(完整word版)圆锥曲线在高考数学中的地位

(完整word版)圆锥曲线在高考数学中的地位
(完整word版)圆锥曲线在高考数学中的地位

我花了很多时间修改格式和内容,请你在这篇文章的基础上做改动。文章结构基本合理,第二部分的内容显得十分单薄,看能否再加上一些内容,使其更加丰富;

我已经修改了中文摘要和关键词,请你将其翻译成英文的;

参考文献的格式不对,一一对照修改。

参考文献在文中的引用没有体现出来:参考文献在文中出现的地方用上标

予以标明,序号用加方括号的阿拉伯数字表示(如[1][2][3]),列于正文文末。如,定理1……完毕[3].参考文献的每个标号在文中至少(只需)出现1次,出现顺序必须是[1][2][3]…,如需帮助请呼组长

我对格式做了很大的调整,还有一些需要你自己完成:

文中的以字母表示的点,数据等等数学表达式,全部在数学公式编辑器中完成,但是文字不能在数学公式编辑器中编辑;

在公式编辑器中的字母的格式F是错的,应该改为F,将其选中后在样式中再点击一次“数字”,格式就对了!

小括号不用公式编辑器中的模版(),直接在键盘上输();中括号即闭区间符号也不用公式编辑器中模版[],也直接在键盘上输[];否则打印出来的效果很怪异,一眼就被检查人员看出来了;区间括号中的逗号,,改为,改不来就把这个,复

制过去;

我已经修改了一部分,实在是太多,没有时间帮你了,你自己再一一对照修改。图片也不对头,3.1当中的坐标轴不规范,还有那些字母的格式应该为TIMES NEW ROMAN 的斜体;

后面的图片的字母格式也一样要改!

圆锥曲线在高考数学中的地位

数学学院数学与应用数学(师范)专业2010级田晓虹

指导教师童殷

摘要:圆锥曲线是平面解析几何的核心内容,是高考重点考查的内容之一,在重庆每年的高考试卷中一般有低、中、高档的主观题和客观题,占总分数的13%左右。本文首先简单的概述了圆锥曲线的基本知识内容,然后对近年的圆锥曲线高考题作了统计与解答,总结了其考查形式,考查的知识点,以及常用的方法,为教师教学和学生复习提供一定的参考。

关键词:圆锥曲线;高考题;

Abstract:Conic curve is the heart of the space analytic geometry ,it is one of the important contents for the College Entrance Examination,there are some subjective items and objective items in the annual College Entrance Examination papers of Chongqing,it is about 13% of the total scores .Firstly, I provides an overview of the basic knowledge of the contents of conic curve,then,I make statistics and answer the college entrance examination on conic curve of this years, summarize the examination form and some common methods, provide a reference for the teachers and students.

Key words:conic curve ;College Entrance Examination;

平面解析几何作为中学数学几何代数化的典型代表,圆锥曲线更是高中数学平面解析几何的核心内容,是高考重点考查的内容之一,与函数、方程、不等式、几何、三角、数列、向量等有机地联系在一起,又以综合性较高的解答题为主,重点考查圆锥曲线的概念和性质、方程和轨迹、直线与圆锥曲线的位置关系等。是用“活题”考“死知识”的典范,具有涉及面广、综合性强、运算量大、题目新颖、灵活多样、能力要求高等特点[8],以定义法、配方法、待定系数法、参数法、判别式法等数学解题通法。

1 圆锥曲线具体内容

高考数学所涉及的圆锥曲线主要有:椭圆、双曲线、抛物线,其定义及性质如下:

1.1 椭圆的定义及性质 1.1.1 椭圆的定义

椭圆的定义第一定义应注意其中的常数大于两定点间的距离,当该常数等于两定点间的距离时,动点的轨迹为线段。椭圆也可以按照第二定义形成, 若由

第一定义得椭圆的标准方程为122

22=+b y a x (0)a b >>,则在定点为(0)F c ,

, 定直线为c

a x 2

=,或定点为(0)F c -,

,定直线为c a x 2-=的前提下,两种定义里椭圆的轨迹方程是统一的。 1.1.2 椭圆的几何性质

以方程122

22=+b

y a x (0)a b >>表示的椭圆为例,其几何性质应注意以下几点:

①范围:a x a <<- 且b y b <<-;②对称性:关于x 轴、y 轴和原点都对称;

③顶点:曲线与对称轴的交点叫顶点,顶点为(0)a ±,

、(0)b ±,;④离心率:焦距与长轴长之比,即a

c e =222

()c a b =-;⑤准线:c a x 2±=;⑤焦半径:01ex a MF +=,02ex a MF -=,

(00()M x y ,在椭圆上,1F 、2F 分别为左、右焦点)。 1.2 双曲线的定义及性质 1.2.1 双曲线的定义

第一定义应注意其中的常数小于两定点间的距离,当该常数等于两定点间的距离时,其轨迹是:在这两点的连线, 分别以这两定点为端点的外侧的射线。

与椭圆类似,双曲线也可以按照第二定义形成,并在与椭圆类似的条件下,两种定义下的轨迹方程是统一的。

1.2.2 双曲线几何性质

以方程122

22=-b

y a x (00a b >>,)为例,双曲线的几何性质为:①渐近线:

x a

b

y ±

=,标准方程中的1变为0时,双曲线退化为两条渐近线。由此看来, 对于双曲线方程k b y a x =-2222(0)k ≠,不论k 为何值,其渐近线方程总是x a

b

y ±=。

从而可知,当已知双曲线的渐近线方程为x a

b

y ±

=时,双曲线的方程可设为k b y a x =-2

2

22(0)k ≠;②焦半径:双曲线的焦半径公式较复杂( 与点M 在左、右 支或上、下支上有关) ,这里不予讨论。当涉及焦半径或过焦点的弦的问题时,应充分利用双曲线的两个定义解题。③共轭双曲线:以双曲线的实轴为虚轴,虚轴为实轴的双曲线称为原双曲线的共轭双曲线。注意与有共同渐近线的双曲线分

开。若已知双曲线方程为12222=-b y a x ,则其共轭双曲线方程为122

22=-a

y b x 。其他

性质与椭圆类似,不再赘述。 1.3 抛物线的定义及性质 1.3.1 抛物线定义

抛物线定义中的定点应在定直线之外,否则,其轨迹为一条直线,利用定义,实现抛物线上任一点到焦点的距离和这一点到准线的距离之间的相互转化。 1.3.2 抛物线的通径

抛物线的通径过抛物线的焦点且垂直于抛物线对称轴的弦叫抛物线的通径。对于)02>=p px y (2,显然通径长为p 2[1]。

2 圆锥曲线在高考中的主要题型分析

圆锥曲线的考题一般以一个选择或填空题、一个解答题,客观题的难度为中等,解答题相对较难,同时平面向量的介入,增加了本专题高考命题的广度与深度,成为近几年高考命题的一大亮点,备受命题者的青睐,还经常结合函数、方程、不等式、数列、三角等知识进行综合见附录[3]:

3 圆锥曲线在高考中的主要考查点及难易程度分析

历年高考对圆锥曲线考查的难易程度以及考查重点都有一定的差异,以下是对重庆市近四年高考数学圆锥曲线考查。笔者收集并分析了近四年重庆数学高考题,具体考核形式的主要考查点及难易程度的分析[2]: 3.1 高考对抛物线的主要考查点及难易程度分析

(2012年重庆理14)过抛物线22y x =的焦点F 作直线交抛物线于A B ,两

点,若25

12

AB AF BF =<,,则AF = 。 分析 焦点弦被焦点分为AF m =,BF n =,则p n m 111=+,又2512

AB =,所以,1225=

+n m ,2425=mn ,则5564

m n ==,。

所以,5

6

AF =。

本题主要考查了抛物线的简单性质及抛物线与直线的位置关系,当遇到抛物线焦点弦问题时,常根据焦点设出直线方程与抛物线方程联立,把韦达定理和抛物线定义相结合解决问题,本题涉及面较广,难以发现,属于难题。

(2011年重庆理15)设圆C 位于抛物线22y x =与直线3x =所组成的封闭区域(包含边界)内,则圆C 的半径能取到的最大值为 。

分析 为使圆C 的半径取到最大值,显然圆心应该在x 轴上且与直线3x =相切,设圆C 的半径为r ,则圆C 的方程为222(3)x r y r +-+=,将其与22y x =联立得:22(2)960x r x r +-+-=,令2[2(2)]4(96)0r r ?=---=,并由0r >,得:

61r =。

本题主要考查了抛物线与圆和直线的位置关系。要求最大半径,圆心必在x 轴上且与直线相切,可设圆的方程,再将圆与抛物线的方程联立得到一元二次方 程,根据判别式等于0求得半径r 。属于中档题。

(2010年重庆文13)已知过抛物线24y x =的焦点F 的直线交该抛物线于A 、

B 两点,2AF =,则BF = 。

分析 由抛物线的定义可知21===F K A A AF ,所以

AB x ⊥轴,故2AF BF ==。

本题主要考察了抛物线的定义和简单性质,属于低档题。

(2010年重庆理14) 已知以F 为焦点的抛物线24y x =上的两点A B 、满足3AF FB =u u u r u u u r

,则弦AB 的中点到准线的距离为 。

分析 设BF m =,由抛物线的定义知 113AA m BB m ==,, 所以ABC ?中,24AC m AB m ==,,3=AB k , 直线AB 方程为3(1)y x =-。

与抛物线方程联立消y 得031032=+-x x ,

所以,AB 中点到准线距离为

3

8

1351221=+=++x x . 本题主要考查了抛物线的简单性质及抛物线与直线的位置关系,属于中档题。

3.2 高考对双曲线的主要考查点及难易程度分析

(2012年重庆文14)设P 为直线3b

y x a

=

与双曲线22221(00)x y a b a b -=>>, 左支的交点,1F 是左焦点,1PF 垂直于x 轴,则双曲线的离心率e = 。

分析 由22

2231b y x a x y a b ?

=????-=??,

得44

x a y ?=-????=-??,.

又1PF 垂直于x 轴,所以c a =423,则 4

2

3=

e 。 本题主要考查了双曲线的焦点、离心率,考查了两条直线垂直的条件,考查了方程思想。属于简单题。

(2013年重庆文10)设双曲线C 的中心为点O ,若有且只有一对相较于点

O 、所成的角为60o 的直线11A B 和22A B ,使1122A B A B =,其中1A 、1B 和2A 、2B 分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是 ( )

A.(

2]3

B.[2)3

C.()3+∞

D.[)3+∞

分析 设双曲线的焦点在x 轴上,则由图易知双曲线的离心率

a

b

必须满足333<

b

,所以22)(134,3)(31a b a b +<≤<,即有

2)(13322≤+

b

a c e +==

,所以2332≤

33>

a b 就满足条件了,从而错求为3

3

2>e ,错选C ;或者错认为333≤≤a b

,从而错选B.属于难题。

(2011年重庆文9)设双曲线的左准线与两条渐近线交于,A B 两点,左焦点为在以AB 才为之直径的圆内,则该双曲线的离心率的取值范围为 ( )

A.(0

B.

C.(

1)2

D.(1)+∞,

分析 双曲线的渐近线x a

b

y ±=,准线c a x 2±=联立解得A 2()a ab c c --,

,B 2()a ab c c -,。所以||AB =

2ab c ,根据题意得,2

a c c

-<ab c ,即2b ab <,即b a <,即222c a a -<,即222c a <,即2e <,又e >1,1<e <2,故选B 。

本题考查双曲线的准线、渐近线方程形式、考查园内的点满足的不等条件、注意双曲线离心率本身要大于1。难度较大。

(2010年重庆理20文21)已知以原点O 为中心,(50)F ,为右焦点的双曲线

C 的离心率2

5

=

e 。 (1)求双曲线C 的标准方程及其渐近线方程;

(2)已知过点11()M x y ,的直线1l :4411=+y y x x 与过点22()N x y ,(其中

12x x ≠)的直线2l :4422=+y y x x 的交点E 在双曲线C 上,直线MN 与双曲线的

两条渐近线分别交于G H 、两点,求OGH ?的面积。

分析 (1)设C 的标准方程为22

221(00)x y a b a b

-=>>,,由题意知

21a b ==,,由此可求出C 的标准方程和渐近线方程。

(2)由题意知,点()E E E x y ,在直线44:111=+y y x x l 和44:222=+y y x x l 上,因此直线MN 的方程为44E E x x y y +=.设G H ,分别是直线MN 与渐近线

x

y

l 2

l 1

O M E

G

N

H

02=-y x 及02=+y x 的交点,则22

,22G H E E E E

y y x y x y =

=-+-,设MN 与x 轴

的交战为Q ,则E

Q x x 4

=

,由此可求OGH ?的面积。 本题考查圆锥曲线的性质和应用,难度较大,解题时要认真审题,注意挖掘隐含条件,仔细解答.属于难题。

3.2 高考对椭圆的主要考查点及难易程度分析

(2013年重庆理21)如题(21)图,椭圆的中心为原点O ,长轴在x 轴上,离心率2

2

=

e ,过左焦点1F 作x 轴的垂线交椭圆于两点A A '、,||4AA '=。 (1)求该椭圆的标准方程;

(2)取垂直于x 轴的直线与椭圆相交于不同的两点P P ',,过P P ',作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外。若PQ P Q '⊥,求圆Q 的标准方程。

分析 (1)利用点(2)A c -,

在椭圆上,结合椭圆的离心率,求出几何量,即可求得椭圆的标准方程;

(2)设出圆Q 的圆心坐标及半径,由PQ P Q '⊥得到P 的坐标,写出圆的方程后和椭圆联立,化为关于x 的二次方程后由判别式等于0得到关于t 与r 的方程,把P 点坐标代入椭圆方程得到关于t 与r 的另一方程,联立可求出t 与r 的值,经验证满足椭圆上的其余点均在圆Q 外,结合对称性即可求得圆Q 的标准方程。

本题考查椭圆的标准方程,考查椭圆的几何性质,考查方程组的解法,考查学生的计算能力,属于中档题。

(2013年重庆文21)(1)同2013年重庆理21(1);(2)取平行于y 轴的直线与椭圆相较于不同的两点P P '、,过P P '、作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.求PP Q '?的面积S 的最大值,并写出对应的圆Q 的标准方程。

分析 (2)设(0)Q t , )0(>t ,圆的半径为r ,直线PP '方程为:m x = )0(>m ,

则圆Q 的方程为:222)(r y t x =+-联立圆与椭圆方程消掉y 得x 的二次方程,则

0=?①,易求P 点坐标,代入圆的方程得等式②,由①②消掉r 得t m 2=,则

1

||()2

PP Q S PP m t '?'=-,变为关于t 的函数,利用基本不等式可求其最大值及此时

t 值,由对称性可得圆心Q 在y 轴左侧的情况。

本题考查圆、椭圆的标准方程,考查椭圆的几何性质,考查方程组的解法,考查学生的计算能力[6],难度较大。

(2012年重庆文21)已知椭圆的中心为原点O ,长轴在x 轴上,上顶点为

A ,左、右焦点分别为12F F ,,线段12OF OF ,的中点分别为12

B B ,,且12AB B ?是面积为4的直角三角形。

(1)求该椭圆的离心率和标准方程;

(2)过1B 作直线交椭圆于P Q 、,22PB QB ⊥,求2PB Q ?的面积。

分析 (1)设椭圆的方程为22

221(0)x y a b a b

+=>>,2(0)F c ,

, 因为12AB B ?是的直角三角形,12||||AB AB =,

所以12B AB ∠为直角,从而2||||OA OB =,即2

c

b =

; 因为222c a b =-,所以222254a b c b ==,,所以2

55

c e c ==在12AB B ?中,12OA B B ⊥,所以12S =,212||||2

c

B B OA b b =?=

因为4S =,所以24b =,所以22520a b ==

所以椭圆标准方程为14202

2=+

y x (2)由(1)知1(20)B -,

,2(20)B ,

由题意,直线PQ 的倾斜角不为0,

故可设直线PQ 的方程为2-=my x 代入椭圆方程, 消元可得22(5)4160m y my +--=, ①设11()P x y ,,22()Q x y ,

54221+=

+∴m m y y ,5

16

-2

21+=m y y 211(2)B P x y =-u u u u r Q ,,222(2)B Q x y =-u u u u r

, 2212121212(2)(2)(4)(4)B P B Q x x y y my my y y ∴?=--+=--+u u u u r u u u u r

(*)

2

12(1)m y y =+124()16m y y -++22

2216(1)161655

m m m m -+=-+++2216645m m -=-+

由22PB QB ⊥,知220B P B Q ?=u u u u r u u u u r ,即2

16640m -=,解得2m =±

当2m = 时,方程(*)化为:2

98160y y --=

故149y +=

,249y -=,12||y y -=

2PB Q ?的面积12121||||2S B B y y =

-=, 当2m =- 时,同理可得(或由对称性

可得)2PB Q ? 的面积S =

综上所述,2PB Q ? 的面积为9

。 本题考查了椭圆的标准方程及几何性质[5],考查直线与椭圆的位置关系以及

向量知识的运用,考查三角形的性质及其面积的计算,综合性强,属于中高档题。

(2012年重庆理20)(1)同2012年重庆文21(1);

(2)过1B 作直线l 交椭圆于P ,Q 两点,使22PB QB ⊥,求直线l 的方程。

分析 (2)由(1)知1(20)B -,

,2(20)B , 由题意,直线PQ 的倾斜角不为0,

故可设直线PQ 的方程为2x my =-代入椭圆方程, 消元可得22(5)4160m y my +--=

①设11()P x y ,,22()Q x y ,

12245m y y m ∴+=+,122165

y y m -=+ 211()B P x y =u u u u r Q -2,,222()B Q x y =u u u u r

-2,

∴222121221664(2)(2)5m B Q B Q x x y y m -?=--+=-+u u u u r u u u u r

22PB QB ⊥Q 220PB QB ∴?=22

1664

05

m m -∴-=+2m ∴=± ∴直线的方程为:220x y -+=或220x y ++=。

本题考查了椭圆的标准方程及几何性质,考查直线与椭圆的位置关系以及向量知识的运用,考查直线方程的计算,综合性强,属于中高档题。 (2011年重庆文21)如图,椭圆的中心为原点O ,离心率e =2

2

,一条准线的方程是x =22。

(1)求椭圆的标准方程;

(2)设动点P 满足:2OP OM ON =+u u u r u u u u r u u u r

,其中M ,N 是椭圆上的点,直线OM

与ON 的斜率之积为1

2

-。问:是否存在定点F ,使得||PF 与点P 到直线l :

x =210的距离之比为定值?若存在,求F 的坐标;若不存在,说明理由。

分析 (1) ∵e =c a =22,2

a c

=22,解得a =2,c =2,

∴2b =22a c -=2,

x=22

O

B 1

y

P

N

M

∴椭圆的标准方程为22

142

x y +

=; (2)设),(y x P ,)(11y x M ,,)(22y x N ,,则由2OP OM ON =+u u u r u u u u r u u u r

,得 (,)x y =1122(,)2(,)x y x y +=1212(2,2)x x y y ++,

∴x =122x x +,y =122y y +,

∵M ,N 在椭圆2224x y +=上,∴122124x y +=,2222

24x y +=, ∴222x y +=221212(2)2(2)x x y y +++=2222

12

121212(44)2(44)x x x x y y y y +++++ =2222

11221212(2)4(2)4(2x y x y x x y y +++++)=1212204(2x x y y ++)

设OM K ,ON K 分别表示直线OM ,ON 的斜率,由题设条件知

2

12121-x x y y K K ON OM ==

? ∴121220x x y y += ∴222x y +20=

∴点P 在椭圆22

12010x y +=上,该椭圆的右焦点为)010(,

F ,离心率e =22,右准线为l :x =210

∴根据椭圆的第二定义,存在定点)010(,

F ,使得PF 与点P 到直线l 的距离之比为定值。

本题考查了用待定系数法求椭圆标准方程,两个向量坐标形式的运算[7],椭圆的第二定义[4],考查学生综合运用知识解决问题能力、运算求解能力和探究问题能力,难度较大。

(2011年重庆理20)(1)同 2011年重庆文21(1);(2)设动点P 满足2OP OM ON =+u u u r u u u u r u u u r

,其中M ,N 是椭圆上的点.直线OM 与ON 的斜率之积为

2

1

-.问:是否存在两个定点1F ,2F ,使得21PF PF +为定值.若存在,求1F ,2F 的坐标;若不存在,说明理由。

x=22

O

B 1

y

P

N

M

分析 (2)设),(y x P ,()()1122,,,M x y N x y ,),(11y x M ,),(22y x N 则由

2OP OM ON =+u u u r u u u u r u u u r 得

),(2),(),(2211y x y x y x +=即12122,2x x x y y y =+=+,

故)()()(2121212

22

1212

22

122420442442y y x x y y y y x x x x y x ++=+++++=+

设OM K ,ON K 分别为直线OM ,ON 的斜率,

02121=+∴y y x x 202

2=+∴y x

110

2

=+

y 上 设该椭圆的左,右焦点为1F ,2F

则这两个焦点坐标是)010(,

-,)010(,

本题考查了椭圆的定义及简单性质,考查学生分析问题解决问题的能力,计算量大,属于难题。

由此看来,高考对圆锥曲线的考查多以中等难度的题目为主,但对学生的综合只是能力要求较高,在掌握基础知识的同时,还必须将其灵活运用起来,在考试中才能得心应手。

圆锥曲线能力题一直是高考中区分度较大的题目,以圆锥曲线性质为背景的题目已经成为近几年高考命题的热点.试题的综合性非常大,解题综合了函数与方程、坐标变换、参数 变换等数学思想与方法,所以也是广大考生的失分点,在平时的学习和中一定要予以足够的重视,花大力气和时间突破它。

参考文献:

[1] 曹炳友.高考圆锥曲线的内容与研究方法.《山东教育:中学刊》,2005.44-46. [2] 郑兴明,周继.高考圆锥曲线基础试题考点解析[J].《数学教学通讯》,2004.33-36. [3] 姜建平.新课程高考专题复习(圆锥曲线).《上海中学数学》,2005.7-9.

[4] 何 垒.用圆锥曲线定义解决高考解析几何题.《中学生理科月刊》,2003.22-23. [5] 王 勇.离心率--经久不衰的高考热点.中学教研(数学),2003.47-49

[6] 耿昌瑞.高考圆锥曲线能力题的解题策略.考试(高考文科版),2007.21-22. [7] 王海霞.从向量视角看高考中圆锥曲线试题.《数学教学》,2007.31-33. [8] 高慧明.高考复习《圆锥曲线方程》专题系列讲座.《数学大世界.高中版》 ,2005.37-40.

附录:

1. 以客观题的形式考查圆锥曲线的高考题

(2012年重庆文14)设P 为直线3b

y x a

=

与双曲线22221(00)x y a b a b -=>>, 左支的交点,1F 是左焦点,1PF 垂直于x 轴,则双曲线的离心率e = 。 (2012年重庆理14)过抛物线22y x =的焦点F 作直线交抛物线于A B ,两

点,若25

12

AB AF BF =<,,

则AF = 。 (2011年重庆理15)设圆C 位于抛物线22y x =与直线3x =所组成的封闭区域(包含边界)内,则圆C 的半径能取到的最大值为 。

(2010年重庆文13)已知过抛物线24y x =的焦点F 的直线交该抛物线于

A 、

B 两点,2AF =,则BF = 。

(2010年重庆理14) 已知以F 为焦点的抛物线24y x =上的两点A B 、满足3AF FB =u u u r u u u r

,则弦AB 的中点到准线的距离为 。

(2013年重庆文10)设双曲线C 的中心为点O ,若有且只有一对相较于点

O 、所成的角为60o 的直线11A B 和22A B ,使1122A B A B =,其中1A 、1B 和2A 、2B 分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是( ) A.232] B.232) C.23)+∞ D.23

)+∞

(2011年重庆文9)设双曲线的左准线与两条渐近线交于,A B 两点,左焦点为在以AB 才为之直径的圆内,则该双曲线的离心率的取值范围为 ( )

A.(0

B.

C.(

1)2

D.(1)+∞,

2. 以主观题的形式考查圆锥曲线的高考题

(2013年重庆理21)如题(21)图,椭圆的中心为原点O ,长轴在x 轴上,离心率2

2

=

e ,过左焦点1F 作x 轴的垂线交椭圆于两点A 、A ',||4AA '=。 (1)求该椭圆的标准方程;

(2)取垂直于x 轴的直线与椭圆相交于不同的两点P ,P ',过P ,P '作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外。若PQ P Q '⊥,求圆Q 的标准方程。

(2013年重庆理21)如题(21)图,椭圆的中心为原点O ,长轴在x 轴上,离心率2

2

=

e ,过左焦点1F 作x 轴的垂线交椭圆于两点A 、A ',||4AA '=。 (1)求该椭圆的标准方程;

(2)取平行于y 轴的直线与椭圆相较于不同的两点P ,P ',过P ,P '作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.求'PP Q ?的面积S 的最大值,并写出对应的圆Q 的标准方程。

(2012年重庆文21)已知椭圆的中心为原点O ,长轴在x 轴上,上顶点为

A ,左、右焦点分别为12F F ,,线段12OF OF ,的中点分别为12

B B ,,且12AB B ?是面积为4的直角三角形。

(1)求该椭圆的离心率和标准方程;

(2)过1B 作直线交椭圆于P 、Q ,22PB QB ⊥,求2PB Q ?的面积。

(2012年重庆理20)如图,已知椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左、右焦点分别为12F F ,,线段12OF OF ,的中点分别为12B B ,,且

12AB B ?是面积为4的直角三角形。

(1)求该椭圆的离心率和标准方程;

(2)过1B 作直线l 交椭圆于P 、Q 两点,使22PB QB ⊥,求直线l 的方程。

(2011年重庆文21)如图,椭圆的中心为原点O ,离心率e =2

2

,一条准线的方程是x =2

(1)求椭圆的标准方程;

(2)设动点P 满足:2OP OM ON =+u u u r u u u u r u u u r

,其中M ,N 是椭圆上的点,直线OM

与ON 的斜率之积为1

2

-。问:是否存在定点F ,使得||PF 与点P 到直线l :

x =210的距离之比为定值?若存在,求F 的坐标;若不存在,说明理由。

(2011年重庆理20)如图,椭圆的中心为原点O ,离心率e =2

2

,一条准线的方程是x =2

(1)求椭圆的标准方程;

x=22

O

B 1

y

P

N

M

(2)设动点P 满足2OP OM ON =+u u u r u u u u r u u u r

,其中M ,N 是椭圆上的点.直线OM 与ON 的斜率之积为1

2

-。问:是否存在两个定点12F F ,,使得12PF PF +为

定值.若存在,求12F F ,的坐标;若不存在,说明理由。

(2010年重庆理20文21)已知以原点O 为中心,(50)F ,为右焦点的双曲线

C 的离心率2

5

=

e 。 (1)求双曲线C 的标准方程及其渐近线方程;

(2)已知过点11()M x y ,的直线1l :4411=+y y x x 与过点22()N x y ,(其中

12x x ≠)的直线2l :4422=+y y x x 的交点E 在双曲线C 上,直线MN 与双曲线的

两条渐近线分别交于G H 、两点,求OGH ?的面积。

x=22

O

B 1

y

x

P

N

M

x y l 2 l 1

O

M E G N H

2020高考数学圆锥曲线试题(含答案)

2020高考虽然延期,但是每天练习一定要跟上,加油! 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、 F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2, -1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. (4 1 ,-1) B. (4 1,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点 的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④ 1 1 c a <2 2 c a . 其中正确式子的序号是B

A. ①③ B. ②③ C. ①④ D. ②④ 4.(湖南卷8)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点 到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.(江西卷7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=u u u u r u u u u r 的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C .(0, 2 D .,1)2 6.(辽宁卷10)已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A ) A B .3 C D .92 7.(全国二9)设1a >,则双曲线22 22 1(1)x y a a - =+的离心率e 的取值范围是( B ) A . B . C .(25), D .(2 8.(山东卷(10)设椭圆C 1的离心率为 13 5 ,焦点在X 轴上且长轴长为 A B C D -

高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线 1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l1 上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l1上的射影点是N ,且|BN|=2|DM|. 2. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l1、l2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: ○1(R);AG AD λλ=∈u u u r u u u r ○22;GE GF GH +=u u u r u u u r u u u r ○30.GH EF ?=u u u r u u u r 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23=e ,已知点)3,0(P 到这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是, 425=x 其左、右顶点分别 是A 、B ;双曲线1 :22 222=-b y a x C 的一条渐近线方程为3x -5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P ,连结AP 交椭圆C1于点M ,连结PB 并延长交椭圆C1于点N ,若=. 求证:.0=? B A D M B N l2 l1

4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A ,B 两点.设AB 中点为M ,直线AB 与OM 的夹角为αa. (1)用半焦距c 表示椭圆的方程及tg α; (2)若2

【2020届】高考数学圆锥曲线专题复习:圆锥曲线解答题12大题型解题套路归纳

【高考数学中最具震撼力的一个解答题!】注:【求解完第一问以后,】→WILL COME ACROSS圆锥曲线题10大题型:(1)弦长问题(2)中点问题(3)垂直问题(4)斜率问题(5)对称问题(6)向量问题(7)切线问题(8)面积问题(9)最值问题(10)焦点三角形问题。中的2-----4类;分门别类按套路求解; 1.高考最重要考:直线与椭圆,抛物线的位置关系。第一问最高频考(总与三个问题有关):(1)———————;(2)——————————;(3)—————————; 2.圆锥曲线题,直线代入圆锥曲线的“固定3步走”:---------------------------------------------------; ——————————————————————————————————————; 3.圆锥曲线题固定步骤前9步:-------------------;---------------------------------------------;————————————;—————————;——————————;—————————————————;———————————;——————————————; 4.STEP1:首先看是否属于3种特殊弦长:(1)圆的弦长问题;(2)中点弦长问题(3)焦点弦长问题;→(1)圆的弦长问题:(2法)首选方法:垂径定理+勾

股定理:图示:--------------------------------;公式为:-------------------------;其中求“点线距”的方法:———————;次选:弦长公式;→(2) 中点弦长问题:(2法)首选方法:“点差法” 椭圆:(公式一)--------------------------------;(公式二)--------------------------------;副产品:两直线永远不可能垂直!原因:___________;【两直线夹角的求法:(夹角公式)___________;】双曲线(公式一)--------------------------------;(公式二)--------------------------------;抛物线:形式一:___________;(公式一)--------------------------------;(公式二)--------------------------------;形式2:___________;(公式一)--------------------------------;(公式二)--------------------------------;附:“点差法”步骤:椭圆:“点”_______________________;___________________________;“差”__________________________________;“设而不求法”_______________________________;“斜率公式”+“中点公式”_____________________;___________;___________;→得公式:(公式一)-------------------;(公式二)---------------------;附:“点差法”步骤:抛物线;形式一___________;:“点”_______________________;_____________________;“差”_________________________;“设而不求法”___________________;“斜率公式”+“中点公式”_____________;___________;___________;→得公式:(公式一)---------------------;(公式二)--------------------;附:“点差法”步骤:

高考数学一轮复习专题突破训练圆锥曲线

圆锥曲线 一、填空题 1、(2015年江苏高考)在平面直角坐标系xoy 中,P 为双曲线221x y -=右支上的一个动点,若P 到直线10x y -+=的距离大于c 恒成立,则c 的最大值 为___ 2 __________。 2、(2013年江苏高考)双曲线19 162 2=-y x 的两条渐近线的方程为 。 3、(2013年江苏高考)在平面直角坐标系xOy 中,椭圆C 的标准方程为 )0,0(122 22>>=+b a b y a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆 C 的离心率为 。 4、( 南京、盐城市高三二模)在平面直角坐标系xoy 中,已知抛物线C : y x 42=的焦点为F ,定点)0, 22(A ,若射线FA 及抛物线C 相交于点M ,及抛物线C 的准线相交于点N ,则FM :MN= 5、(苏锡常镇四市 高三教学情况调研(二))已知双曲线22 221(,0) x y a b a b -=>的离心率等于2,它的焦点到渐近线的距离等于1,则该双曲线的方程为 ▲ 6、(泰州市 高三第二次模拟考试)已知双曲线22 14x y m -=的渐近线方程为 2 y x =± ,则m = ▲

7、(盐城市 高三第三次模拟考试)若抛物线28y x =的焦点F 及双曲线 22 13x y n -=的一个焦点重合,则n 的值为 ▲ 8、( 江苏南京高三9月调研)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的渐近 线方程 为y =±3x ,则该双曲线的离心率为 ▲ 9、( 江苏苏州高三9月调研)已知双曲线22 15 x y m -=的右焦点及抛物线 212y x =的焦点相同,则此双曲线的渐近线方程为 ▲ 10、(南京市、盐城市 高三)若双曲线222(0)x y a a -=>的右焦点及抛物线 24y x =的焦点重合,则a = ▲ . 11、(南通市 高三)在平面直角坐标系xOy 中,以直线2y x =±为渐近线,且经过抛物 线24y x =焦点的双曲线的方程是 12、(苏州市 高三上期末)以抛物线24y x =的焦点为顶点,顶点为中心,离心率为2的双曲线标准方程为 13、(泰州市 高三上期末)双曲线12222=-b y a x 的右焦点到渐近线的距离是其 到左顶点距离的一半,则双曲线的离心率e = ▲ 14、(苏锡常镇四市2014届高三5月调研(二))在平面直角坐标系xOy 中,已知双曲线22 19x y m -=的一个焦点为(5,0),则实数 m = ▲ 15、(南京、盐城市2014届高三第二次模拟(淮安三模))在平面直角坐 标系xOy 中,双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的两条渐近线及抛物线y 2=4x Y

高三文科数学圆锥曲线综合复习讲义

高三文科数学圆锥曲线综合复习讲义 一、基础知识【理解去记】 1.椭圆的定义,第一定义:平面上到两个定点的距离之和等于定长(大于两个定点之间的距离)的点的轨迹,即|PF 1|+|PF 2|=2a (2a>|F 1F 2|=2c). 第二定义:平面上到一个定点的距离与到一条定直线的距离之比为同一个常数e(0b>0), F 1(-c, 0), F 2(c, 0)是它的两焦点。若P(x, y)是椭圆上的任意一 点,则|PF 1|=a+ex, |PF 2|=a-ex. 5.补充知识点: 几个常用结论: 1)过椭圆上一点P(x 0, y 0)的切线方程为: 12020=+b y y a x x ; 2)斜率为k 的切线方程为222b k a kx y +±=;3)过焦点F 2(c, 0)倾斜角为θ的弦的长为 θ 2222 cos 2c a ab l -=。 6.双曲线的定义,第一定义: 满足||PF 1|-|PF 2||=2a(2a<2c=|F 1F 2|, a>0)的点P 的轨迹; 第二定义:到定点的距离与到定直线距离之比为常数e(>1)的点的轨迹。 7.双曲线的方程:中心在原点,焦点在x 轴上的双曲线方程为

高考数学圆锥曲线专题复习

圆锥曲线 一、知识结构 1.方程的曲线 在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 点与曲线的关系若曲线C的方程是f(x,y)=0,则点P0(x0,y0)在曲线C上?f(x0,y 0)=0; 点P0(x0,y0)不在曲线C上?f(x0,y0)≠0 两条曲线的交点若曲线C1,C2的方程分别为f1(x,y)=0,f2(x,y)=0,则 f1(x0,y0)=0 点P0(x0,y0)是C1,C2的交点? f2(x0,y0) =0 方程组有n个不同的实数解,两条曲线就有n个不同的交点;方程组没有实数解,曲线就没有交点.

2.圆 圆的定义:点集:{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 圆的方程: (1)标准方程 圆心在c(a,b),半径为r 的圆方程是 (x-a)2 +(y-b)2 =r 2 圆心在坐标原点,半径为r 的圆方程是 x 2 +y 2 =r 2 (2)一般方程 当D 2 +E 2 -4F >0时,一元二次方程 x 2 +y 2 +Dx+Ey+F=0 叫做圆的一般方程,圆心为(-2D ,-2 E ),半径是 2 4F -E D 22+.配方,将方程 x 2 +y 2 +Dx+Ey+F=0化为 (x+2D )2+(y+2 E )2=44 F -E D 22+ 当D 2 +E 2 -4F=0时,方程表示一个点 (-2D ,-2 E ); 当D 2 +E 2-4F <0时,方程不表示任何图形. 点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则 |MC |<r ?点M 在圆C 内,|MC |=r ?点M 在圆C 上,|MC |>r ?点M 在圆C 内, 其中|MC |=2 02 0b)-(y a)-(x +. (3)直线和圆的位置关系 ①直线和圆有相交、相切、相离三种位置关系 直线与圆相交?有两个公共点 直线与圆相切?有一个公共点 直线与圆相离?没有公共点 ②直线和圆的位置关系的判定 (i)判别式法 (ii)利用圆心C(a,b)到直线Ax+By+C=0的距离d= 2 2 C Bb Aa B A +++与半径r 的大小关系来判 定.

全国名校高考数学专题训练圆锥曲线

全国名校高考专题训练——圆锥曲线选择填空100题 一、选择题(本大题共60小题) 1.(江苏省启东中学高三综合测试二)在抛物线y2=2px上,横坐标为4的点到焦点的距离为5,则p的值为( ) C. 2 D. 4 2.(江苏省启东中学高三综合测试三)已知椭圆E的短轴长为6,焦点F到长轴的一个端点的距离等于9,则椭圆E的离心率等于( ) 3.(江苏省启东中学高三综合测试四)设F1,F2是椭圆4x2 49 + y2 6 =1的两个焦 点,P是椭圆上的点,且|PF1|:|PF2|=4:3,则△PF1F2的面积为( ) 4.(安徽省皖南八校高三第一次联考)已知倾斜角α≠0的直线l过椭圆x2 a2+ y2 b2 =1(a>b>0)的右焦点F交椭圆于A,B两点,P为右准线上任意一点,则∠APB为( ) A.钝角 B.直角 C.锐角 D.都有可能 5.(江西省五校高三开学联考)从一块短轴长为2b的椭圆形玻璃镜中划出一块面积最大的矩形,其面积的取值范围是[3b2,4b2],则这一椭圆离心率e的取值范围是( ) A.[ 5 3 , 3 2 ] B.[ 3 3 , 2 2 ] C.[ 5 3 , 2 2 ] D. [ 3 3 , 3 2 ]

6.(安徽省淮南市高三第一次模拟考试)已知点A ,F 分别是椭圆x 2a 2+y 2 b 2=1(a >b >0)的右顶点和左焦点,点B 为椭圆短轴的一个端点,若BF →·BA →=0=0,则椭圆的离心率e 为( ) 7.(安徽省巢湖市高三第二次教学质量检测)以椭圆x 2a 2+y 2 b 2=1(a >b >0)的 右焦点为圆心的圆经过原点,且被椭圆的右准线分成弧长为2:1的两段弧,那么该椭圆的离心率等于( ) 8.(北京市朝阳区高三数学一模)已知双曲线C 1:x 2a 2-y 2 b 2=1(a >0,b >0)的 左,右焦点分别为F 1,F 2,抛物线C 2的顶点在原点,它的准线与双曲线C 1的左准线重合,若双曲线C 1与抛物线C 2的交点P 满足PF 2⊥F 1F 2,则双曲线 C 1的离心率为( ) A. 2 B. 3 C.233 2 9.(北京市崇文区高三统一练习一)椭圆x 2a 2+y 2 b 2=1(a >b >0)的中心,右焦 点,右顶点,右准线与x 轴的交点依次为O ,F ,A ,H ,则|FA | |OH |的最大值为 ( ) A.12 B.13 C.14 10.(北京市海淀区高三统一练习一)直线l 过抛物线y 2=x 的焦点F ,交抛物线于A ,B 两点,且点A 在x 轴上方,若直线l 的倾斜角θ≥ π 4 ,则|FA |

高考数学圆锥曲线综合题题库1 含详解

1、(广东省广州执信中学、中山纪念中学、深圳外国语学校三校期末联考)设1F 、2F 分别是 椭圆22 154 x y +=的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求21PF PF ?的最大值和最小值; (Ⅱ)是否存在过点A (5,0)的直线l 与椭圆交于不同的两点C 、D ,使得|F 2C|=|F 2D|?若存在,求直线l 的方程;若不存在,请说明理由. 解:(Ⅰ)易知)0,1(),0,1(,1,2,521F F c b a -=∴=== 设P (x ,y ),则1),1(),1(2 221-+=--?---=?y x y x y x PF 35 1 1544222+=-- +x x x ]5,5[-∈x , 0=∴x 当,即点P 为椭圆短轴端点时,21PF PF ?有最小值3; 当5±=x ,即点P 为椭圆长轴端点时,21PF PF ?有最大值4 (Ⅱ)假设存在满足条件的直线l 易知点A (5,0)在椭圆的外部,当直线l 的斜率不 存在时,直线l 与椭圆无交点,所在直线l 斜率存在,设为k 直线l 的方程为)5(-=x k y 由方程组22 22221(54)5012520054 (5)x y k x k x k y k x ?+ =?+-+-=??=-? ,得 依题意220(1680)0k k ?=-><< ,得 当5 5 55< <- k 时,设交点C ),(),(2211y x D y x 、,CD 的中点为R ),(00y x , 则4 5252,455022 2102221+=+=+=+k k x x x k k x x .4 520)54525()5(22200+-=-+=-=∴k k k k k x k y 又|F 2C|=|F 2D|122-=??⊥?R F k k l R F

全国卷高考数学圆锥曲线大题集大全

全国卷高考数学圆锥曲线大题集大全 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线l 1与l 2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l 1上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l 1上的射影点是N ,且|BN|=2|DM|. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l 1、l 2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: (R); AG AD λλ=∈2; GE GF GH +=0.GH EF ?= 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23 = e ,已知点)3,0(P 到 这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是 , 425=x 其左、右顶点分别 B A D M B N l 2 l 1

是A、B;双曲线 1 : 2 2 2 2 2 = - b y a x C 的一条渐近线方程为3x-5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若AM=. 求证:.0 = ?AB MN 4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为αa. (1)用半焦距c表示椭圆的方程及tanα; (2)若2

新人家A版高考数学一轮复习:圆锥曲线的综合问题

圆锥曲线的综合问题 [知识能否忆起] 1.直线与圆锥曲线的位置关系 判定直线与圆锥曲线的位置关系时,通常是将直线方程与曲线方程联立,消去变量y (或x )得关于变量x (或y )的方程:ax 2+bx +c =0(或ay 2+by +c =0). 若a ≠0,可考虑一元二次方程的判别式Δ,有: Δ>0?直线与圆锥曲线相交; Δ=0?直线与圆锥曲线相切; Δ<0?直线与圆锥曲线相离. 若a =0且b ≠0,则直线与圆锥曲线相交,且有一个交点. 2.圆锥曲线的弦长问题 设直线l 与圆锥曲线C 相交于A 、B 两点,A (x 1,y 1),B (x 2,y 2),则弦长|AB |=1+k 2|x 1 -x 2|或 1+1 k 2|y 1-y 2|. [小题能否全取] 1.(教材习题改编)与椭圆x 212+y 2 16=1焦点相同,离心率互为倒数的双曲线方程是( ) A .y 2- x 23=1 B.y 23 -x 2 =1 C.34x 2-3 8 y 2=1 D.34y 2-3 8 x 2=1 解析:选A 设双曲线方程为y 2a 2-x 2 b 2=1(a >0,b >0), 则????? a 2+ b 2= c 2, c a =2,c =2, 得a =1,b = 3. 故双曲线方程为y 2- x 2 3 =1. 2.(教材习题改编)直线y =kx -k +1与椭圆x 29+y 2 4=1的位置关系是( ) A .相交 B .相切 C .相离 D .不确定 解析:选A 由于直线y =kx -k +1=k (x -1)+1过定点(1,1),而(1,1)在椭圆内,故直

历年高考数学圆锥曲线试题汇总

高考数学试题分类详解——圆锥曲线 一、选择题 1.设双曲线22 221x y a b -=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于( C ) (A (B )2 (C (D 2.已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3F A F B =,则||AF = (A). (B). 2 (D). 3 3.过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线 的交点分别为,B C .若1 2 AB BC =,则双曲线的离心率是 ( ) A B C D 4.已知椭圆22 221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直 线AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( ) A B .2 C .13 D .12 5.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2 y x =于,A B 两点,且 |||PA AB =,则称点P 为“ 点”,那么下列结论中正确的是 ( ) A .直线l 上的所有点都是“点” B .直线l 上仅有有限个点是“点” C .直线l 上的所有点都不是“ 点” D .直线l 上有无穷多个点(点不是所有的点)是“ 点” 6.设双曲线12222=-b y a x 的一条渐近线与抛物线y=x 2 +1 只有一个公共点,则双曲线的离心率为 ( ). A. 4 5 B. 5 C. 25 D.5 7.设斜率为2的直线l 过抛物线2 (0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)

高中数学圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式。 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用 解析法解决相应的几何问题。 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 ,F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO ,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B ,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆 心的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R ,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

高考数学总复习圆锥曲线综合

第六节 圆锥曲线综合 考纲解读 1.掌握与圆锥曲线有关的最值、定值和参数范围问题. 2.会处理动曲线(含直线)过定点的问题. 3.会证明与曲线上的动点有关的定值问题. 4.会按条件建立目标函数,研究变量的最值及取值范围问题,注意运用数形结合法和几何法求某些量的最值. 命题趋势研究 从内容上看,预测2015年高考主要考查两大类问题:一是根据条件,求出表示平面曲线的方程;二是通过方程,研究平面曲线的性质,其热点有:①以客观题的形式考查圆锥曲线的基本概念和性质;②求平面曲线的方程和轨迹;③圆锥曲线的有关元素计算、关系证明或范围确定;④涉及圆锥曲线对称变换、最值或位置关系的有关问题. 从形式上看,以解答题为主,难度较大. 从能力要求上看,要求学生具备一定的数形结合、分析问题和解决问题及运算能力. 知识点精讲 一、定值问题 解析几何中定值问题的证明可运用函数的思想方法来解决.证明过程可总结为“变量—函数—定值”,具体操作程序如下: (1)变量----选择适当的量为变量. (2)函数----把要证明为定值的量表示成变量的函数. (3)定值----化简得到的函数解析式,消去变量得到定值. 求定值问题常见的方法有两种: (1)从特殊情况入手,求出定值,再证明该定值与变量无关; (2)直接推理、计算,并在计算推理过程中消去变量,从而得到定值. 二、求最值问题常用的两种方法 (1)几何法:题中给出的条件有明显的几何特征,则考虑用几何图形性质来解决,这是几何法. (2)代数法:题中给出的条件和结论的几何特征不明显,则可以建立目标函数,再求该函数的最值.求函数的最值常见的方法有基本不等式法、单调性法、导数法和三角换元法等,这就是代数法. 三、求定值、最值等圆锥曲线综合问题的“三重视” (1)重视定义在解题中的作用(把定义作为解题的着眼点). (2)重视曲线的几何特征特别是平面几何性质与方程的代数特征在解题中的作用. (3)重视根与系数的关系在解题中的作用(涉及弦长、中点要用根与系数的关系). 四、求参数的取值范围 据已知条件及题目要求等量或不等量关系,再求参数的范围. 题型归纳及思路提示 题型150 平面向量在解析几何中的应用 思路提示 解决平面向量在解析几何中的应用要把几何特征转化为向量关系,并把向量用坐标表示.常见的应用有如下两个方面. (1)用向量的数量积解决有关角的问题.直角?0a b =,钝角?0a b <(且,a b 不反向),

全国卷高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线11与12是同一平面两条互相垂直的直线, 交点是A ,点B 、D 在直线11上(B 、 D 位于点A 右侧),且|AB|=4 , |AD|=1 , M 是该平面上的一个动点, M 在l i 上的射影点 是 N ,且 |BN|=2|DM|. (I )建立适当的坐标系,求动点 M 的轨迹C 的方程. (II )过点D 且不与11、12垂直的直线1交(I )中的轨迹C 于E 、F 两点;另外平面上的点 G 、 求点G 的横坐标的取值围. M ___ B ___________________ A D N B 11 、3 e 2. 设椭圆的中心是坐标原点,焦点在 x 轴上,离心率 2,已知 点P(0,3) 到这个椭圆 上的点的最远距离是 4,求这个椭圆的方程. H 满足: AD( R); G E G F 2G H ; G H E F 0. 12

2 2 C x y 1( b 0) 3. 已知椭圆/ b2的一条准线方程是25 , 4其左、右顶点分别

(I) 求椭圆C i的方程及双曲线C2的离心率; (H)在第一象限取双曲线C2上一点P,连结AP交椭圆C i于点M,连结PB并延长交椭 圆C i于点N,若AM MP.求证:MN ?AB 0. 4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45。的直线交 椭圆于A, B两点.设AB中点为M,直线AB与OM的夹角为 a. (1) 用半焦距c表示椭圆的方程及tan ; (2) 若2b>0)的离心率 3 ,过点A (0, -b)和B (a, 0)的直线 ,3 与原点的距离为 2 (1)求椭圆的方程 (2)已知定点E (-1, 0),若直线y= kx + 2 (k乒0与椭圆交于C D两点问:是否存在k的值,使以CD 为直径的圆过E点?请说明理由 2 2 C x y 是A、B;双曲线, a2b2 1 的一条渐近线方程为3x- 5y=0. 2 x 2 5.已知椭圆a

全国卷高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线l 1与l 2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l 1上 (B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l 1上的射影点是N ,且|BN|=2|DM|. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l 1、l 2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: ①(R);AG AD λλ=∈②2;GE GF GH +=③0.GH EF ?= 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率23 = e ,已知点)3,0(P 到这个椭圆 上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是 , 425=x 其左、右顶点分别 B A D M B N l 2 l 1

是A、B;双曲线 1 : 2 2 2 2 2 = - b y a x C 的一条渐近线方程为3x-5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若MP AM=. 求证:.0 = ?AB MN 4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为αa. (1)用半焦距c表示椭圆的方程及tanα; (2)若2

历年高考数学圆锥曲线第二轮专题复习

高考数学试题圆锥曲线 一. 选择题: 1.又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点, 且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到 抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. ( 41 ,-1) B. (4 1 ,1) C. (1,2) D. (1,-2) 3.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④ 11c a <22 c a . 其中正确式子的序号是B A. ①③ B. ②③ C. ①④ D. ②④ 4.若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点到右焦点的距离大于它 到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C . D . 6.已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A )

高考数学圆锥曲线及解题技巧

椭圆与双曲线的性质 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长 轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线 方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆 的焦点角形的面积为122 tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应 于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则2 2OM AB b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除 去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)

数学高考圆锥曲线压轴题

数学高考圆锥曲线压轴 题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

数学高考圆锥曲线压轴题经典预测一、圆锥曲线中的定值问题 ★★椭圆C:x2 a2+ y2 b2=1(a>b>0)的离心率e= 3 2,a+b=3. (Ⅰ)求椭圆C的方程; (Ⅱ)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,证明2m-k为定值. ★★如图,椭圆C:x2 a2+ y2 b2=1(a>b>0)经过点P(1, 3 2),离心率e= 1 2,直 线l的方程为x=4. (Ⅰ)求椭圆C的方程; (Ⅱ)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3若存在,求λ的值;若不存在,说明理由. ★★椭圆C:x2 a2+ y2 b2=1(a>b>0)的左右焦点分别是F1,F2,离心率为 3 2,过 F1且垂直于x轴的直线被椭圆C截得的线段长为1. (Ⅰ)求椭圆C的方程; (Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围; (Ⅲ)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只 有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明 1 kk1+ 1 kk2 为定值,并求出这个定值. - 2 -

二、圆锥曲线中的最值问题 +y2 b2=1( a>b>0)的离心率为 (Ⅰ)求椭圆C的方程; (Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且A D⊥AB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值; (ii)求△OMN面积的最大值. - 3 -

相关文档
最新文档