圆的基本性质培优讲义1(含答案)

合集下载

初中数学竞赛辅导讲义及习题解答_第18讲_圆的基本性质

初中数学竞赛辅导讲义及习题解答_第18讲_圆的基本性质

初中数学竞赛辅导讲义及习题解答学历训练1.D是半径为5cm的⊙O内一点,且OD=3cm,则过点D的所有弦中,最小弦AB= .2.阅读下面材料:对于平面图形A,如果存在一个圆,使图形A上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A被这个圆所覆盖.对于平面图形A,如果存在两个或两个以上的圆,使图形A上的任意一点到其中某个圆的圆心的距离都不大于这个圆的半径,则称图形A被这些圆所覆盖.例如:图甲中的三角形被一个圆所覆盖,图乙中的四边形被两个圆所覆盖.回答下列问题:(1)边长为lcm的正方形被一个半径为r的圆所覆盖,r的最小值是cm;(2)边长为lcm的等边三角形被一个半径为r的圆所覆盖,r的最小值是cm;(3)长为2cm,宽为lcm的矩形被两个半径都为r的圆所覆盖,r的最小值是cm.(2003年南京市中考题) 3.世界上因为有了圆的图案,万物才显得富有生机,以下来自现实生活的图形中都有圆:它们看上去多么美丽与和谐,这正是因为圆具有轴对称和中心对称性.(1)请问以下三个图形中是轴对称图形的有,是中心对称图形的有(分别用下面三个图的代号a,b,c填空).(2)请你在下面的两个圆中,按要求分别画出与上面图案不重复的图案(草图) (用尺规画或徒手画均可,但要尽可能准确些,美观些).a.是轴对称图形但不是中心对称图形.b.既是轴对称图形又是中心对称图形.4.如图,AB是⊙O的直径,CD是弦,若AB=10cm,CD=8cm,那么A、B两点到直线CD的距离之和为( )A.12cm B.10cm C.8cm D.6cm5.一种花边是由如图的弓形组成的,ACB 的半径为5,弦AB =8,则弓形的高CD 为( )A .2B .25C .3D .316 6.如图,在三个等圆上各自有一条劣弧AB 、CD 、EF ,如果AB+CD=EF ,那么AB+CD 与E 的大小关系是( )A .AB+CD =EFB .AB+CD=FC . AB+CD<EFD .不能确定7.电脑CPU 芯片由一种叫“单晶硅”的材料制成,未切割前的单晶硅材料是一种薄形圆片,叫“晶圆片”.现为了生产某种CPU 芯片,需要长、宽都是1cm 的正方形小硅片若干.如果晶圆片的直径为10.05cm ,问:一张这种晶圆片能否切割出所需尺寸的小硅片66张?请说明你的方法和理由(不计切割损耗).8.如图,已知⊙O 的两条半径OA 与OB 互相垂直,C 为AmB 上的一点,且AB 2+OB 2=BC 2,求∠OAC 的度数.9.不过圆心的直线l 交⊙O 于C 、D 两点,AB 是⊙O 的直径,AE ⊥l ,垂足为E ,BF ⊥l ,垂足为F .(1)在下面三个圆中分别补画出满足上述条件的具有不同位置关系的图形;(2)请你观察(1)中所画图形,写出一个各图都具有的两条线段相等的结论(不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程);(3)请你选择(1)中的一个图形,证明(2)所得出的结论.10.以AB 为直径作一个半圆,圆心为O ,C 是半圆上一点,且OC 2=AC ×BC , 则∠CAB= .⌒ ⌒ ⌒ ⌒ ⌒ ⌒ ⌒ ⌒11.如图,把正三角形ABC 的外接圆对折,使点A 落在BC 的中点A ′上,若BC=5,则折痕在△ABC 内的部分DE 长为 .12.如图,已知AB 为⊙O 的弦,直径MN 与AB 相交于⊙O 内,MC ⊥AB 于C ,ND ⊥AB 于D ,若MN=20,AB=68,则MC —ND= .13.如图,已知⊙O 的半径为R ,C 、D 是直径AB 同侧圆周上的两点,AC 的度数为96°,BD 的度数为36°,动点P 在AB 上,则CP+PD 的最小值为 .14.如图1,在平面上,给定了半径为r 的圆O ,对于任意点P ,在射线OP 上取一点P ′,使得OP ×OP ′=r 2,这种把点P 变为点P ′的变换叫作反演变换,点P 与点P ′叫做互为反演点.(1)如图2,⊙O 内外各有一点A 和B ,它们的反演点分别为A ′和B ′,求证:∠A ′=∠B ;(2)如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.①选择:如果不经过点O 的直线与⊙O 相交,那么它关于⊙O 的反演图形是( )A .一个圆B .一条直线C .一条线段D .两条射线②填空:如果直线l 与⊙O 相切,那么它关于⊙O 的反演图形是 ,该图形与圆O 的位置关系是 .15.如图,已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点为P ,AB=BD ,且PC=0.6,求四边形ABCD 的周长. 16.如图,已知圆内接△ABC 中,AB>AC ,D 为BAC 的中点,DE ⊥AB 于E ,求证:BD 2-AD 2=AB ×AC .17.将三块边长均为l0cm 的正方形煎饼不重叠地平放在圆碟内,则圆碟的直径至少是多少?(不考虑其他因素,精确到0.1cm)18.如图,直径为13的⊙O ′,经过原点O ,并且与x 轴、y 轴分别交于A 、B 两点,线段OA 、OB(OA>OB)的长分别是方程0602=++kx x 的两根.⌒ ⌒(1)求线段OA 、OB 的长; (2)已知点C 在劣弧OA 上,连结BC 交OA 于D ,当OC 2=CD ×CB 时,求C 点坐标;(3)在⊙O ,上是否存在点P ,使S △POD =S △ABD ?若存在,求出P 点坐标;若不存在,请说明理由.参考答案⌒。

第一章 圆(讲义)(含答案)

第一章 圆(讲义)(含答案)

第一章圆(讲义)➢知识点睛1.圆的基本概念及性质:在同一平面内,到定点的距离等于一个固定长度的所有的点构成的图形叫做圆。

这个定点叫做圆的圆心。

连接圆心和圆上的任意一点的线段叫做半径,字母表示为r。

通过圆心并且两端都在圆上的线段叫做直径,字母表示为d。

直径所在的直线是圆的对称轴。

2.圆的周长与面积:圆的一周长度称为圆的周长,圆的周长与它的直径长度之比称为圆周率,记为π。

因此圆的周长C=rπ=。

圆的内部区域面积称dπ2为圆的面积,圆的面积S=2πr。

3.两个大小不同的同心圆之间的部分称为圆环。

设大圆半径为R,小圆半径为r,则圆环面积S=()2222-=-。

R r R rπππ➢精讲精练经典例题1圆与扇形相关概念:(1)圆中心的一点叫做,一般用字母表示。

(2)连接圆心和圆上任意一点的线段,叫做,用字母表示。

(3)通过圆心并且两端都在圆上的线段叫做,用字母表示。

直径长度是半径长度的倍。

(4)决定圆的大小;决定圆的位置;圆有条对称轴。

(5)图中涂色部分是一个。

圆上A、B两点之间的部分叫做。

顶点在圆心,两条半径组成的∠AOB,叫做。

(6)圆的周长式:;圆的面积公式:。

经典例题2(1)图中圆的周长是多少?圆的面积是多少?(单位:厘米,π取3.14)(2)下图的周长及面积分别是多少?(π取3.14,单位:米)经典例题3计算下图涂色部分的面积。

(π取3.14)经典例题4如图,有五个同心圆的半径分别是1、2、3、4、5,求图中阴影部分的面积。

(π取3.14)经典例题5如图是圆环的一半,面积是28.26平方厘米,那么图形的周长是多少?(π取3.14)【参考答案】经典例题1:(1)圆心,O(2)半径,r(3)直径,d ,2(4)半径,圆心,无数(5)扇形,弧AB ,圆心角(6)C =π2πd r ,S =2πr经典例题2:(1)周长:94.2cm ,面积:706.52cm(2)周长:40.56米,面积:105.12平方米经典例题3:84.78经典例题4:47.1经典例题5:24.84。

华师大初三上册培优讲义第十二讲 圆的基本性质

华师大初三上册培优讲义第十二讲  圆的基本性质

第十二讲圆的基本性质学习目标1、知识目标:理解圆的轴对称性和旋转不变性;在知识框架的建立过程中进一步掌握由这两个性质得到的垂径定理及逆定理,以及圆心角定理、圆周角定理及推论;2、能力目标:进一步培养学生的探究能力、思维能力和解决问题的能力。

3、情感目标:通过课堂学习,熏陶学生乐于探究、善于总结的数学学习品质。

一、知识讲解课前测评1.(2018春衡阳市中考模一)有下列四个命题:①三点确定一个圆;①平分弦的直径垂直于弦;①圆周角等于圆心角的一半;①在同圆或等圆中,相等的圆周角所对的弦相等。

则四个判断中正确的个数是( )A. 1个B. 2个C. 3个D. 4个2、(2017秋南川区期中)如图,CD为①O的直径,AB①CD于E,DE=8cm,CE=2cm,则AB=______cm.3.(2017秋颍上县期末)如图,A,B,C三点在①O上,且①BOC=100°,则①A的度数为()A.40° B.50° C.80° D.100°4、(2017秋澧县张公庙中学期末)若四边形ABCD是①O的内接四边形,且①A:①B:①C=1:3:8,则①D的度数是()A. 10°B. 30°C. 80°D. 120°5.(2017秋黄冈期中)已知①O的半径为13,弦AB=24,弦CD=10,AB①CD,求这两条平行弦AB,CD 之间的距离.知识点回顾(或新课预习)1、圆的定义:(1)圆的位置由________确定,圆的大小由______确定.(2)以O点为圆心的圆叫做圆O,记作______.2、圆的基本元素:(1)弦:连结圆上任意两点的_________叫做弦.经过________的弦叫做直径.并且直径是同一圆中__________的弦.(2)弧:圆上任意两点间的部分叫做弧;劣弧:_____________半圆周的圆弧叫做劣弧;优弧:_____________半圆周的圆弧叫做优弧;.(3)等圆:________相等的两个圆叫做等圆.3、弧、弦、圆心角之间的关系:(1)在同一个圆中,如果圆心角相等,那么它们所对的_______相等,所对的_______相等.(2)在同一个圆中,如果弧相等,那么它们所对的_______相等,所对的_______相等.(3)在同一个圆中,如果弦相等,那么它们所对的_______相等,所对的_______相等.4.圆的对称性:圆既是______对称图形,它的对称轴是______________;圆又是______对称图形,它的对称中心是__________.5.垂径定理及推论:(1)垂径定理:垂直与弦的直径__________,并且平分弦所对的__________。

第一讲__培优__圆的基本性质

第一讲__培优__圆的基本性质

第一讲 圆的基本性质一、知识点圆的有关概念:特别注意:长度相等的弧是等弧吗? 圆的基本性质有:1、圆心角、弧、弦、弦心距之间的关系定理 • 如果弦长为2r ,圆的半径为R,那么弦心距为d . R 2 r 2.2、垂径定理 ____________________________________ 及其推论.此定理及推论,在证题中很重要,其内容不容易记忆,可这样理解:如果一条直线具备下 列条件中的2条,就具备其他3条。

(1)经过圆心;(2)垂直于弦;(3)平分弦;(4) 平分弦所对的劣弧;(5)平分弦所对的优弧。

3. 圆周角定理及其推论。

其中以下列两个结论应用最为广泛:(1)直径所对的圆周角是直角;(2)同弧所对的圆 周角相等。

二、基础训练1. 下列结论正确的是()A .弦是直径 B.弧是半圆 C .半圆是弧 D.过圆心的线段是直径2、 .给出下列命题(I )垂直于弦的直线平分弦;(2 )平分弦的直径必垂直于弦,并且平分弦所对的两条弧;(3 )平分弦的直线必过圆心(4 )弦所对的两条弧的中点连线垂直平分弦。

其 中正确的命题有()3、下列命题中,真命题是()B.2C.3D.4AB 是O O 的直径,CD 是弦.若AB = 10cm, CD = 8cm 那么A , B 两CD 的距离之和为()A. 12cmB. 10cmC.8cmD.6cmB. 2个C. 3个D. 4个4、 A .相等的圆心角所对的弧相等C.度数相等的弧是等弧下列命题中,真命题的个数为①顶点在圆周上的角是圆周角; ③90°的圆周角所对的弦是直径; B.相等的弦所对的弧相等 D .在同心圆中,同一圆心角所对的两条弧的度数相等②圆周角的度数等于圆心角度数的一半; ④直径所对的角是直角;⑤圆周角相等,贝U 它们所对的弧也相等;⑥同弧或等弧所对的圆周角相等. A. 1个 B. 2个 C. 3个 D. 4个5、直角二角形两直角边长分别为 .3和I ,那么它的外接圆的直径是(A.1 &如图, 点到直线7、 如图,在以0为圆心的两个同心圆中,大圆的弦AB 交小圆于C, D 两点,AB=10cm, CD=6cm,则AC 的长为()A. 0. 5cmB. 1cmC. 1.5cmD. 2cm8、 如图,点A,D,G,M 在半圆上,四边形 ABOC, DEOF,HMNO 匀为矩形,BC=a,EF=bNH=C, 则下列各式中正确的是()9、 如图,CD 为。

中考复习讲义 圆的基本概念与性质含答案.doc

中考复习讲义 圆的基本概念与性质含答案.doc

圆的基本概念与性质内容基本要求略高要求较高要求圆的有关概念理解圆及其有关概念会过不在同一直线上的三点作圆;能利用圆的有关概念解决简单问题圆的性质知道圆的对称性,了解弧、弦、圆心角的关系能用弧、弦、圆心角的关系解决简单问题能运用圆的性质解决有关问题垂径定理会在相应的图形中确定垂径定理的条件和结论能用垂径定理解决有关问题1. 圆的定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,其中固定端点O 叫做圆心,OA 叫做半径. 2. 弧与弦:弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做圆的直径,直径等于半径的2倍. 弦心距:从圆心到弦的距离叫做弦心距.弧:圆上任意两点间的部分叫做圆弧,简称弧.以A B 、为端点的圆弧记作»AB ,读作弧AB . 等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆. 优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧. 3. 垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

一 与圆有关概念【例1】 判断题(1)直径是弦 ( ) (2)弦是直径 ( ) (3)半圆是弧 ( ) (4)弧是半圆( ) (5)长度相等的两条弧是等弧 ( ) (6)等弧的长度相等( )中考说明自检自查必考点中考必做题(7)两个劣弧之和等于半圆 ( ) (8)半径相等的两个圆是等圆 ( ) (9)两个半圆是等弧( ) (10)圆的半径是R ,则弦长的取值范围是大于0且不大于2R( )【答案】(1)√;(2)×;(3)√;(4)×;(5)×;(6)√;(7)×;(8)√;(9)×;(10)√【例2】 如图,点A D G M 、、、在半圆O 上,四边形ABOC DEOF HMNO 、、均为矩形,设BC a =,EF b =,NH c =则下列格式中正确的是( )A .a b c >>B .a b c ==C .c a b >>D .b c a >>ON MHGFE DC B A【答案】B【例3】 如图,直线12l l ∥,点A 在直线1l 上,以点A 为圆心,适当长为半径画弧,分别交直线12l l 、于B 、C 两点,连接AC BC 、.若54ABC ∠=︒,则∠1的大小为________【答案】72°【例4】 如图,ABC ∆内接于O e ,84AB AC D ==,,是AB 边上一点,P 是优弧¼BAC 的中点,连接PA 、PB 、PC 、PD ,当BD 的长度为多少时,PAD ∆是以AD 为底边的等腰三角形?并加以证明.【答案】解:当4BD =时,PAD ∆是以AD 为底边的等腰三角形.证明:∵P 是优弧¼ABC 的中点∴»»PBPC = ∴PB PC =在PBD ∆与PCA ∆中, ∵4PB PC PBD PCB BD AC =⎧⎪∠=∠⎨⎪==⎩∴PBD PCA SAS ∆∆≌().∴PD PA =,即4BD =时,PAD ∆是以AD 为底边的等腰三角形.【例5】 如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果点Q 从点A 出发,沿图中所示方向按A B C D A ⇒⇒⇒⇒滑动到A 止,同时点R 从点B 出发,沿图中所示方向按B C D A B ⇒⇒⇒⇒滑动到B 止,在这个过程中,线段QR 的中点M 所经过的路线围成的图形的面积为_________【答案】4π- 【解析】根据直角三角形的性质,斜边上的中线等于斜边的一半,可知:点M 到正方形各顶点的距离都为1,故点M 所走的运动轨迹为以正方形各顶点为圆心,以1为半径的四个扇形,点M 所经过的路线围成的图形的面积为正方形ABCD 的面积减去4个扇形的面积.二 垂径定理及其应用【例6】 如图,AB 是O e 的直径,BC 是弦,OD BC ⊥于E ,交弧BC 于D .(1)请写出五个不同类型的正确结论; (2)若82BC ED ==,,求O e 的半径.【答案】(1)不同类型的正确结论有:22290•ABC BE CE BD DC BED BOD A AC OD AC BC OE BE OB S BC OE BOD BOE BAC ==∠=︒∠=∠⊥+==⋯V P V V V ①;②弧弧;③;④;⑤;⑥;⑦;⑧;⑨是等腰三角形;⑩∽(2)∵OD BC ⊥,∴12BE CE ==4BC =设O e 的半径为R ,则2OE OD DE R =-=-,在Rt OEB V中,由勾股定理得: 22222224OE BE OB R R +=-+=,即(),解得:5R = ,∴O e 的半径为5.【例7】 如图,在O e 中,120,3AOB AB ∠=︒=,则圆心O 到AB 的距离=_______【答案】23【例8】 如图,D 内接于O e ,D 为线段AB 的中点,延长OD 交O e 于点E , 连接,AE BE 则下列五个结论①AB DE ⊥,②AE BE =,③OD DE =,④AEO C ∠=∠,⑤»¼12AB ACB =,正确结论的个数是( )A .2B .3C . 4D .5【答案】A【例9】 如图,AB 为O e 的直径,CD 为弦, AB CD ⊥,如果70BOC ∠=︒,那么A ∠的大小为( )AA . 70︒B . 35︒C . 30︒D .20︒【答案】B【例10】 如图,AB 是O e 的在直径,弦CD AB ⊥于点E ,若8CD =,3OE =,则O e 的直径为( )BAA .10B .12C .14D .16【答案】A【例11】 如图,O e 是ABC ∆的外接圆,60BAC ∠=︒,若O e 的半径OC 为2,则弦BC 的长为( ) A .1B C .2D .【答案】D【例12】 小英家的圆镜子被打破了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是( )A .2BC .D .3【答案】B【解析】考查垂径定理与勾股定理的应用.此题关键找到圆心,由不在同一条直线上的三点确定唯一一个圆.如图,作线段,AB BC 的垂直平分线交于点O ,点O 即为圆镜的圆心,连结OA ,由图可知 1,2AD OD==,由勾股定理得半径OA =ODCBA【例13】 如图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m ,OE ⊥CD 于点E .已测得=∠DOE sin 1213. (1)求半径OD ;(2)根据需要,水面要以每小时0.5m 的速度下降,则经过多长时间才能将水排干?【答案】(1)∵OE ⊥CD 于点E ,CD =24, ∴ED =12CD =12.在Rt △DOE 中,∵sin ∠DOE =ED OD =1213, ∴OD =13(m ). (2)OE5. ∴将水排干需:50.510÷=小时.【例14】 如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( )ABCDA .5米B . 8米C .7米 D.米 【答案】B【例15】 如图,AB 为O e 的直径,弦CD AB ⊥,垂足是E ,连接OC ,若5,8OC CD ==,则AE =_______OBA【答案】2【例16】 一条排水管的截面如图所示.已知排水管的截面圆半径10OB =,截面圆圆心O 到水面的距离OC 是6,则水面宽AB 是( )A .16B .10C .8D .6 【答案】A【例17】 已知,如图,1O e 与坐标轴交与A (1,0)、B ( 5,0)两点,点1O 的纵坐标为5,求1O e 的半径。

初三上册数学直升班培优讲义学生版第11讲圆(一)(学生版)

初三上册数学直升班培优讲义学生版第11讲圆(一)(学生版)

模块一模块二模块三圆的基本概念垂径定理圆周角定理模块一圆的基本概念定义示例剖析圆:在一个平面内,线段OA绕它固定的一个端点0旋转一周,另一个端点A所形成的图形叫做圆.固定的端点0叫做圆心,线段0A叫做半径. 圆0•由圆的定义可知:\(1)圆上的各点到圆心的距离都等于半径长;在一个平面内,到圆心的距离等于半径长的点都在冋一个圆上•因此,圆(是在一个平面内,所有到一个定点的距离等于定长的点组成的n\圆心,—才、半径图形.(2 )要确定一个圆,需要两个基本条件,一个是圆心的位表示为“ O 0 ”置,另一个是半径的长短,其中,圆心确定圆的位置,半径长确定圆的大小.圆心相同且半径相等的圆叫做同圆;or\ /圆心相同,半径不相等的两个圆叫做同心圆;‘ \◎能够重合的两个圆叫做等圆. 等圆丄同心圆弦和弧:1 .连接圆上任意两点的线段叫做弦. 经过圆心的弦叫做直径,并且直径是冋一圆中最长的弦,直径等于半径的2倍. 优弧、弦2 .圆上任意两点间的部分叫做圆弧,简称弧. 7弦以A、B为端点的弧记作A B,读作弧AB . 2J^7B在同圆或等圆中,能够互相重合的弧叫做等弧. 劣弧3.圆的任意一条直径的两个端点把圆分成两条弧,每一条表示:劣弧A B弧都叫做半圆.优弧ACB或AmB4.在一个圆中大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.圆心角和圆周角:1.顶点在圆心的角叫做圆心角.2 .顶点在圆上,并且两边都和圆相交的角叫做圆周角.圆周A 圆心角司角扇形和弓形1 .一条弧和经过这条弧两端的两条半径所围成的图形叫\厂扇形,设扇形的圆心角为,则扇形的面积和弧长:0)S r , l r . 扇形\丿)\ 360 180B弓B2 .由弦及其所对的弧组成的图形叫做弓形.模块二垂径定理1.圆的对称性圆是轴对称图形,也是中心对称图形,其对称轴是任意一条过原点的直线,对称中心是圆心.2 .垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.注意:垂径定理中的五个元素一一“过圆心”、“垂直弦”、“平分弦”、“平分优弧”、“平分劣弧”,构成知二推三•模块三圆周角定理定理示例定理:在同圆或等圆中,同弧或等弧所对的圆周角都相等,且都等于它所对的圆心角的一半.推论1 :半圆(或直径)所对的圆周角是直角,90的圆周角所对的弧(或弦)是半圆(或直径).推论2:圆内接四边形的对角互补.模块圆的基本概念如图,判断下列正误.(1)(2)(3)(4) 半径相等的两个圆是等圆过圆心的线段是直径半圆所对的弦是直径直径是圆中最大的弦ACB如图,A B90如图,四边形ABCt® 4是O O的内接四边形,则A BCD 180,由推论2,我们可以得到圆内接四边形的外角等于内对角,如图,即DCE A .(((())))(5) 半圆是弧( ) (6) 长度相等的弧是等弧 ( ) (7) 两个端点能够重合的弧是等弧( ) (8) 圆中任意一条弦所对的弧有两条,其中一条优弧,一条劣弧()(9) 圆的半径是 R ,则弦长的取值范围是大于0且不大于2R ( )(1) 如图2-1, AB 为O O 的直径,CD 是O O 的弦,AB 、CD 的延长线交于点 E ,若AB 2DE , E 18 , AOC _______________ . (2)如图2-2,两正方形彼此相邻且内接于半圆,若小正方形的面积为 16cm 2,则该半圆的半径为(1) ________________________________________________________________________________________ 如图 3-1, CD 为 O O 的直径,AB CD 于 E , DE 8cm , CE 2cm ,则 AB ____________________________ (2) ____________ 如图3-2,矩形ABCD 与圆心在 AB 上的O O 交于点G 、B 、F , GB 8cm , AG 1cm , DE 2cm , 则 EF ________ .(3) ______________ (安徽芜湖中考) 如图3-3,在O O 内有折线 OABC ,其中OA 8 , AB 12 , 则BC 的长为 ______________.模块二垂径定理IIB 60 , 图2-1 图3-1(1) _____________________________________________________________________________________ 如图4-1,过O O 内一点M 的最长弦长为12cm ,最短弦长为8cm ,则0M 长为 ___________________________________ .(2) 如图4-2,点P 是半径为5的O 0内一点,且0P 3,在过点P 的所有O 0的弦中,弦的长度为整数的条数有 _______________ .(1)直径为50cm 的O 0中,弦AB//弦CD ,又AB 40cm , CD 48cm ,则AB 和CD 两弦的距离 为 .例题4(2)(郴州中考) 已知在O 0中,半径r 5 , AB、CD是两条平行弦,且AB 8 , CD 6,则AC 的长为.如图,P为O O外一点,过点P引两条割线FAB和PCD,点M , N分别是A B , C D的中点,连接MN 交AB, CD 与E, F .(1)求证:△ PEF为等腰三角形;模块三圆周角定理根据上面的推理,可以发现 ___________________________________________________ .(2) 若点D 是优弧A B 上任意一点,试判断 ADB 与 ACB 的大小关系•根据上面的推理,可以发 现: _________________________________________ .(3) 如果点D 在劣弧A B 上,此时 ADB 和 ACB 的大小关系还一样吗?可以得到什么结论?(1) 一条弦分圆为1:5两部分,则这条弦所对圆周角的度数为例题8(2)如图8-1 , A 、B 、C 、D 是O O 上的点,直径CEB .AB 交CD 于点E ,已知 C 57 , D 45,则(3) 如图8-2, AB 为e O 的弦,△ ABC 的两边 EDC 70,贝U C ____________ .BC 、AC 分别交e O 于D 、E 两点, B 60 ,(4) ________ 如图8-3, △ ABC 内接于e O , AB 是直径, 长为 _____ .BC 4 , AC 3 , CD 平分 ACB ,则弦 BD 的(1)已知A B 为O O 圆周上任意两点,C 是优弧A B 上一点,请你判断 ACB 与 AOB 的大小关系.D图8-1 图8-2 图8-3例题9如图,△ ABC是O0的内接三角形,点C是优弧AB上一点(点C不与A, B重合),设OABC •猜想与之间的关系,并给予证明.模块一圆的基本概念CD是O O 的直径,EOD 87 , AE 交O O 于B ,且AB OC ,求 A 的度数.(1)如图2-1,点A 、D 、G 、M 在半圆O 上,四边形ABOC 、DEOF 、HMNO 均为矩形,设BC a , EF b , NH c ,则下列选项中正确的是().A . abcB . a b cC . cabD . b c a(2)(河南中考)如图2-2,在半径为 5,圆心角等于45的扇形AOB 内部作一个正方形 CDEF ,使点C 在OA 上,点D 、E 在OB 上,点F 在AB 上,则阴影部分的面积为(结果保留n ) ________________如图,11o 模块二垂径定理 G H OFC 图2-1 A D E 图2-212 (2)已知O 0的直径是10cm , O 0的两条平行弦 AB 6cm , CD 8cm ,则弦AB 与CD 间的距离 为 .(湖北中考)如图,AB 是O 0的直径,且 AB 10,弦MN 的长为8,若弦MN 的两端在圆上滑动 时,始终与AB 相交,记点A 、B 到MN 的距离分别为h 1 , b ,则|h 1 h 2|等于 _________________________________________.(1)如图3-1,是一条水平铺设的直径为中此时水最深为 _______________ 米. 2米的通水管道横截面,其水面宽为 1.6米,则这条管道(2)如图3-2 ,已知C 是弧AB 的中点,半径0C 与弦AB 相交于点D ,如果 那么CD . 0AB 60 , AB 3 , (3)(安徽中考)如图3-3, O 0过点B C .圆心O 在等腰直角△ ABC 的内部, BC 6,则O 0的半径为 ___________________ .BAC 90 , 0A 1 ,6cm ,最短的弦长为 4cm ,贝U 0M 的长等于 _____________最长的弦长为Fh 2 A Nh 1 E OB模块三圆周角定理,(四川成都中考)如图7-1, △ ABC内接于O0 , AB BC , ABC 120 , AD为O0的直径,6,那么BD __________ .(2)贝U A0DA. 70(四川南充中考)().如图7-2, AB 是O0 的直径,点C、D 在O 0 上, B0C 110 , AD//0C ,60 C. 50 D. 40 (3)(山东泰安中考)圆周角的度数为如图7-3, O0的半径为1, AB是O 0的一条弦,且AB , 3,则弦AB所对图7-1如图,已知AB是半圆0的直径,C为半圆周上一点, 与AC的数量关系并证明.M是A C的中点,MN AB于N,试判断MN(1)AD13。

圆的基本性质教案(含答案)

圆的基本性质教案(含答案)

DB圆的基本性质基础知识回放集合:圆:圆可以看作是到定点的距离等于定长的点的集合; 圆的外部:可以看作是到定点的距离大于定长的点的集合; 圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹:1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆;2、到线段两端点距离相等的点的轨迹是:线段的中垂线;3、到角两边距离相等的点的轨迹是:角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线 垂径定理:垂径定理:垂直于弦的直径平分弦且平分弦所对的弧 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB ⊥CD ③CE=DE ④ ⑤推论2:圆的两条平行弦所夹的弧相等。

即:在⊙O 中,∵AB ∥CD圆心角定理圆周角定理圆周角定理:同一条弧所对的圆周角等于它所对的圆心的角的一半即:∵∠AOB 和∠ACB 是 所对的圆心角和圆周角 ∴∠AOB=2∠ACBBC BD =AC AD =BBAOMAP圆周角定理的推论:推论1弧即:在⊙O 中,∵∠C 、∠D 都是所对的圆周角 ∴∠C=∠D推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径 即:在⊙O 中,∵AB 是直径 或∵∠C=90°∴∠C=90° ∴AB 是直径推论3:三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 即:在△ABC 中,∵OC=OA=OB∴△ABC 是直角三角形或∠C=90°注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。

培优数学讲义 圆的性质

培优数学讲义 圆的性质

圆的性质例题1 ●观察计算当5a =,3b =时, 2a b+_________________. 当4a =,4b =时, 2a b+_________________.●探究证明如图所示,ABC ∆为圆O 的内接三角形,AB 为直径,过C 作CD AB ⊥于D ,设AD a =,BD =b .(1)分别用,a b 表示线段OC ,CD ;(2)探求OC 与CD 表达式之间存在的关系(用含a ,b 的式子表示).●归纳结论根据上面的观察计算、探究证明,你能得出2a b+与的大小关系是:_________________________. ●实践应用要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,求出镜框周长的最小值.B例题2.如图,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,10为半径作⊙O,分别与∠EPF两边相交于A、B和C、D,连结OA,此时有OA∥PE.(1)求证:AP=AO;(2)若弦AB=12,求tan∠OPB的值;(3)若以图中已标明的点(即P、A、B、C、D、O)构造四边形,则能构成菱形的四个点为,能构成等腰梯形的四个点为或或.例题3、已知:AB是⊙O的直径,弦CD⊥AB于点G,E是直线AB上一动点(不与点A、B、G重合),直线DE交⊙O于点F,直线CF交直线AB于点P.设⊙O的半径为r.(1)如图1,当点E在直径AB上时,试证明:OE·OP=r2(2)当点E在AB(或BA)的延长线上时,以如图2点E的位置为例,请你画出符合题意的图形,标注上字母,(1)中的结论是否成立?请说明理由.(图1)(图2)例题4、阅读下面的情境对话,然后解答问题(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题?(2)在Rt∆ABC中,∠ACB=90°,AB=c,AC=b,BC=a,且b>a,若Rt∆ABC 是奇异三角形,求a:b:c;ABD的中点,(3)如图,AB是⊙O的直径,C是上一点(不与点A、B重合),D是半圆⌒CD在直径AB的两侧,若在⊙O内存在点E使得AE=AD,CB=CE.○1求证:∆ACE是奇异三角形;○2当∆ACE是直角三角形时,求∠AOC的度数.例题5、已知四边形ABCD是边长为4的正方形,以AB为直径在正方形内作半圆,P是半圆上的动点(不与点A、B重合),连接PA、PB、PC、PD.(1)如图①,当PA的长度等于______时,∠PAB=60°;当PA的长度等于______时,△PAD是等腰三角形;(2)如图②,以AB边所在的直线为x轴,AD边所在的直线为y轴,建立如图所示的直角坐标系(点A即为原点O),把△PAD、△PAB、△PBC的面积分别记为S1、S2、S3.设P点坐标为(a,b),试求2S1S3-S22的最大值,并求出此时a、b的值.例题6、已知:在△ABC中,以AC边为直径的⊙O交BC于点D,在劣弧⌒AD上到一点E 使∠EBC=∠DEC,延长BE依次交AC于G,交⊙O于H.(1)求证:AC⊥BH;(2)若∠ABC=45°,⊙O的直径等于10,BD=8,求CE的长.(6题图)例题7、.如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上的一动点,连结OB、AB,并延长AB至点D,使DB=AB,过点D 作x轴垂线,分别交x轴、直线OB于点E、F,点E为垂足,连结CF.(1)当∠AOB=30°时,求弧AB的长;(2)当DE=8时,求线段EF的长;(3)在点B运动过程中,是否存在以点E、C、F为顶点的三角形与△AOB相似,若存在,请求出此时点E的坐标;若不存在,请说明理由.圆的性质作业1、如图,以O 为圆心的两个同心圆中,大圆的弦AB 切小圆于点C ,若120AOB ∠= ,则大圆半径R 与小圆半径r 之间满足( )A .R =B .3R r =C .2R r =D.R =2、如图,⊙O 的弦AB 垂直平分半径OC ,若AB =6,则⊙O 的半径为( ) A. 2 B.2 2 C.22 D.623、在圆柱形油槽内装有一些油。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的基本性质
到定点(圆心)等于定长(半径)的点的集合叫圆,圆常被人们看成是最完美的事物,圆的图形在人类进程中打下深深的烙印.
圆的基本性质有:一是与圆相关的基本概念与关系,如弦、弧、弦心距、圆心角、圆周角等;二是圆的对称性,圆既是一个轴对称图形,又是一中心对称图形.用圆的基本性质解题应注意:
1.熟练运用垂径定理及推论进行计算和证明;
2.了解弧的特性及中介作用;
3.善于促成同圆或等圆中不同名称等量关系的转化.
熟悉如下基本图形、基本结论:
【例题求解】
【例1】在半径为1的⊙O 中,弦AB 、AC 的长分别为3和2,则∠BAC 度数为 .
作出辅助线,解直角三角形,注意AB 与AC 有不同的位置关系.
注: 由圆的对称性可引出许多重要定理,垂径定理是其中比较重要的一个,它沟通了线段、角与圆弧的关系,应用的一般方法是构造直角三角形,常与勾股定理和解直角三角形知识结
合起来. 圆是一个对称图形,注意圆的对称性,可提高解与圆相关问题周密性.
【例2】 如图,用3个边长为1的正方形组成一个对称图形,则能将其完全覆盖的圆的最小半径为( )
A .2
B .
25 C .45 D .16
175 思路点拨 所作最小圆圆心应在对称轴上,且最小圆应尽可能通过圆形的某些顶点,通过设未知数求解.
【例3】 如图,已知点A 、B 、C 、D 顺次在⊙O 上,AB=BD ,BM ⊥AC 于M ,求
证:AM=DC+CM .
思路点拨 用截长(截AM)或补短(延长DC)证明,将问题转化为
线段相等的证
明,证题的关键是促使不同量的相互转换并突破它.
⌒ ⌒
【例4】 如图甲,⊙O 的直径为AB ,过半径OA 的中点G 作弦C E ⊥AB ,在CB 上取一点D ,分别作直线CD 、ED ,交直线AB 于点F ,M .
(1)求∠COA 和∠FDM 的度数;
(2)求证:△FDM ∽△COM ; (3)如图乙,若将垂足G 改取为半径OB 上任意一点,点D 改取在EB 上,仍作直线CD 、ED ,分别交直线AB 于点F 、M ,试判断:此时是否有△FDM ∽△COM? 证明你的结论.
思路点拨 (1)在Rt △COG 中,利用OG=21OA=2
1OC ;(2)证明∠COM=∠FDM ,∠CMO= ∠FMD ;(3)利用图甲的启示思考.
注:善于促成同圆或等圆中不同名称的相互转化是解决圆的问题的重要技巧,此处,要努力把圆与直线形相合起来,认识到圆可为解与直线形问题提供新的解题思路,而在解与圆相关问题时常用到直线形的知识与方法(主要是指全等与相似).
【例5】 已知:在△ABC 中,AD 为∠BAC 的平分线,以C 为圆心,CD 为半径的半圆交BC 的延长线于点E ,交AD 于点F ,交AE 于点M ,且∠B=∠CAE ,EF :FD =4:3.
(1)求证:AF =DF ;
(2)求∠AED 的余弦值;
(3)如果BD =10,求△ABC 的面积.
思路点拨 (1)证明∠ADE =∠DAE ;(2)作AN ⊥BE 于N ,cos ∠AED =AE
EN ,设FE=4x ,FD =3x ,利用有关知识把相关线段用x 的代数式表示;(3)寻找相似三角形,运用比例线段求出x 的值.
注:本例的解答,需运用相似三角形、等腰三角形的判定、面积方法、代数化等知识方法思想,综合运用直线形相关知识方法思想是解与圆相关问题的关键.
学历训练
1.D 是半径为5cm 的⊙O 内一点,且OD =3cm ,则过点D 的所有弦中,最小弦AB= .
2.阅读下面材料:
对于平面图形A ,如果存在一个圆,使图形A 上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A 被这个圆所覆盖.
⌒ ⌒
对于平面图形A ,如果存在两个或两个以上的圆,使图形A 上的任意一点到其中某个圆的圆心的距离都不大于这个圆的半径,则称图形A 被这些圆所覆盖.
例如:图甲中的三角形被一个圆所覆盖,图乙中的四边形被两个圆所覆盖.
回答下列问题:
(1)边长为lcm 的正方形被一个半径为r 的圆所覆盖,r 的最小值是 cm ; (2)边长为lcm 的等边三角形被一个半径为r 的圆所覆盖,r 的最小值是 cm ;
(3)长为2cm ,宽为lcm 的矩形被两个半径都为r 的圆所覆盖,r 的最小值是 cm .
3.世界上因为有了圆的图案,万物才显得富有生机,以下来自现实生活的图形中都有圆:它们看上去多么美丽与和谐,这正是因为圆具有轴对称和中心对称性.
(1)请问以下三个图形中是轴对称图形的有 ,是中心对称图形的有
(分别用下面三个图的代号a ,b ,c 填空).
(2)请你在下面的两个圆中,按要求分别画出与上面图案不重复的图案(草图) (用尺规画或徒手画均可,但要尽可能准确些,美观些).
a .是轴对称图形但不是中心对称图形.
b .既是轴对称图形又是中心对称图形.
4.如图,AB 是⊙O 的直径,CD 是弦,若AB=10cm ,CD =8cm ,那么A 、B 两点到直线CD 的距离之和为( )
A .12cm
B .10cm
C . 8cm
D .6cm
5.一种花边是由如图的弓形组成的,ACB 的半径为5,弦AB =8,则弓形的高CD 为( )
A .2
B .25
C .3
D .3
16
6.如图,在三个等圆上各自有一条劣弧AB 、CD 、EF ,如果AB+CD=EF ,那么AB+CD 与E 的大小关系是( )
A .AB+CD =EF
B .AB+CD=F
C . AB+CD<EF
D .不能确定
⌒ ⌒ ⌒ ⌒ ⌒ ⌒
7.电脑CPU 芯片由一种叫“单晶硅”的材料制成,未切割前的单晶硅材料是一种薄形圆片,叫“晶圆片”.现为了生产某种CPU 芯片,需要长、宽都是1cm 的正方形小硅片若干.如果晶圆片的直径为10.05cm ,问:一
张这种晶圆片能否切割出所需尺寸的小硅片66张?请说明你的方法和理由(不计切割损耗).
8.如图,已知⊙O 的两条半径OA 与OB 互相垂直,C 为AmB 上的一点,且AB 2+OB 2=BC 2,求∠OAC 的度数.
9.不过圆心的直线l 交⊙O 于C 、D 两点,AB 是⊙O 的直径,AE ⊥l ,垂足为E ,BF ⊥l ,垂足为F .
(1)在下面三个圆中分别补画出满足上述条件的具有不同位置关系的图形;
(2)请你观察(1)中所画图形,写出一个各图都具有的两条线段相等的结论(不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程);
(3)请你选择(1)中的一个图形,证明(2)所得出的结论.
10.以AB 为直径作一个半圆,圆心为O ,C 是半圆上一点,且OC 2=AC ×BC ,
则∠CAB= . 11.如图,把正三角形ABC 的外接圆对折,使点A 落在BC 的中点
A ′上,若BC=5,则折痕在△ABC 内的部分DE 长为 .
12.如图,已知AB 为⊙O 的弦,直径MN 与AB 相交于⊙O 内,MC ⊥AB 于C ,ND ⊥AB 于D ,若MN=20,AB=68,则MC —ND= .
13.如图,已知⊙O 的半径为R ,C 、D 是直径AB 同侧圆周上的两点,AC 的度数为96°,BD 的度数为36°,动点P 在AB 上,则CP+PD 的最小值为 .
14.如图1,在平面上,给定了半径为r 的圆O ,对于任意点P ,在射线OP 上取一点P ′,使得OP ×OP ′=r 2,
⌒ ⌒ ⌒
这种把点P 变为点P ′的变换叫作反演变换,点P 与点P ′叫做互为反演点.
(1)如图2,⊙O 内外各有一点A 和B ,它们的反演点分别为A ′和B ′,求证:∠A ′=∠B ;
(2)如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形. ①选择:如果不经过点O 的直线与⊙O 相交,那么它关于⊙O 的反演图形是( )
A .一个圆
B .一条直线
C .一条线段
D .两条射线
②填空:如果直线l 与⊙O 相切,那么它关于⊙O 的反演图形是 ,该图形与圆O 的位置关系是 .
15.如图,已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点为P ,AB=BD ,且PC=0.6,求四边形ABCD 的周长.
16.如图,已知圆内接△ABC 中,AB>AC ,D 为BAC 的中点,DE ⊥AB 于E ,求证:BD 2-AD 2=AB ×AC .
17.将三块边长均为l0cm 的正方形煎饼不重叠地平放在圆碟内,则圆碟的直径至少是多少?(不考虑其他因素,精确到0.1cm)
18.如图,直径为13的⊙O ′,经过原点O ,并且与x 轴、y 轴分别交于A 、B 两点,线段OA 、OB(OA>OB)的长分别是方程0602=++kx x 的两根.
(1)求线段OA 、OB 的长;
(2)已知点C 在劣弧OA 上,连结BC 交OA 于D ,当OC 2=CD ×CB 时,求C 点坐标;
(3)在⊙O ,上是否存在点P ,使S △POD =S △ABD ?若存在,求出P 点坐标;若不存在,请说明理由.
⌒ ⌒
参考答案。

相关文档
最新文档