同分母和异分母分式的加减法

合集下载

初升高数学衔接课程-- 分式运算 (教师版含解析)

初升高数学衔接课程-- 分式运算 (教师版含解析)

第2章 分式运算【知识衔接】————初中知识回顾————(一)分式的运算规律1、加减法 同分母分式加减法:c b a c b c a ±=± 异分母分式加减法:bc bd ac c d b a ±=±2、乘法:bd ac d c b a =⋅3、除法:bc ad c d b a d c b a =⋅=÷4、乘方:n nn ba b a =)( (二)分式的基本性质1、)0(≠=m bm am b a2、)0(≠÷÷=m mb m a b a ————高中知识链接————比例的性质(1)若d c ba=则bc ad = (2)若d c ba =则d d c b b a ±=±(合比性质) (3)若d c ba =(0≠-db )则d b d bc a c a -+=-+(合分比性质) (4)若d c b a ==…=n m ,且0≠+++n d b 则b a n d b m c a =++++++ (等比性质) 分式求解的基本技巧1、分组通分2、拆项添项后通分3、取倒数或利用倒数关系4、换元化简5、局部代入6、整体代入7、引入参数8、运用比例性质【经典题型】初中经典题型1.若代数式4x x -有意义,则实数x 的取值范围是( ) A . x =0 B . x =4 C . x ≠0 D . x ≠4【答案】D【解析】由分式有意义的条件:分母不为0,即x-4≠0,解得x≠4,故选D .2.化简:,结果正确的是( )A . 1B .C .D .【答案】B 【解析】试题分析:原式==.故选B .3.当x =______时,分式523x x -+的值为零. 【答案】5. 【解析】解:由题意得:x ﹣5=0且2x +3≠0,解得:x =5,故答案为:5.4.先化简,再求值: 22121x x x x x x ⎛⎫-÷ ⎪+++⎝⎭,其中x =22. 【答案】21x -,7. 【解析】试题分析:根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.试题解析:原式=()22121x x x x x x ++-⋅+=()2211x x x x x +-⋅+=()()2111x x x x x-+⋅+=21x - 当x =22=(2221-=8-1=7.高中经典题型例1:化简232||211x x x x x +-+-- 解:原式=22|)|1()1()1(x x x -+- 当0≥x 且1≠x 时,原式=x +1当0<x 且1-≠x 时,原式=xx +-1)1(2 例2:化简:++++3223bab b a a a 442222223223311b a b a a b b a b ab b a a b -+-+--+-+-例3:计算2)(32222233332222-++÷---++nm m n n m m n n m m n n m m n n m m n 解:设a m n =,b nm =,则1=ab ∴原式=2)(32223322-++÷---++b a b a b a b a b a =ba ab b a b a ab b a ab b a +-+----++2)(32223322=2222232)()()(nm n m b a b a b a b a b a b a -+-=-+=+-⋅-+ 例4:计算abbc ac c b a ac ab bc b a c bc ac ab a c b +---++----+---222 解:既不便于分式通分,又不适合分组通分,试图考察其中一项,从中发现规律ca b a c a b a b a c a c a b a bc bc ac ab a c b ---=-----=--=+---11))(()()())((2 因此不难看出,拆项后通分更容易 ∴原式=))(())(())((b c a c b a a b c b a c c a b a c b ---+------- =))(()()())(()()())(()()(b c a c a c b c a b c b c b a b c a b a b a c a -----+----------- =ac b c a c a b c b c a b a -=---+-+-----2111111 例5:若1=abc ,求111++++++++c ac c b bc b a ab a 解:∵1=abc ,∴bc a 1=,将式中的a 全换成bc1 ∴原式=11111++++++++c bcc c b bc b bc bc b bc =11111=++++++++bc b bc bc b b bc b 例6:已知x z y x y z y x z z y x ++-=+-=-+且0≠xyz ,求分式xyzx z z y y x ))()((+++的值 解:分析:已知条件以连比的形式出现,可引进一个参数来表示这个连比,从而将分式化成整式。

分式的运算例题讲解

分式的运算例题讲解

15.2 分式的运算1.分式的乘除(1)分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母. 用式子表示为:a b ·c d =a ·c b ·d . (2)分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示为:a b ÷c d =a b ·d c =a ·d b ·c. 分式的除法要转化为乘法,然后根据乘法法则进行运算,结果要化为最简分式.【例1】 计算:(1)4a 4b 215x 2·9x 8a 4b ; (2)a 2-1a 2+2a +1÷a 2-a a +1;(3)a 2-4a 2+4a +4·2a a 2-4a +4; (4)4x 2+4xy +y 22x +y÷(4x 2-y 2).2.分式的乘方(1)法则:分式乘方要把分子、分母分别乘方.(2)用式子表示:⎝⎛⎭⎫a b n =a n b n .解技巧 分式的乘方的理解 (1)分式乘方时,分子、分母要乘相同次方;(2)其结果的符号与有理数乘方结果的符号确定方法一样.【例2】 计算:(1)⎝⎛⎭⎫a 2-b 34; (2)⎝⎛⎭⎫x 2y -z 23.3.分式的加减(1)同分母分式相加减:①法则:分母不变,把分子相加减; ②用式子表示:a c ±b c =a ±b c. (2)异分母分式相加减:①法则:先通分,变为同分母的分式,再加减;②用式子表示:a b ±c d =ad bd ±bc bd =ad ±bc bd. 警误区 分式加减运算的注意点 (1)同分母分式的加减运算的关键是分子的加减运算,分子加减时要将其作为一个整体进行加减,当分子是多项式时,要添加括号;(2)异分母分式加减运算的关键是先通分,转化为同分母的分式相加减,再根据同分母分式加减法进行运算,通分时要注意最简公分母的确定;(3)分式加减运算的结果要化为最简分式或整式.【例3】 计算:(1)(a -b )22ab +(a +b )22ab ; (2)a a 2-1-11-a 2; (3)1x +y -1x -y +2x x 2-y 2;(4)12m 2-9+23-m ; (5)x -3x 2-1-2x +1; (6)4a +2-a -2.4.整数指数幂一般地,当n 是正整数时,a -n =1a n (a ≠0).这就是说,a -n (a ≠0)是a n 的倒数.这样引入负整数指数幂后,指数的取值范围就推广到全体整数.根据整数指数幂的运算性质,当m ,n 为整数时,a m ÷a n =a m -n ,a m ·a -n =a m +(-n )=a m -n ,因此a m÷a n =a m ·a -n .特别地,a b=a ÷b =a ·b -1,所以⎝⎛⎭⎫a b n =(a ·b -1)n ,即商的乘方⎝⎛⎭⎫a b n 可以转化为积的乘方(a ·b -1)n . 这样,整数指数幂的运算性质可以归纳为:(1)a m ·a n =a m +n (m ,n 是整数);(2)(a m )n =a mn (m ,n 是整数);(3)(ab )n =a n b n (m ,n 是整数).【例4】 计算:(1)⎝⎛⎭⎫-23-2; (2)a 2b -3(a -1b )3÷(ab )-1.5.科学记数法(1)用科学记数法表示绝对值大于1的数时,应当表示为a ×10n 的形式,其中1≤|a |<10,n 为原数整数部分的位数减1;(2)用科学记数法表示绝对值小于1的数时,可以表示为a ×10-n 的形式,其中n 为原数第1个不为零的数字前面所有零的个数(包括小数点前面的那个零),1≤|a |<10.提示:用科学记数法的形式表示数更方便于比较数的大小.【例5】 把下列各数用科学记数法表示出来:(1)650 000; (2)-36 900 000; (3)0.000 002 1; (4)-0.000 006 57.6.分式的乘除混合运算分式的乘除混合运算要统一为乘法运算来计算.谈重点 分式乘除混合运算的方法 (1)分式的乘除混合运算顺序与分数的乘除混合运算顺序相同,即从左到右的顺序,有括号先算括号里面的;(2)分式的乘除混合运算要注意每个分式中分子、分母括号的处理,以及结果符号的确定;(3)分式的乘除混合运算结果应为最简分式或整式.7.分式的混合运算分式的四则混合运算与有理数的混合运算相同,必须按照运算顺序,先乘方,再乘除,后加减,有括号时先去小括号再去中括号,最后结果要化为最简分式或整式.解技巧 分式混合运算的技巧 分式四则混合运算要注意:(1)按照运算顺序进行,确定合理的运算顺序是解题的关键;(2)灵活运用交换律、结合律、分配律,可以使运算简捷,而且还可以提高运算速度和准确率;(3)将结果化为最简分式或整式;(4)运算过程中要注意符号的确定.8.把分式化简后再求值 分式的化简求值题,关键是要准确地运用分式的运算法则,然后代入求值.化简运算过程中要注意约分、通分时分式的值保持不变,要注意分清运算顺序,先乘除,后加减,如果有括号,先进行括号内的运算.【例6】 计算:1-x 2x 2+4x +4÷(x -1)2·x 2+3x +2x -1.【例7】 计算:⎣⎢⎡⎦⎥⎤a 2-b 2a 2+2ab +b 2+2ab ÷⎝⎛⎭⎫1a +1b 2·2a 2-b 2+2ab.【例8】 先化简,再求值:⎝⎛⎭⎫3x x -1-x x +1·x 2-12x ,其中x =-3.9.运用分式运算解决实际问题运用分式运算解决实际问题,关键是理解题意,找准各种量之间的关系,这也是解决数学应用题的基本方法,作差法等也是解决这类问题的常用方法.在判断两分式的差的正负的时候,可以考虑利用完全平方式的非负性和题中字母的实际意义来解题.作差法举例:若x ≠y 且x >0,y >0,比较4x +y 与x +y xy的大小.【例9】 甲、乙两工人生产同一种零件,甲每小时比乙多生产8个,现要求甲生产出168个零件,乙生产出144个零件,则他们两人谁能先完成任务?10.分式混合运算的开放型题所以在解决此类问题时,首先还是要正确进行分式的化简,然后还要注意问题的多解的情况.举例:已知P =a 2+b 2a 2-b 2,Q =2ab a 2-b 2,用“+”或“-”连接P ,Q 共有三种不同的形式:P +Q ,P -Q ,Q -P ,请选择其中一种进行化简求值,其中a =3,b =2.【例10】 已知A =1x -2,B =2x 2-4,C =x x +2.将它们组合成(A -B)÷C 或A -B÷C 的形式,请你从中任选一种进行计算.先化简,再求值,其中x =3.。

大同县X中学八年级数学下册第16章分式分式的加减法一教案新版华东师大版1

大同县X中学八年级数学下册第16章分式分式的加减法一教案新版华东师大版1

16 分式的加减法(-)●教学目标(一)教学知识点1、使学生掌握同分母、异分母分式的加减,2、能熟练地进行同分母,异分母分式的加减运算;培养学生分式运算的能力。

3、渗透类比、化归数学思想方法,培养学生的能力。

(二)能力目标:1.经历用字母表示数量关系的过程,进一步发展符号感.2.并能类比分数的加减运算,得出同分母分式的加减法的运算法则,发展有条理的思考及其语言表达能力. (三)情感与价值观目标;1.从现实情境中提出问题,提高“用数学”的意识.2.结合已有的数学经验,解决新问题,获得成就感以及克服困难的方法和勇气. ●教学重点1. 让学生掌握同分母、异分母分式的加减法法则。

2. 能熟练地进行简单的异分母的分式加减法. ●教学难点分式的分子是多项式的分式减法的符号法则,去括号法则应用。

●教学方法启发与探究相结合 ●教学过程一、.创设现实情境,提出问题[师]上一节我们学习了分式的乘除法运算法则,学会了分式乘除法的运算,这节课我们先来看下面的问题:(出示投影片)问题:从甲地到乙地有两条路,每条路都是3 km ,其中第一条是平路,第二条有1 km 的上坡路、2 km 的下坡路.小丽在上坡路上的骑车速度为v km/h,在平路上的骑车速度为2 v km/h,在下坡路上的骑车速度为3v km/h,那么(1)当走第二条路时,她从甲地到乙地需多长时间?(2)她走第一条路花费的时间比走第二条路少用多少时间?[分析]:根据题意可得下列线段图:(1)当走第二条路时,她从甲地到乙地需要的时间为(v 1+v32)h . (2)走第一条路,小丽从甲地到乙地需要的时间为v23h .所以她走第一条路花费的时间比走第二条路少用(v 1+v 32)-v23 h 代数式(v 1+v 32)-v23中的每一项都是分式,这是什么样的运算呢? [生]分式的加减法.[师]很好!这正是我们这节课要学习的内容——分式的加减法(板书课题) 二、实践与探索(一),同分母的分式的加减法法则:1、计算5251+= 回忆:同分母的分数的加减法法则: 同分母的分数相加减,分母不变,把分子相加减。

分式加减法

分式加减法
【同分母分式加减法的法则】同分母的 分式相加减加减法的法则】异分母的 分式相加减,先通分,化为同分母的 分式,再按同分母分式的加减法法则 进行计算.
【通分】利用分式的基本性质 ,把异分 母的分式化为同分分母的过程 .
【通分的原则】异分母通分时, 通常取 各分母的最简公分母作为它们的共同 分母.
分子相减时要注意符号的变化
例4
计算
3 24 2 x 4 x 16
3 24 分式的分母不同要先通分,再加减 解: 2 x 4 x 16 3 24 x 4 ( x 4)(x 4) 3( x 4) 24 ( x 4)(x 4) ( x 4)(x 4) 3( x 4) 24 ( x 4)(x 4) 3 x4
甲、乙两位采购员同去一家饲料公司购买两次 饲料.两次饲料的价格有变化,两位采购员的购 货方式也不同,其中,甲每次购买1000千克, 乙每次用去800元,两次购买饲料的单价为分别 为m元/千克,n元/千克,而不管购买多少饲料.
(1)甲、乙所购饲料的平均单价各是多少? (2)谁的购货方式更合算?
a a ( 3) x y y x
3、计算:
5a 2b 3 3a 2b 5 8 a 2b (1) ; 2 2 2 ab ab ab
b a (3) ; 3a 2b
1 2 (4) ; 2 a 1 1 a
4 xy (6) x y . x y

x3 = ( x 1)(x 1)
A + B , x 1 x 1
求A、 B的值.
A=2,B=-1
x2 x 1 4 x ( 2 2 ) 2 x 2x x 4x 4 x 2x
a b a b 2ab ( 2 2 ) a b a b (a b)(a b)

分式的混合运算

分式的混合运算

分式的混合运算【知识要点】1.分式的运算法则 同分母分式加减法:异分母分式加减法:2.分式的乘除法3.分式的乘方:4.常用的公式变形:211222-⎪⎭⎫⎝⎛+=+x x x x221211222244-⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫⎝⎛+=-⎪⎭⎫ ⎝⎛+=+x x x x x x注:分式的计算中,分数线具有括号的作用!【典型例题】例1 计算:(1)22221106532xyx y y x ÷⋅ (2)mn nn m m m n n m -+-+--2(3)1111-÷⎪⎭⎫ ⎝⎛--x x x (4)22224421y xy x y x y x y x ++-÷+--(5)m m -+-329122(6)a+2-a-24(7)262--x x ÷ 4432+--x x x(8)222)2222(xxx x x x x --+-+-(9)x x x x x x x x 4)44122(22-÷+----+ (10)2144122++÷++-a a a a a(11)y x axy28512÷ (12)xy x y 2211-+-例2 先化简,后求值:(1)168422+--x x xx ,其中x=5.(2)3,32,1)()2(222222-==+--+÷+---b a b a a b a a b ab a a b a a 其中(3)168422+--x x xx ,其中x=5例3 计算)1999x )(1998x (1.....)3x )(2x (1)2x )(1x (1)1x (x 1+++++++++++思考题:已知12,4-=-=+xy y x ,求1111+++++y x x y 的值;【大展身手】1.计算:2211xy x y x y x y ⎛⎫÷- ⎪--+⎝⎭2.计算:aa a a a a 4)22(2-⋅+--.3.计算:111112-+-∙-+a a a a 4.计算:⎪⎭⎫⎝⎛+---÷--11211222x x x x x x【小试锋芒】一、选择题1.下列判断中,正确的是( )A .分式的分子中一定含有字母;B .当B =0时,分式BA无意义 C .当A =0时,分式BA的值为0(A 、B 为整式)D .分数一定是分式 2.下列各式正确的是( )A .11++=++b a x b x aB .22x y x y =C .()0,≠=a ma na m nD .am an m n --=3.下列各分式中,最简分式是( )A .()()y x y x +-8534B .y x x y +-22 C .2222xy y x y x ++ D .()222y x y x +- 4.化简2293mm m --的结果是( ) A.3+m m B.3+-m m C.3-m m D.m m-3 5.若把分式xyyx 2+中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .不变 C .缩小3倍 D .缩小6倍 6.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( ) A .9448448=-++x x B .9448448=-++x x C .9448=+x D .9496496=-++x x7.已知x y z ==,则3x y z +-的值是( )A .17 B.7 C.1 D.138.汛期将至,我军机械化工兵连的官兵为驻地群众办实事,计划加固驻地附近20千米的河堤。

同分母分式的加减运算

同分母分式的加减运算

例2 通分
1 1 与 2
2x 3y
2 a 与 b
ab ab
解:1 最简公分母为6xy
1 13y 3y , 2 22x 4x 2x 2x 3y 6xy 3y 3y 2x 6xy
2 最简公分母是a ba b
a ab

aa b a ba b,
问题2:想一想,异分母的分数如何加减?
如 1 1 应该怎样计算? 23
【异分母分数加减法的法则】
通分,把异分母分数化为同分母分数。
问题3:想一想,异分母的分式如何进行加减?

11 ab
应该怎样计算?
异分母的分式
转化 通分
同分母的分式
异分母分式通分时,通常取最简单的公分母
(简称最简公分母)作为它们的共同分母。

xy x y
;(

× (6) x 3 2 x 1 .
3xy
3xy
3xy


2、 计算:
1 y x
xy xy
yx x y
1
2 3x x y
2x y 2x y
3x x y
2x y
2x y 1 2x y
3 x 2 x 1 x 3 4 a a
x2
x2
2
a c3 a2 b2

b c3 a2 b2
a c3 b c3

a2 b2
ab
a2 b2
1 ab
同分母分式加减的基本步骤: 1、分母不变,把分子相加减。 (1)如果分式的分子是多项式,一定要加上括 号; (2)如果是分子式单项式,可以不加括号。 2、分子相加减时,应先去括号,再合并同类项; 3、最后的结果,应化为最简分式或者整式。

分式加减运算法则


探究பைடு நூலகம்习
一 通分
问题 类比分数的通分你能把下列分式化为分母相同的分式吗?
1 与3 ab a
ab是最简公分母
通分
把几个异分母分式分别化成与它们相等的同分母分式,叫做 分式的通分,这个相同的分母叫做这几个分式的公分母.
典例精析
例1 通分(1)
3 2a2b

ab ab2c
;
解:
3 与ab
2a2b ab2c
(3)把单独出现的因式连同它的指数作为最简公分母的其余 因式.
注意:当多项式不是以乘积的形式出现时,通分之前需要对 各分母进行因式分解
针对训练
1、
x y 2xy
,y x2
,
x 6xy
y
2
的最简公分母是


2、通分
(1)
3
4a 2b
,1
6b 2c
(2)
1 , 1
x 2 1 x 2 2x 1
二 异分母分式的加减
2 a2 b2 c
最小公 最高 单独 倍数 次幂 字母
最简公分母
典例精析
(2) 解:
1
与1
3(x 1)( x 3) 2x 12
1
与1
3(x 1)( x 3) 2x 12
6x 12 (x 3)
最小公 最高 单独 倍数 次幂 因式
最简公分母
想一想 通分的步骤
(1)确定分母的最简公分母. (2)用最简公分母分别除以各分母求商. (3)分式的分子和分母同时乘以所得的商.
问题 请你认真完成下列运算:
1 1 3 2 5; 23 66 6 1 1 32 1. 23 66 6
想一想 异分母分数如何加减?

分式知识点

分式知识点一、分式定义形如AB,A、B是整式,B中含有未知数且B不等于0的式子叫做分式。

其中A叫做分式的分子,B叫做分式的分母。

二、分式的基本性质(1)分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。

(2)分式中的符号法则:分子、分母、分式本身同时改变两处的符号,分式的值不变。

三、最简分式一个分式的分子与分母没有公因式时,叫最简分式。

和分数不能化简一样,叫最简分数。

四、最简公分母(1)最简公分母的定义通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

(2)一般方法①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里。

②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂。

五、分式有、无意义的条件1、分式有意义的条件(1)分式有意义的条件是分母不等于零。

(2)分式无意义的条件是分母等于零。

(3)分式的值为正数的条件是分子、分母同时大于零。

(4)分式的值为负数的条件是分子、分母异号。

2、分式的值为零的条件分式值为零的条件是分子等于零且分母不等于零。

注意:“分母不为零”这个条件不能少3、分式无意义的条件分式有意义的条件是分母等于零六、分式的化简求值先把分式化简后,再把分式中未知数对应的值代入求出分式的值。

在化简的过程中要注意运算顺序和分式的化简。

化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式。

最简分式的定义:一个分式的分子与分母没有公因式时,叫最简分式。

分数不能化简一样,叫最简分数。

七、分式的通分与约分通分(1)通分的定义:把几个异分母的分式分别化为与原来的分式相等的同分母的分式,这样的分式变形叫做分式的通分。

(2)通分的关键是确定最简公分母。

①最简公分母的系数取各分母系数的最小公倍数。

第五章第03讲 分式的加减法(10类热点题型讲练)(解析版)--初中数学北师大版8年级下册

第03讲分式的加减法(10类热点题型讲练)1.熟练掌握同分母的分式加减运算;2.会找最简公分母,能进行分式通分,理解并掌握异分母分式的加减法则;3.能进行分式的混合运算及较复杂的分式化简求值.知识点01分式的通分分式的通分:利用分式的性质,将分式的分母变成最小公倍数,分子根据分母扩大的倍数相应扩大,不改变分式的值。

具体步骤:①通过短除法,求出分式分母的最小公倍数;②分母变为最小公倍数的值,确定原式分母扩大的倍数;③分子对应扩大相同倍数.知识点02最简公分母最简公分母:几个分式通分时,通常取各分母系数的最小公倍数与所有字母因式的最高次幂的积作为公分母,这样的分母叫做最简公分母.知识点03同分母分式的加减同分母的分式相加减法则:分母不变,分子相加减.用式子表示为:a c a cb b b±±=.知识点04异分母分式的加减异分母的分式相加减法则:先通分,变为同分母的分式,然后再加减.用式子表示为:a c ad bc ad bcb d bd bd bd±±=±=.注意:分式是分数的扩展,因此分式的运算法则与分数的运算法则类似.知识点01平面向量基本定理知识点02平面向量的坐标表示知识点03平面向量的坐标运算题型01同分母分式加减法题型02最简公分母题型03通分题型04异分母分式加减法题型05整式与分式相加减题型06已知分式恒等式,确定分子或分母【点睛】本题考查分式的加减,解题关键是掌握分式加法的运算法则.【变式训练】题型07分式加减混合运算题型08分式加减的实际应用【点睛】本题主要考查了分式加减的应用,解题的关键是根据题意列出分式,熟练掌握分式加减运算法则,准确计算.【变式训练】题型09分式加减乘除混合运算题型10分式化简求值一、单选题1.(23-24八年级上·天津红桥·期末)计算2111x x x x --++的结果是()A .1B .1x +C .11x +D .1x x +2.(22-23八年级上·贵州黔南·期末)分式22x x -,36x -的最简公分母是()A .2x -B .()2x x -C .()()323x x --D .()32x x -【答案】D【分析】本题考查了最简公分母,先因式分解取系数的最小公倍数,字母的最高次幂,1,3的最小公倍数为3,x 的最高次幂为1,2x -的最高次幂为1,则得出最简公分母.A .2222233y y x x ⎛⎫= ⎪⎝⎭B .110x y y x-=--C .3263x x y y ⎛⎫-=- ⎪⎝⎭D .()111333x y x y +=+将这些防护服尽快投入使用,增加了人手,最后平均每天比原计划多生产了60套,则工厂完成这个订单的时间比原计划提前()A .60x x y ⎛⎫- ⎪⎝⎭天B .60x x y y ⎛⎫- ⎪+⎝⎭天C .60x x y y ⎛⎫-⎪-⎝⎭天D .60x x y y ⎛⎫-⎪-⎝⎭天5.(23-24九年级下·湖北武汉·开学考试)已知2220x x --=,计算2121-⎛⎫-÷ ⎪+++⎝⎭x x x x x x 的值是()A .1B .1-C .0.5D .0.5-二、填空题6.(2023八年级下·江苏·专题练习)计算:221b a b a b+=-+.7.(23-24八年级上·山东东营·阶段练习)将分式29-a 和93a-进行通分时,最简公分母是【答案】()()333a a -+-【分析】本题考查了分式的通分;先对分式的分母进行因式分解,然后即可确定它们的最简公分母.【详解】解:∵()()2933a a a -=+-,()9333a a -=--,∴最简公分母是()()333a a -+-,故答案为:()()333a a -+-.8.(23-24八年级上·湖南长沙·阶段练习)若2574515x A Bx x x x -=+--+-,A ,B 为常数,则2A B -的值为.9.(2024八年级下·全国·专题练习)小刚在化简22a b M--时,整式M 看不清楚了,通过查看答案,发现得到的化简结果是1a b-,则整式M 是.和,多次重复进行这种运算的过程如下:则第2024次运算的结果2024y =.(用含字母x 的式子表示)三、解答题11.(22-23八年级上·山东济宁·阶段练习)通分:(1)235a b c 与2710c a b;(2)22x x +与21x x-.(1)2111x x x -++;(2)24411a a a a a a -+⎛⎫-÷⎪--⎝⎭.(1)2m n m n n m m n n m -++---(2)22211111 m m mmm m-+-⎛⎫÷--⎪-+⎝⎭14.(23-24八年级上·全国·课时练习)计算:(1)22211x x x -++;(2)3a b a b a b b a -+---;(3)2243164x x+--;(4)222a a a ---.(1)211y y y ---;(2)2221111x x x +--+-;(3)21613962x x x x------;(4)2()a b a b a b+--+.16.(2024九年级下·山东·专题练习)下面是某同学计算11a a ---的解题过程:解:211a a a ---()-=---22111aa a a ……………………①()2211a a a --=-………………………②2211a a a a -+-=-………………………③111a a -==-.……………………………④上述解题过程从第几步开始出现错误?请写出正确的解题过程.17.(23-24八年级上·江苏南通·阶段练习)先化简,再求值:111x x x x x -+⎛⎫÷-+ ⎪++⎝⎭,请从1-,0或2中选择你喜欢的一个数代入求值.18.(22-23八年级下·辽宁本溪·阶段练习)先化简,再求值:111x x x ++⎛⎫-+÷ ⎪++⎝⎭,其中()1013.142x π-⎛⎫=-+ ⎪⎝⎭形式,那么称这个分式为“美好分式”,如:112122111111x x x x x x x x +-+-==+=+-----,则11x x +-是“美好分式”.(1)下列分式中,属于“美好分式”的是______;(只填序号)①6325x x +;②232x x +;③33x x +;④24321x x +-.(2)将“美好分式”2221x x x -+-化成一个整式与一个分子为常数的分式的和的形式;(3)判断2251117x x x x x x x---÷+-的结果是否为“美好分式”,并说明理由.形式,那么称这个分式为“和谐分式”.如:514144111111x x x x x x x x ++++==+=++++++,则51x x ++是“和谐分式”.(1)下列分式中,属于“和谐分式”的是(填序号);①23x x+;②21x x +;③21x x +-.(2)将“和谐分式”2472y y y -+-化成一个整式与一个分子为常数的分式的和的形式;(3)应用:先化简22321112a a a a a a a-+--÷--,并回答:a 取什么整数时,该式的值为整数?3a ∴=,3a ∴=时,该式的值为整数.。

分式的加减法


例5计算:
2
再来试试
2
2a 1 a b b a b b 4
4a 1 a 4 解:原式 2 b a b b b
4a 4a 4a 4a ( a b) 2 2 2 2 b ( a b) b b ( a b) b ( a b)
:阅读下面题目的计算过程。
= x 3 2 x 1 = x 3 2x 2 = x 1
(1)上述计算过程,从哪一步开始错误,请写上该步的 代号 (2)错误原因 (3)本题的正确结论为
m n 3 则 n 的值等于( ) 1、若 C m n 4
7 A. 4
4 B. 3
注意:
9m 1 (2) 2 m 9 3 m
(1)分母是多项式时,一般需先分解因式
(2)分子为多项式时,运算要加括号
(3) 结果能约分的要化简
a2 思考题:计算 a b a b
分析:
解法1:把-a ,-b看成两个单项式,分母分别是1
a a a b a b a b a b 1 1
10bc 8ac 9ab 解:原式= 2 2 2 2 2 2 12 a b c 12 a b c 12 a b c
10bc 8ac 9ab 2 2 12 a b c
例题解析
例 3
解:1) (
吃透例题 , 成功一半
1 1 x3 x3 x3 x3 x -3 ( x 3)( x 3) ( x 3)( x 3)
2
计算:
x 4 (1) x2 x2 x 2 x 1 x 3 (2) x 1 x 1 x 1
2
注意:分数线有括号的作用,分子相加减 时,如果分子是一个多项式,要将分子 看成一个整体,要注意添括号,再运算, 可减少出现符号错误。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)当走第二条路时, 他从甲地 到乙地需要多长时间?
(2)他走哪条路花费时间少? 少用多长时间?
答: (1)
1 v
2 3v
(h)
(2) 走第一条路花费的时间
3 (h)
2v
哪条路用的时间少?
示意图
v
12v
3v
2
这是关于分式的加 减问题,你行吗?
对于
1 2 v 3v
,1 2 3
v 3v 2v
,3000 3000 a 3a
例3
计算:
先乘方;再
2
解:
2a b
• 1 ab ab b 4
乘除;最后 加减;有括 号先做括号
4a2 1 a 4
b2

ab b b
内 2b.a 2

a
1
b
a b
b 4
4a 2
4a
4a 2
4a(a b)
b2 (a b) b2 b2 (a b) b2 (a b)
4a2 4a2 4ab b2 (a b)
第五章 分式与分式方程
3 分式的加减法
第1课时 同分母分式的加减法
新课导入
问题一
某人用电脑录入汉字文稿的效率相当于手 抄的3倍,设他手抄的速度为a字/时,那么他录 入3000字文稿比手抄少用多少时间?
3000 3000 a 3a
问题二 帮帮小明算算时间
从甲地到乙地有两条路,每 一条路都是 3km. 其中第一条 是平路,第二条有1km的上坡路, 2km的下坡路.小明在上坡路上 的骑车速度为v km/h, 在平路上 的骑车速度为2 vkm/h, 在下坡路 上的骑车速度为3vkm/h, 那么:
如何计算呢?
这就需要我们进一步学习: 分式的加减法
例1 计算 :
5a2b ab2
3
3a2b ab
2
5
8
a2b ab2
解:原式= (5a2b 3) (3a2b 5) (8 a2b)
ab2
5a2b 3 3a2b 5 8 a2b
=
ab2
a 2b
= ab2
a
注意:结果要 化为最简分式!
分式加减运算的方法思路:
异分母 相加减
通分 转化为
同分母 分母不变 分子(整式)
相加减 转化为
相加减
分式的加减法法则:
a b ab cc c a c ad bc ad bc b d bd bd ad
例2
计算
x2 :x y
y2 yx
解:原式=
x2 x y
y2 (x y)
=
x2 x y
4ab b2 (a b)
4a ab b2
课堂小结
(1)分式加减运算的方法思路:
异分母 相加减
通分 转化为
同分母 分母不变 分子(整式)
相加减 转化为
相加减
(2)分子相加减时,如果分子是一个多项式,要将分子 看成一个整体,先用括号括起来,再运算,可减少出现符号 错误。
(3)分式加减运算的结果要约分,化为最 简分式(或整 式)。
2b x
;
分母不同怎么进行加减?
和小学做分数加减一样,通分呗!
(2)
原式
a ab
a ab
2a ab
.
想一想:
(1)异分母的分式加减法要遵守什么法则呢? 小学数学中,异分母的分数如何加减? (Βιβλιοθήκη 分,将异分母的分数化为同分母的分数)
(2)你认为异分母分式的加减应该如何进行?
比如 : 3 1 如何计算? a 4a
=b
把分子看作 一个整体,
先用括号 括起来!
想一想:
(1)
x2 x2
x
4
2
x2 4 ? x2
x
2 x
x2
2
x
2.
(2)
x x
2 1
x x
1 1
x3 x1
?
x
2
x
x
1
1
x
3
x2 x1 x1
x
3
x
x
1
.
计算:
(1)
3b x
b x
; (2)
a
a
b
b
a
a
;
解:
(1)
原式
3b b x
y2 x y
x2 y2
= xy =x+y
分母不同,先 化为同分母。
想一想:
计算:
a 3b (1)a b
a a
b b
2
5 (2)6a2b
2 3ab2
3 4abc
10bc 8ac 9ab 12a2b2c
先找出最简公分母,再正 确通分,转化为同分母的
分式相加减。
分数线有括号的 作用,分子相加 减时,要注意添 括号.
相关文档
最新文档