灭菌 无菌工艺验证指导原则

合集下载

兽用化学药品注射剂灭菌和无菌工艺研究及验证指导原则

兽用化学药品注射剂灭菌和无菌工艺研究及验证指导原则

兽用化学药品注射剂灭菌和无菌工艺研究及验证指导原则一、灭菌工艺研究兽用化学药品注射剂的灭菌工艺是确保产品无菌的重要环节。

在灭菌工艺研究中,应选择合适的灭菌参数,如温度、压力、时间等,并对灭菌设备进行确认,以确保其性能满足工艺要求。

同时,应对产品的热稳定性和灭菌效果进行评估,以确保灭菌工艺的有效性和安全性。

二、无菌工艺研究无菌工艺研究是兽用化学药品注射剂生产中的关键环节,其主要目标是确保产品在整个生产过程中保持无菌状态。

应进行无菌工艺验证,以证明所采取的措施能够确保产品无菌。

在无菌工艺研究中,应对生产环境、设备、操作方法等进行严格控制,并对产品的无菌性能进行检测和评估。

三、工艺验证工艺验证是确保兽用化学药品注射剂生产过程中灭菌和无菌工艺稳定性和可靠性的重要手段。

在工艺验证中,应对生产过程中的各项参数进行严格控制,并进行多批次的验证。

验证成功后,应定期对工艺进行复查,以确保其持续有效性。

四、持续生产验证持续生产验证是对灭菌和无菌工艺在实际生产过程中的表现进行监测和评估的重要环节。

应定期对生产过程中的各项参数进行检查和记录,并对产品的无菌性能进行检测。

同时,应对生产环境和设备进行定期清洁和消毒,以确保其符合无菌要求。

五、产品质量检测产品质量检测是确保兽用化学药品注射剂安全性和有效性的重要手段。

在灭菌和无菌工艺验证和持续生产验证中,应对产品的各项质量指标进行检测和评估,如外观、澄清度、pH值、含量等。

同时,应对产品的无菌性能进行严格检测,以确保其符合规定要求。

六、安全性评估安全性评估是对兽用化学药品注射剂可能对使用者产生的风险进行评估的重要环节。

在灭菌和无菌工艺研究和验证中,应考虑产品的毒性和副作用,并进行相应的风险评估和控制。

同时,应对产品的安全性和有效性进行长期的跟踪监测和评估。

七、稳定性考察稳定性考察是评估兽用化学药品注射剂在储存和使用过程中的稳定性的重要手段。

在灭菌和无菌工艺研究和验证中,应对产品在不同条件下的稳定性进行考察和评估,并确定产品的有效期和储存条件。

【VIP专享】灭菌无菌工艺验证指导原则sterile, aseptic process validation guideline

【VIP专享】灭菌无菌工艺验证指导原则sterile, aseptic process validation guideline

Contents1 概述Summary (2)2 制剂湿热灭菌工艺Moist heat sterile process (3)2.1 湿热灭菌工艺的研究Study on moist heat sterile process (3)2.2 湿热灭菌工艺的验证Moist heat sterilization process validation (6)3 制剂无菌生产工艺Preparation aseptic production process (10)3.1 无菌生产工艺的研究Research of aseptic production process (10)3.2 无菌生产工艺的验证Aseptic production process validation (11)4 原料药无菌生产工艺API aseptic production process (16)4.1 无菌原料药生产工艺特点Sterile API production process characteristics (17)4.2 无菌原料药工艺验证sterile API process validation (19)1 概述Summary无菌药品是指法定药品标准中列有无菌检查项目的制剂和原料药,一般包括注射剂、无菌原料药及滴眼剂等。

从严格意义上讲,无菌药品应完全不含有任何活的微生物,但由于目前检验手段的局限性,绝对无菌的概念不能适用于对整批产品的无菌性评价,因此目前所使用的“无菌”概念,是概率意义上的“无菌”。

一批药品的无菌特性只能通过该批药品中活微生物存在的概率低至某个可接受的水平,即无菌保证水平(Sterility Assurance Level, SAL)来表征。

而这种概率意义上的无菌保证取决于合理且经过验证的灭菌工艺过程、良好的无菌保证体系以及生产过程中严格的GMP管理。

Sterile drug means the preparations and API which legal drug standards list of asepsis check, generally, sterile drug including injection, sterile APIs and eye drops, etc. Strictly, sterile drug shouldn’t have any live microorganisms, but in current situation, it can’t be achieved. So current the sterile use a probability concept: SAL.无菌药品通常的灭菌方式可分为:1)湿热灭菌;2)干热灭菌;3)辐射灭菌;4)气体灭菌;5)除菌过滤。

灭菌无菌工艺验证指导原则之欧阳语创编

灭菌无菌工艺验证指导原则之欧阳语创编

灭菌/无菌工艺验证指导原则(第二稿)目录1概述22制剂湿热灭菌工艺32.1湿热灭菌工艺的研究32.1.1 湿热灭菌工艺的确定依据32.1.2过度杀灭法的工艺研究32.1.3残存概率法的工艺研究32.2湿热灭菌工艺的验证32.2.1物理确认32.2.2 生物学确认33制剂无菌生产工艺33.1无菌生产工艺的研究33.1.1无菌分装生产工艺的研究33.1.2 过滤除菌生产工艺的研究33.2 无菌生产工艺的验证33.2.1培养基模拟灌装试验33.2.2 除菌过滤系统的验证34原料药无菌生产工艺34.1 无菌原料药生产工艺特点34.1.1 溶媒结晶工艺34.1.2 冷冻干燥工艺34.2 无菌原料药工艺验证34.2.1 验证批量34.2.2 最差条件31概述无菌药品是指法定药品标准中列有无菌检查项目的制剂和原料药,一般包括注射剂、无菌原料药及滴眼剂等。

从严格意义上讲,无菌药品应完全不含有任何活的微生物,但由于目前检验手段的局限性,绝对无菌的概念不能适用于对整批产品的无菌性评价,因此目前所使用的“无菌”概念,是概率意义上的“无菌”。

一批药品的无菌特性只能通过该批药品中活微生物存在的概率低至某个可接受的水平,即无菌保证水平(Sterility Assurance Level, SAL)来表征。

而这种概率意义上的无菌保证取决于合理且经过验证的灭菌工艺过程、良好的无菌保证体系以及生产过程中严格的GMP 管理。

无菌药品通常的灭菌方式可分为:1)湿热灭菌;2)干热灭菌;3)辐射灭菌;4)气体灭菌;5)除菌过滤。

按工艺的不同分为最终灭菌工艺(sterilizing process)和无菌生产工艺(aseptic processing)。

其中最终灭菌工艺系指将完成最终密封的产品进行适当灭菌的工艺,由此生产的无菌制剂称为最终灭菌无菌药品,湿热灭菌和辐射灭菌均属于此范畴。

无菌生产工艺系指在无菌环境条件下,通过无菌操作来生产无菌药品的方法,除菌过滤和无菌生产均属于无菌生产工艺。

无菌工艺验证指导原则

无菌工艺验证指导原则

无菌工艺验证指导原则1 概述无菌药品是指法定药品标准中列有无菌检查项目的制剂和原料药,一般包括注射剂、无菌原料药及滴眼剂等。

从严格意义上讲,无菌药品应完全不含有任何活的微生物,但由于目前检验手段的局限性,绝对无菌的概念不能适用于对整批产品的无菌性评价,因此目前所使用的“无菌”概念,是概率意义上的“无菌”。

一批药品的无菌特性只能通过该批药品中活微生物存在的概率低至某个可接受的水平,即无菌保证水平(Sterility Assurance Level, SAL)来表征。

而这种概率意义上的无菌保证取决于合理且经过验证的灭菌工艺过程、良好的无菌保证体系以及生产过程中严格的GMP管理。

无菌药品通常的灭菌方式可分为:1)湿热灭菌;2)干热灭菌;3)辐射灭菌;4)气体灭菌;5)除菌过滤。

按工艺的不同分为最终灭菌工艺(sterilizing process)和无菌生产工艺(aseptic processing)。

其中最终灭菌工艺系指将完成最终密封的产品进行适当灭菌的工艺,由此生产的无菌制剂称为最终灭菌无菌药品,湿热灭菌和辐射灭菌均属于此畴。

无菌生产工艺系指在无菌环境条件下,通过无菌操作来生产无菌药品的方法,除菌过滤和无菌生产均属于无菌生产工艺。

部分或全部工序采用无菌生产工艺的药品称为非最终灭菌无菌药品。

基于无菌药品灭菌/除菌生产工艺的现状,本指导原则主要对在注射剂与无菌原料药的生产中比较常用的湿热灭菌与无菌生产工艺进行讨论。

本指导原则中的湿热灭菌工艺验证主要包括灭菌条件的筛选和研究,湿热灭菌的物理确认,生物指示剂确认等容;无菌生产工艺验证主要包括无菌分装、除菌过滤、培养基模拟灌装、过滤系统的验证等验证容。

最终灭菌工艺和无菌生产工艺实现产品无菌的方法有本质上的差异,从而决定了由这两类工艺生产的产品应该达到的最低无菌保证水平的巨大差异。

最终灭菌无菌产品的无菌保证水平为残存微生物污染概率≤10-6,非最终灭菌无菌产品的无菌保证水平至少应达到95%置信限下的污染概率<0.1%。

灭菌无菌工艺验证指导原则

灭菌无菌工艺验证指导原则

灭菌无菌工艺验证指导原则1 概述无菌药品是指法定药品标准中列有无菌检查项目的制剂和原料药,一般包括注射剂、无菌原料药及滴眼剂等。

从严格意义上讲,无菌药品应完全不含有任何活的微生物,但由于目前检验手段的局限性,绝对无菌的概念不能适用于对整批产品的无菌性评价,因此目前所使用的“无菌”概念,是概率意义上的“无菌”。

一批药品的无菌特性只能通过该批药品中活微生物存在的概率低至某个可接受的水平,即无菌保证水平(Sterility Assurance Level, SAL)来表征。

而这种概率意义上的无菌保证取决于合理且经过验证的灭菌工艺过程、良好的无菌保证体系以及生产过程中严格的GMP管理。

无菌药品通常的灭菌方式可分为:1)湿热灭菌;2)干热灭菌;3)辐射灭菌;4)气体灭菌;5)除菌过滤。

按工艺的不同分为最终灭菌工艺(sterilizing process)和无菌生产工艺(aseptic processing)。

其中最终灭菌工艺系指将完成最终密封的产品进行适当灭菌的工艺,由此生产的无菌制剂称为最终灭菌无菌药品,湿热灭菌和辐射灭菌均属于此范畴。

无菌生产工艺系指在无菌环境条件下,通过无菌操作来生产无菌药品的方法,除菌过滤和无菌生产均属于无菌生产工艺。

部分或全部工序采用无菌生产工艺的药品称为非最终灭菌无菌药品。

基于无菌药品灭菌/除菌生产工艺的现状,本指导原则主要对在注射剂与无菌原料药的生产中比较常用的湿热灭菌与无菌生产工艺进行讨论。

本指导原则中的湿热灭菌工艺验证主要包括灭菌条件的筛选和研究,湿热灭菌的物理确认,生物指示剂确认等内容;无菌生产工艺验证主要包括无菌分装、除菌过滤、培养基模拟灌装、过滤系统的验证等验证内容。

最终灭菌工艺和无菌生产工艺实现产品无菌的方法有本质上的差异,从而决定了由这两类工艺生产的产品应该达到的最低无菌保证水平的巨大差异。

最终灭菌无菌产品的无菌保证水平为残存微生物污染概率≤10-6,非最终灭菌无菌产品的无菌保证水平至少应达到95%置信限下的污染概率<>基于质量源于设计的药品研发与质量控制的理念,为保证无菌药品的无菌保证水平符合要求,研发者在产品的研发过程中应根据药品的特性选择合适的灭菌方式,并系统地评估生产的各环节及各种因素对无菌保证水平的影响,根据风险的高低与风险发生的可能性等来针对性地验证灭菌工艺的可靠性,验证的内容、范围与批数等取决于工艺与产品的复杂性以及生产企业对类似工艺的经验多少等因素。

《化学药品注射剂灭菌无菌工艺研究及验证指导原则》

《化学药品注射剂灭菌无菌工艺研究及验证指导原则》

化学药品注射剂灭菌/无菌工艺研究及验证指导原则目录一、概述 (3)二、注射剂湿热灭菌工艺 (4)(一)湿热灭菌工艺的研究 (4)1.湿热灭菌工艺的确定依据 (4)2.微生物污染的监控 (7)(二)湿热灭菌工艺的验证 (9)1.物理确认 (9)2.生物学确认 (13)3.基于风险评估的验证方案设计 (16)三、注射剂无菌生产工艺 (16)(一)无菌生产工艺的研究 (16)1.除菌过滤工艺的研究 (16)2.无菌分装工艺的研究 (18)(二)无菌生产工艺的验证 (18)1.除菌过滤工艺验证 (19)2.无菌工艺模拟试验 (21)1/ 29四、附件 (24)五、参考文献 (27)2/ 291一、概述2无菌药品是指法定药品标准中列有无菌检查项目的制3剂和原料药,一般包括注射剂、无菌原料药及滴眼剂等。

4从严格意义上讲,无菌药品应不含任何活的微生物,但由5于目前检验手段的局限性,绝对无菌的概念不能适用于对6整批产品的无菌性评价,因此目前所使用的“无菌”概念,7是概率意义上的“无菌”。

特定批次药品的无菌特性只能通8过该批药品中活微生物存在的概率低至某个可接受的水平,即无菌保证水平(Sterility Assurance Level, SAL)来表征,910而这种概率意义上的无菌需通过合理设计和全面验证的灭11菌/除菌工艺过程、良好的无菌保证体系以及在生产过程中12执行严格的药品生产质量管理规范(GMP)予以保证。

13本指导原则主要参考国内外相关技术指导原则和标准14起草制订,重点对注射剂常用的灭菌/无菌工艺,即湿热灭15菌为主的终端灭菌工艺(terminal sterilizing process)和无16菌生产工艺(aseptic processing)的研究和验证进行阐述,17旨在促进现阶段化学药品注射剂的研究和评价工作的开展。

18本指导原则主要适用于无菌注射剂申请上市以及上市后变19更等注册申报过程中对灭菌/无菌工艺进行的研究和验证工作,相关仪器设备等的验证及常规再验证不包括在本指2021导原则的范围内。

2020版《化学药品注射剂灭菌无菌工艺研究及验证指导原则》

2020版《化学药品注射剂灭菌无菌工艺研究及验证指导原则》

化学药品注射剂灭菌/无菌工艺研究及验证指导原则目录一、概述 (3)二、注射剂湿热灭菌工艺 (4)(一)湿热灭菌工艺的研究 (4)1.湿热灭菌工艺的确定依据 (4)2.微生物污染的监控 (7)(二)湿热灭菌工艺的验证 (9)1.物理确认 (9)2.生物学确认 (13)3.基于风险评估的验证方案设计 (16)三、注射剂无菌生产工艺 (16)(一)无菌生产工艺的研究 (16)1.除菌过滤工艺的研究 (16)2.无菌分装工艺的研究 (18)(二)无菌生产工艺的验证 (18)1.除菌过滤工艺验证 (19)2.无菌工艺模拟试验 (21)1/ 29四、附件 (24)五、参考文献 (27)2/ 291一、概述2无菌药品是指法定药品标准中列有无菌检查项目的制3剂和原料药,一般包括注射剂、无菌原料药及滴眼剂等。

4从严格意义上讲,无菌药品应不含任何活的微生物,但由5于目前检验手段的局限性,绝对无菌的概念不能适用于对6整批产品的无菌性评价,因此目前所使用的“无菌”概念,7是概率意义上的“无菌”。

特定批次药品的无菌特性只能通8过该批药品中活微生物存在的概率低至某个可接受的水平,即无菌保证水平(Sterility Assurance Level, SAL)来表征,910而这种概率意义上的无菌需通过合理设计和全面验证的灭11菌/除菌工艺过程、良好的无菌保证体系以及在生产过程中12执行严格的药品生产质量管理规范(GMP)予以保证。

13本指导原则主要参考国内外相关技术指导原则和标准14起草制订,重点对注射剂常用的灭菌/无菌工艺,即湿热灭15菌为主的终端灭菌工艺(terminal sterilizing process)和无16菌生产工艺(aseptic processing)的研究和验证进行阐述,17旨在促进现阶段化学药品注射剂的研究和评价工作的开展。

18本指导原则主要适用于无菌注射剂申请上市以及上市后变19更等注册申报过程中对灭菌/无菌工艺进行的研究和验证工作,相关仪器设备等的验证及常规再验证不包括在本指2021导原则的范围内。

无菌工艺验证指导原则

无菌工艺验证指导原则

无菌工艺验证指导原则1 概述无菌药品就是指法定药品标准中列有无菌检查项目得制剂与原料药,一般包括注射剂、无菌原料药及滴眼剂等。

从严格意义上讲,无菌药品应完全不含有任何活得微生物,但由于目前检验手段得局限性,绝对无菌得概念不能适用于对整批产品得无菌性评价,因此目前所使用得“无菌”概念,就是概率意义上得“无菌”。

一批药品得无菌特性只能通过该批药品中活微生物存在得概率低至某个可接受得水平,即无菌保证水平(Sterility Assurance Level, SAL)来表征。

而这种概率意义上得无菌保证取决于合理且经过验证得灭菌工艺过程、良好得无菌保证体系以及生产过程中严格得GMP管理。

无菌药品通常得灭菌方式可分为:1)湿热灭菌;2)干热灭菌;3)辐射灭菌;4)气体灭菌;5)除菌过滤、按工艺得不同分为最终灭菌工艺(sterilizing process)与无菌生产工艺(aseptic processing)。

其中最终灭菌工艺系指将完成最终密封得产品进行适当灭菌得工艺,由此生产得无菌制剂称为最终灭菌无菌药品,湿热灭菌与辐射灭菌均属于此范畴。

无菌生产工艺系指在无菌环境条件下,通过无菌操作来生产无菌药品得方法,除菌过滤与无菌生产均属于无菌生产工艺、部分或全部工序采用无菌生产工艺得药品称为非最终灭菌无菌药品。

基于无菌药品灭菌/除菌生产工艺得现状,本指导原则主要对在注射剂与无菌原料药得生产中比较常用得湿热灭菌与无菌生产工艺进行讨论。

本指导原则中得湿热灭菌工艺验证主要包括灭菌条件得筛选与研究,湿热灭菌得物理确认,生物指示剂确认等内容;无菌生产工艺验证主要包括无菌分装、除菌过滤、培养基模拟灌装、过滤系统得验证等验证内容。

最终灭菌工艺与无菌生产工艺实现产品无菌得方法有本质上得差异,从而决定了由这两类工艺生产得产品应该达到得最低无菌保证水平得巨大差异。

最终灭菌无菌产品得无菌保证水平为残存微生物污染概率≤10-6,非最终灭菌无菌产品得无菌保证水平至少应达到95%置信限下得污染概率〈0、1%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

灭菌/无菌工艺验证指导原则1概述无菌药品是指法定药品标准中列有无菌检查项目的制剂和原料药,一般包括注射剂、无菌原料药及滴眼剂等。

从严格意义上讲,无菌药品应完全不含有任何活的微生物,但由于目前检验手段的局限性,绝对无菌的概念不能适用于对整批产品的无菌性评价,因此目前所使用的“无菌”概念,是概率意义上的“无菌”。

一批药品的无菌特性只能通过该批药品中活微生物存在的概率低至某个可接受的水平,即无菌保证水平(Sterility Assurance Level, SAL)来表征。

而这种概率意义上的无菌保证取决于合理且经过验证的灭菌工艺过程、良好的无菌保证体系以及生产过程中严格的GMP管理。

无菌药品通常的灭菌方式可分为:1)湿热灭菌;2)干热灭菌;3)辐射灭菌;4)气体灭菌;5)除菌过滤。

按工艺的不同分为最终灭菌工艺(sterilizing process)和无菌生产工艺(aseptic processing)。

其中最终灭菌工艺系指将完成最终密封的产品进行适当灭菌的工艺,由此生产的无菌制剂称为最终灭菌无菌药品,湿热灭菌和辐射灭菌均属于此范畴。

无菌生产工艺系指在无菌环境条件下,通过无菌操作来生产无菌药品的方法,除菌过滤和无菌生产均属于无菌生产工艺。

部分或全部工序采用无菌生产工艺的药品称为非最终灭菌无菌药品。

基于无菌药品灭菌/除菌生产工艺的现状,本指导原则主要对在注射剂与无菌原料药的生产中比较常用的湿热灭菌与无菌生产工艺进行讨论。

本指导原则中的湿热灭菌工艺验证主要包括灭菌条件的筛选和研究,湿热灭菌的物理确认,生物指示剂确认等内容;无菌生产工艺验证主要包括无菌分装、除菌过滤、培养基模拟灌装、过滤系统的验证等验证内容。

最终灭菌工艺和无菌生产工艺实现产品无菌的方法有本质上的差异,从而决定了由这两类工艺生产的产品应该达到的最低无菌保证水平的巨大差异。

最终灭菌无菌产品的无菌保证水平为残存微生物污染概率≤10-6,非最终灭菌无菌产品的无菌保证水平至少应达到95%置信限下的污染概率<0.1%。

由此可见,非最终灭菌无菌产品存在微生物污染的概率远远高于最终灭菌无菌产品,为尽量减少非最终灭菌无菌产品污染微生物的概率,鼓励企业在生产中采用隔离舱等先进技术设备。

基于质量源于设计的药品研发与质量控制的理念,为保证无菌药品的无菌保证水平符合要求,研发者在产品的研发过程中应根据药品的特性选择合适的灭菌方式,并系统地评估生产的各环节及各种因素对无菌保证水平的影响,根据风险的高低与风险发生的可能性等来针对性地验证灭菌工艺的可靠性,验证的内容、范围与批数等取决于工艺与产品的复杂性以及生产企业对类似工艺的经验多少等因素。

只有在研发中经过系统而深入的研究与验证,获得可靠的灭菌工艺,并在日常的生产过程中严格执行该工艺,才能真正保证每批药品的无菌保证水平符合预期的要求。

当然,在药品的整个生命周期内,随着对所生产的药品的特性和生产工艺等的了解越来越全面和深入,灭菌工艺也在不断的完善,此时就会涉及到对变更后的工艺如何进行验证的问题,本指导原则也适用于此种情况。

由于灭菌/除菌工艺验证的工作在我国开展的时间不长,基础还不牢靠,因此必然在实际工作中会遇到很多难以预料的问题,故本指导原则只是一个一般性原则,药物研发者应从药物研发的客观规律出发,具体问题具体分析,必要时根据实际情况采用其他有效的方法和手段。

同时,本指导原则作为阶段性产物,必将随着药物研究者与评价者对灭菌工艺研究与验证的认知加深,而不断进行修订与完善。

2制剂湿热灭菌工艺2.1湿热灭菌工艺的研究2.1.1 湿热灭菌工艺的确定依据灭菌工艺的选择一般按照灭菌工艺的决策树(详见附件1)进行,湿热灭菌工艺是决策树中首先考虑的灭菌工艺。

湿热灭菌法是利用高压饱和蒸汽、过热水喷淋等手段使微生物菌体中的蛋白质、核酸发生变性而杀灭微生物的方法。

高温在杀灭微生物的同时,可能对药品的质量也有所影响。

如果产品不能耐受湿热灭菌,则需要考虑采用无菌生产工艺。

所以,对于药品的灭菌工艺的考察和确定,首先是考察其能否采用湿热灭菌工艺,能否耐受湿热灭菌的高温。

目前湿热灭菌方法主要有两种:过度杀灭法(F0≥12)和残存概率法(8≤F0<12)。

用其它F0值小于8的终端灭菌条件的工艺,则应该按照无菌生产工艺要求。

以上两种湿热灭菌方法都可以在实际生产中使用,具体选择哪种灭菌方法,在很大程度上取决于被灭菌产品的热稳定性。

药物是否能耐受湿热灭菌工艺的高温,除了与药物活性成分的化学性质相关外,还与活性成分存在的环境密切相关,所以在初期的工艺设计过程中需要通过对药物热稳定性进行综合分析,以确定能否采用湿热灭菌工艺。

2.1.1.1活性成分的化学结构特点与稳定性通过对活性成分的化学结构进行分析,可以初步判断活性成分的稳定性,如果活性成分结构中含有一些对热不稳定的结构基团,则提示主成分的热稳定性可能较差。

在此基础之上,还应该通过设计一系列的强制降解试验对活性成分的稳定性做进一步研究确认,了解活性成分在各种条件下可能发生的降解反应,以便在处方工艺的研究中采取针对性的措施,保障产品能够采用湿热灭菌工艺。

2.1.1.2 处方工艺的研究在对活性成分的结构特点与稳定性进行研究的基础上,可以有针对性的进行处方工艺的优化研究。

如活性成分易发生氧化反应,则需要考虑是否需要在工艺中去除氧并采取充氮的生产工艺,或在处方中加入适宜的抗氧剂;如活性成分的稳定性与pH值相关,则需要通过研究寻找最利于主成分稳定性的pH值,当然此时需要关注该pH值在临床治疗时能否接受;如果主成分是因为某些杂质的存在影响了稳定性,则需要通过适宜的手段去除相关的杂质;如果是主成分在某种溶剂系统中稳定性较差,则需要考虑更换溶剂系统,此时同样需要考虑所选用的溶剂系统在临床应用时能否被接受;湿热灭菌的不同灭菌温度和灭菌时间的组合对产品的稳定性的要求有所不同,可以在保证提供所需的SAL的基础上,通过灭菌时间和灭菌温度的调整来确定药物可以耐受的湿热灭菌工艺。

总之,需要通过各个方面的研究,使药物尽可能的可以采用湿热灭菌工艺。

只有在理论和实践均证明即使采用了各种可行的技术方法之后,活性成分依然无法耐受湿热灭菌的工艺时,才能选择无菌保证水平较低的无菌生产工艺。

2. 2.1.3稳定性研究无论使用何种设计方法,都需要进行最终灭菌产品的稳定性研究。

考察最终灭菌程序对产品性质稳定性影响的试验可包括产品的降解、含量、pH值、颜色、缓冲能力以及产品的其它质量特性。

灭菌时,杀灭微生物的效果和活性成分的降解都随着时间和温度而累积。

这意味着加热和冷却的变化将影响产品的稳定性,同时影响杀灭效果。

因此,稳定性研究用样品最好选取处于最苛刻的灭菌条件的产品,如:可采用在热穿透试验中F0最大的位置上灭菌的产品进行稳定性考察,以确保灭菌产品的质量仍能符合要求。

2.1.2过度杀灭法的工艺研究通常来说,与残存概率法相比,过度灭杀法所需的被灭菌品开始生产阶段和日常监控阶段生物负荷的信息较少,但是过度杀灭要求的热能比较大,其后果是被灭菌品降解的可能性增大。

过度杀灭法的目标是确保达到一定程度的无菌保证水平,而不管被灭菌产品初始菌的数量及其耐热性如何。

过度杀灭法假设的生物负荷和耐热性都高于实际数,而大多数微生物的耐热性都比较低,很少发现自然生成的微生物的D121℃值大于0.5分钟。

因此,过度杀灭的灭菌程序理论上能完全杀灭微生物,从而能提供很高的无菌保证值。

由于该方法已经对生物负荷及耐热性作了最坏的假设,从技术角度看,对被灭菌品进行初始菌监控就没有多大必要了。

但这并不意味着生产过程中对污染可以完全不加控制。

仅从控制热原的角度,也应当遵循工艺卫生规范,控制产品的微生物污染。

如果实际生产中能够严格遵循GMP的要求,这一点是可以实现的。

2.1.3残存概率法的工艺研究与过度杀灭法相比,残存概率法方法所需的信息量要大得多,包括被灭菌品生产开始阶段及常规生产阶段的信息、指示菌(对灭菌程序呈现强耐热性的试验菌)以及生物负荷的信息。

只有积累了这类有价值的信息后,才能制定比过度杀灭法F0值低的热力灭菌程序,同时产品的无菌保证水平不会降低。

使用热力较低灭菌程序更有利于药品的稳定性,使产品的有效期延长。

正是因为这个原因,残存概率法更适合那些处方耐热性较差的最终灭菌产品。

通常说来,不耐热药品的灭菌可能不能使用过度杀灭法,需要设计一个灭菌程序能够恰当地杀灭生物负荷,同时不导致产品不可接受的降解。

这种情况下,灭菌程序的确认就需研究产品的生物负荷和耐热性。

根据以下公式可以比较清楚的说明这一点:无菌保证值= F0 / D - lgN0其中,无菌保证值是SAL的负对数,N0为灭菌开始时产品中的污染微生物总数,D为污染微生物的耐热参数。

所以,菌工艺的无菌保证值与F0、N0、D密切相关。

2.1.3.1 灭菌前生物负荷的控制采用残存概率法进行终端灭菌的产品,除了需要关注灭菌过程本身,还需要在生产过程中采用一些适当的手段来监测和控制药品灭菌前的生物负荷。

具体的措施通常包括灭菌前微生物数量与耐热性的监测、药液过滤、工艺参数的控制等等。

灭菌前微生物污染水平的监测将在下面的章节详细阐述。

产品过滤在终端灭菌的产品中仅仅作为辅助的控制手段,但是在工艺确定的过程中,也应该对滤膜的孔径、材质、滤器的使用周期进行必要的筛选。

在工艺参数控制方面,由于微生物的特性,通常在药液放置期间也会逐渐繁殖,尤其一些营养型的注射液,如葡萄糖注射液、复方氨基酸注射液等,其环境更有利于微生物的生长和繁殖,因此应通过工艺筛选和验证来确定溶液配制至过滤前、以及过滤后至灭菌前能够放置的最长时限,并相应确定产品的批量、生产周期等关键工艺参数。

2.1.3.2 灭菌前微生物污染的监测灭菌前微生物污染水平的监测应在正常生产过程中取样并覆盖整个生产过程,取样设计应选取生产过程中污染最大,最有代表性的样品,且要充分考虑到产品从灌封到灭菌前的放置时间。

一般而言,如果灌装持续一段时间,可从每批产品灌装开始、中间及结束时分别取样。

污染水平检查可以采用如下的方法:先用灭菌的5%吐温充分湿润0.45um的滤膜,然后定量过滤药液,将此滤膜移至营养琼脂平板上,在30~35℃下培养3~7天,计数。

分离获得的污染菌需要进行耐热性的检查。

污染菌的耐热性检查可以采用以下的测定方法:先用灭菌的5%吐温充分润湿0.45um 的滤膜,然后过滤污染水平监测所取的药液样品,再将此膜移至装有无菌的待监测产品的试管中,在沸水浴上煮沸约30分钟,然后在30-35℃下在硫乙醇酸盐肉汤中培养,观察是否有耐热菌生长。

当耐热性检查发现药液存在耐热污染菌污染时,可采用定时煮沸法将它和已知的生物指示剂的耐热性加以比较,必要时,可再测试耐热污染菌的D值(D值的具体检测方法详见附件2),然后根据灭菌的F0值及污染菌的数量与耐热性对产品的无菌做出评价。

相关文档
最新文档