煤史。
l 被子植物: K3~今。被子植物占优势,第三个重 要聚煤史。
其结果生成一种含碳氢较原来物质为多含氧较原来物质少的新物质成煤作用植物残骸的分解方式成煤作用植物残骸的分解过程原始物质过程名称与氧的关系与水的关系作用的性质陆生植物及沼泽植物高等植物全败作用氧气自由进入有水存在完全氧化无固体含碳有机物残留半败作用有少量氧气进入有水存在腐殖化固体含碳化合物腐殖土泥炭化作用开始有氧进入后来无氧开始有水存在后来没于水中先腐殖化作用后还原作用固体含碳化合物泥炭水中有机物低等植物腐败作用腐泥化作用无氧气在无死水中主要为还原作用固体富氢造成泥炭成分性质不同的影响因素一植物群落木本植物富含木质纤维素容易形成凝胶化物质多的泥炭石炭纪聚煤期形成的煤田多以富亮光型煤为主
3 成煤原始物质-植物、煤演化关系
植物的演化对煤的形成和聚积有很重要的影响: 首先,煤的形成和大量聚积始于植物出现之后。 只有植物大量的繁殖和发展,才会有聚煤作用的发生。 其次,由于植物从水生到陆生、从低级向高级的 发展和演化,聚煤作用在地质历史发展过程中也在发 生变化,成煤环境从浅海到滨海直至扩大到内陆,聚 煤作用不断增强。 第三,新的聚煤时期的出现,都是以新门类植物 群的出现为前提。
沼泽的形成和发育是地质、地貌、气候、水文、 土壤、植被等多种自然因素综合作用的产物。
3 成煤原始物质-植物遗体的堆积环境
1)地貌 — 低洼的能够积水的地形和能够给植物提供 养分的土壤; 2)气候 — 年降水量大于蒸发量的气候条件; 3)水文 — 入水量(流入的地表水、地下水与大气降 水)>出水量(流出的地表水、地下水与蒸发量)。 2. 泥炭沼泽的发育地带 1)泥炭沼泽重要发育地带 — 滨海平原:海洋与陆地 相互作用的结果; 2)内陆有利发育泥炭沼泽的地区 — 河湖地带。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 3 110 5
(c) 2 4
2019/10/图26 4-3 辽宁阜新煤盆地泥炭
25
六、煤层厚度及其变化
2、地壳不均衡沉降:
含煤岩系形成过程中,聚煤拗陷基底沉降速度往往不平 衡,这种差异性(同沉积褶皱、同沉积断裂,以及差异小振 荡运动等)可导致煤层形态和厚度的变化。在沉降速度与植 物遗体堆积速度近于一致的地段,形成较厚的煤层;其它地 段煤厚较薄。
另外,按照国家目前有关政策,根据煤种、产状、开采方法和不 同地区的资源情况等,所规定的可采厚度的下限标准,称为最低可 采厚度。这个标准在各个国家往往是不同的,甚至同一国家在不同 时期也可根据技术的发展和国民经济对煤的需要情况而有所变动。
2019/10/26
17
六、煤层厚度及其变化
目前,我国国土资源部规定的一般地区煤层的最低 可采厚度标准(井下开采)详见下表。
值得指出,如果直接底的岩性是遇水膨胀的粘土岩,则容易引 起底板的隆起,轻者影响运输,重者使巷道遭到破坏。 2)基本底:俗称“老底”。通常位于直接底之下。厚度较大,岩性 常为砂岩、粉砂岩等。
2019/10/26
10
三、煤层的结构
根据煤层中有无较稳定的夹石层,可将煤层分为简单 结构和复杂结构两种。
1、简单结构煤层 煤层中没有呈层状出现的较稳
如果在总体相对均衡补偿的状态下, 其间发生短暂的地壳沉降速度大于植 物遗体堆积速度,便形成含有夹石的 煤层。
2019/10/26
6
一、煤层的形成
3、过度补偿:当壳沉降速度 小于植物遗体堆积速度时, 由于植物遗体堆积过快,造 成沼泽覆水变浅,常使植物 遗体氧化分解,不利于泥炭 的形成,甚至已形成的泥炭 也会遭受侵蚀破坏,因而只 能形成薄煤层或不能形成煤 层。
NW SE
10 5
0
250 500m
图 4垂-1直0 垂古直河古床河边床缘边的缘沉的积沉剖积剖面面图图
1—页岩; 2—粉砂岩; 3—砂岩; 4—煤层
1-页岩;(2-据粉T砂ay岩lo;r,319-8砂1)岩;4-煤层
2019/10/26
28
六、煤层厚度及其变化
滨海沼泽中堆积的泥炭 遭受海水冲蚀而导致煤层厚 度变化的特点是:煤层直接 顶板常为石灰岩,煤层表面 形成大小不等的凹坑或槽沟; 当海水冲蚀影响范围较广, 即冲蚀比较严重,在一定范 围内煤层几乎完全缺失。
一般地区煤层最低可采厚度标准(地下开采)

煤类
产状 度
炼焦用煤
非炼焦用
褐煤
<25°
0.70m 0.80m 1.50m
倾角 25°~45°
0.60m 0.70m 1.40m
>45°
0.50m 0.60m 1.30m
2019/10/26
18
六、煤层厚度及其变化
煤层厚度是影响采煤方法选择的主要因素之一。根据 煤矿生产的需要,将煤层分为三个厚度级别:
均衡补偿时间越长,则越能形成厚煤层。
2019/10/26
5
一、煤层的形成
2、不足补偿:当地壳沉降速度大于植 物遗体堆积速度时,由于植物供应不 足,沼泽覆水深度不断加大,待至水 深达一定程度,高等植物便不能生成, 使泥炭的形成失去物质来源,堆积随 之停止,在原有泥炭层之上沉积了泥、 砂等沉积物,最终成为煤层的顶板。 这种情况虽有利于泥炭层的保存,但 形成的煤层一般厚度不大。
2019/10/26
8
二、煤层的顶、底板
3)基本顶(老顶): 俗称“老顶”。一般位于直接顶 之上,有时也直接位于煤层之上,为不易垮落的坚硬岩 层,通常在煤采出后较长时间内不垮落,往往只是发生 大面积的缓慢沉降。厚度较大,岩性多为砂岩,也有石 灰岩、砂砾岩等。
应当指出,并不是所有煤层的顶板都可以分为伪顶、 直接顶和老顶,有的煤层没有伪顶,只有直接顶和老顶; 有的煤层甚至没有伪顶、直接顶,只有老顶。
一、煤层的形成
煤层是由泥炭层经煤化作用转变而成。泥炭层的堆积主要取 决于泥炭沼泽水位的变化,而泥炭沼泽水位的变化主要受植物遗 体堆积速度与地壳沉降速度之间的关系影响。因此,煤层的形成 也决定这种关系,主要表现为以下三种情况:
1、均衡补偿:地壳沉降速度与植物堆积速
度大致相等,即两者达到相对均衡补偿状态 时,沼泽保持一定深度的积水,既利于植物 大量繁殖生产,又能使植物遗体保存下来转 化成泥炭,此时可导致泥炭层不断加大。
总含煤系数是煤系中所有煤层的总厚度与含煤岩系总厚度的百分
比。用下式表示:
K m 100% M
式中:K—总含煤系数,% ;m—煤层总厚度,m ;M—含煤岩系总厚度,m。
2019/10/26
2
一、含煤岩系的概念
可采含煤系数:是指煤系中所有可采煤层的总厚度与含煤 岩系总厚度的百分比。用下式表示:
Kk
2019/10/26
7
二、煤层的顶、底板
含煤岩系中位于煤层上下一定距离内的岩层,称为煤层的顶底板。 煤层顶底板的岩石特征、性质及厚度等,对采掘工作有着直接的影 响。
1、顶板 :
根据岩层相对于煤层的位置及垮落性质的不同,可分为: 1)伪顶:指直接覆盖于煤层之上易垮落的较薄岩层。多为炭质泥岩 或泥岩,厚几厘米至几十厘米。在采煤过程中,往往随落煤而同时 垮落。 2)直接顶:通常位于伪顶之上,有的则直接位于煤层之上,由较易 垮落的一层或几层岩石组成,经常是煤采出后不久便自行跨落。厚 度一般为数米,岩性常为砂岩、泥岩及石灰岩等。
1、层状煤层:煤层呈连续层状,层位稳定,厚度变化不大,且有一 定规律。在一个井田范围内全部或大部可采。
2、似层状煤层:煤层基本连续,层位比较稳定,厚度变化较大且无 一定规律。煤层的可采面积可大于不可采面积(如藕节状煤层)或 小于不可采面积(串珠状煤层)。
3、不规则煤层:煤层层位不稳定,基本不连续,厚度变化大且无规 律可循。煤层可采面积大多小于不可采面积。常见有透镜状、扁豆 状煤层等。
此外,组成含煤岩系沉积岩的层理比较发育,常含有丰富 的植物化石,有时含有动物化石。另外,还常含有菱铁矿结 核及泥质、粉砂质等包体。
含煤岩系中除煤层外,还常伴生有其它沉积矿产,如铝土 矿、油页岩、菱铁矿、赤铁矿、褐铁矿、锰矿及磷矿等。
2019/10/26
4
第二节 煤层
煤层:是指顶、底板岩层之间所夹的一套煤与矸石层。
2019/10/26
13
四、煤层中的结核、包体和化石
结核:黄铁矿、钙质、硅质、白云石质 煤核:煤层中保有植物化石的结核 植物残体:木质部、管胞、树皮 化石:珊瑚、腕足类和有孔虫
2019/10/26
14
五、煤层的形态
煤层的形态:是指煤层的空间展布特征。根据煤层成层的连续 性、厚度变化大小及可采情况,将煤层形态分为层状、似层状和不 规则状三类:
此外,在采煤工作中,考虑开采方法,煤层厚度又可分为不同 的级别,即:
极薄煤层
0.3 ~0.5m
薄煤层
0.5~1.3 m
中厚煤层
1.3~3.5 m
厚煤层
3.5~8.0 m
特厚煤层
>8.0 m
2019/10/26
20
六、煤层厚度及其变化
(二)煤层厚度变化原因
煤层厚度差别较大,其变化范围从几厘米~几百米; 不同井田煤层厚度可以不同,即便同一井田同一煤层其 厚度也可能有很大变化。煤厚的变化影响采区和工作面 的划分,以及采煤方法的选择。因此,有必要了解煤厚 变化原因,掌握其变化规律,正确指导采掘生产。
第六章 含煤沉积体系
概述 煤层 含煤沉积体系及成煤特征
2019/10/26
1
第一节 概述
一、含煤岩系的概念
含煤岩系:又称含煤建造、含煤地层或煤系等,是指在一定地
质时期内,形成的具有成因联系且连续沉积的一套含有煤层的沉积 岩系。
不同地区含煤岩系中所含煤层的层数、厚度往往不相同,为反映
含煤岩系中含煤的程度,通常用含煤系数来表示。含煤系数又可分 为总含煤系数和可采含煤系数。
2019/10/26
12
三、煤层的结构
煤层中夹石的岩性可以是多种多样的。最常见的是 炭质泥岩、粘土岩及粉砂岩,也有油页岩、石灰岩及细 砂岩等。夹石的厚度不一,从几厘米到几十厘米。呈薄 层状、似层状或透镜状。
注意:同一煤层的结构并不是固定不变的,不仅在 不同的井田内,煤层的结构可能有变化,甚至在同一井 田内,煤层的结构也可能有变化,夹石层数有增有减, 夹石层厚度和岩性也可能发生变化。
后生变化:
指泥炭层被新的沉积物覆盖以后,由于构造变动、河流 冲蚀等后期地质作用所引起的煤层形态和煤 层厚度的变化。
2019/10/26
22
六、煤层厚度及其变化
1、泥炭沼泽基底不平
特征:“顶平底不平”; 往往在含煤岩系的底部或下部的煤层 煤厚变化极不规则;基底古地形低洼处煤层增厚,向突起部位 尖灭变薄,呈现超覆样式;煤层及夹石层的层理与顶板岩层平 行,在底板隆起处可见煤分层及夹石层被隔开而不连续。
煤层厚度分级
级别
薄煤层 中厚煤层
厚煤层
煤层厚度
≤1.30 1.31~3.50
>3.50
2019/10/26
19
六、煤层厚度及其变化
上述所列最低可采厚度,适用于一般地区,对于缺煤省区,可 根据当地需要另行规定。如我国南方各省,煤层一般较薄,且较为 缺乏,为了充分利用煤炭资源,最低可采厚度可适当降低。
2019/10/26
15
2019/10/26
五、煤层的形态
(a)—藕节状 (b)—串珠状 (c)—鸡窝状 (d)—马尾状
16
六、煤层厚度及其变化
(一)煤层厚度:
是指煤层顶、底板岩层之间的垂直距离。根据煤层结构,可分 为总厚度、有益厚度及可采厚度。 1)总厚度:是指煤层顶底板之间各煤分层和夹石层厚度的总和。 2)有益厚度:是指煤层顶底板之间各煤分层厚度的总和。 3)可采厚度:是指在现代经济技术条件下,可以开采的煤层或煤 分层厚度的总和。
相关文档
最新文档