回顾目前人类干细胞的基因不稳定性及未来展望

合集下载

干细胞治疗的前景和挑战

干细胞治疗的前景和挑战

干细胞治疗的前景和挑战干细胞是一种具有自我复制和分化能力的细胞,可以分化成各种不同类型的细胞,包括神经细胞、心肌细胞、肝细胞等等。

这种神奇的细胞有着广泛的应用前景,尤其是在医学领域中,干细胞已经被用于治疗许多疾病,如心脏病、脑部疾病等等,这些治疗手段已经取得了一些显著的成功。

干细胞治疗领域虽然已经取得了很多进展,但是还有很多挑战需要我们去面对。

本文将探讨干细胞治疗的前景和挑战。

一、干细胞治疗的前景1. 新的治疗方法干细胞治疗为医学领域带来了全新的治疗思路,这种治疗方法具有明显的优势,因为它可以用来修复或替代受损组织或器官,从而提高患者的生活质量。

2. 应用范围广泛干细胞可以用来治疗许多种疾病,形成了很广泛的应用领域,包括神经、肝、心血管、免疫系统等等。

这些丰富的应用领域可以为很多疾病提供新的治疗手段。

3. 基础研究干细胞的研究也给生物医学科学带来了全新的基础研究方向,这些研究包括细胞分化、组织再生、器官发生和发育等等,这些研究具有重要的理论意义和应用价值。

二、干细胞治疗所面临的挑战1. 安全性问题干细胞治疗的安全性是一个重要的问题。

虽然干细胞治疗已经和许多疾病有着显著的治疗效果,但是在许多实验中也发现了干细胞可能存在的危险。

干细胞在体内可能会分化成不想要的细胞类型,这些细胞可能会导致严重的副作用,如感染、免疫排斥等等。

因此,在干细胞治疗中,安全问题需要得到更加重视。

2. 样本来源问题干细胞的来源是一个重要的问题。

为了制备足够数量的干细胞,研究者需要从人体中提取样本。

这个过程可能会产生一些问题,如样本的质量和数量受到限制,样本提取过程中可能会损伤组织或器官等等。

因此,在干细胞治疗中,样本来源问题也需要得到关注。

3. 成本问题干细胞治疗的成本也是一个重要的问题。

治疗干细胞需要花费大量的时间和金钱,这些成本可能会影响到干细胞治疗的推广。

因此,研究人员需要不断努力降低治疗干细胞的成本。

4. 道德问题干细胞治疗的道德问题也是一个重要的问题。

打干细胞引发肿瘤的原理

打干细胞引发肿瘤的原理

打干细胞引发肿瘤的原理干细胞是一类具有自我更新和多能性分化潜能的细胞,它们有能力分化为几乎所有类型的细胞,包括骨骼肌细胞、神经细胞和心肌细胞等。

这种潜能使得干细胞在治疗和再生医学领域具有重要的应用价值。

然而,干细胞治疗和应用中也存在一定的潜在风险,其中一种风险就是与干细胞相关的肿瘤发生。

这种肿瘤,通常被称为干细胞相关肿瘤(Stem cell-related tumor)或肿瘤类干细胞(tumor-initiating cells)。

干细胞相关肿瘤在干细胞治疗过程中或干细胞自身的异常增殖过程中出现。

干细胞相关肿瘤的形成机制还不完全清楚,但目前研究认为以下几个因素可能参与其中:1. 干细胞的不稳定性:干细胞具有自我更新和分化的能力,但它们的分化过程需要受到一系列调控因子的精细控制。

如果这些调控因子发生异常,干细胞就可能失去对分化的控制,过度增殖并形成肿瘤。

2. 基因突变:干细胞的克隆扩增可能导致基因突变的积累,这些突变可能激活癌基因或抑制抑癌基因的功能,进而导致肿瘤形成。

3. 不适当的微环境:干细胞的分化和增殖过程需要依赖于其周围的微环境,包括细胞间信号和细胞外基质。

如果这些微环境发生改变,比如缺乏适当的生理信号或存在异常的细胞外基质,干细胞就可能失去正常的分化调控,从而导致肿瘤形成。

4. 共享细胞命运:一些研究表明,干细胞可能与肿瘤细胞之间存在某种共享的细胞命运,即干细胞和肿瘤细胞可能共享相似的分化和增殖机制。

这种共享可能导致肿瘤细胞获得干细胞的增殖特性,并具有更强的分化潜能。

5. 免疫抑制:干细胞治疗常常需要使用免疫抑制剂来抑制宿主对于干细胞的免疫反应。

然而,免疫抑制剂的使用可能降低宿主对于肿瘤细胞的免疫防御,从而导致肿瘤发生和进展。

因此,干细胞引发肿瘤的机制是一个复杂且多因素的过程,涉及到干细胞的自我更新和分化特性、基因突变、微环境的不适应性、共享细胞命运以及免疫抑制等多个因素。

为了最大限度地减少这种风险,目前的干细胞治疗研究正朝着更加精确和安全的方向发展,并加强对于干细胞治疗相关肿瘤机制的深入研究,以便更好地利用干细胞的治疗潜力。

干细胞在生物学中的应用与前景展望

干细胞在生物学中的应用与前景展望

干细胞在生物学中的应用与前景展望干细胞是一种特殊的细胞类型,可以自我复制并分化成多种细胞类型,包括但不限于神经细胞、心脏细胞和肝脏细胞等。

因此,干细胞在生物学中一直被认为是一种非常有前途的细胞类型。

在本文中,我们将讨论干细胞在生物学中的应用以及展望干细胞的未来。

1. 干细胞在生物学中的应用1.1 干细胞在治疗疾病方面的应用干细胞的一大应用就是在治疗疾病方面。

例如,干细胞可以用于治疗白血病患者。

对于白血病患者来说,他们的血液中的骨髓细胞已经被破坏,无法产生健康血细胞。

然而,通过给他们移植干细胞,可以让这些干细胞成为健康的骨髓细胞,并使得患者恢复健康。

1.2 干细胞在研究方面的应用干细胞在研究方面的应用也非常广泛。

通过研究干细胞,科学家可以了解细胞分化和发展的过程,可以研究细胞的命运以及身体发育过程中的各种变化。

此外,干细胞还可以用于生物学研究和药物开发。

2. 干细胞的前景展望2.1 干细胞工程学干细胞工程学是一项新兴的学科,它将干细胞技术应用于组织工程。

通过干细胞工程学,科学家可以创造出各种不同的细胞类型,这些细胞可以用于人体的再生和修复。

例如,人们可以用干细胞培育出健康心脏组织,然后将这些组织移植到已经受损的心脏中,从而使心脏恢复健康。

2.2 干细胞治疗随着科学技术的不断发展,未来干细胞在治疗疾病方面有许多潜在的应用。

例如,干细胞可以用于治疗肌萎缩性侧索硬化症(ALS)等神经性疾病。

同时,干细胞还可以用于修复心脏组织,用于治疗心脏病。

总之,干细胞在生物学中具有非常广泛的应用前景。

未来,干细胞技术将成为医学和生物学领域中的重要工具,为人类健康做出贡献。

人类基因组学研究现状与未来趋势

人类基因组学研究现状与未来趋势

人类基因组学研究现状与未来趋势基因,是人体中能够传递遗传信息的基本因子,每个人的基因不尽相同。

人类基因组学研究是对人类基因组的科学探索,它涉及到我们的遗传情况、疾病发生的机理、药物治疗的个体化等重要领域,也在不断地推动新药研发、科学医疗和个体化医疗的发展。

本文将介绍人类基因组学研究的现状与未来趋势。

一、研究现状1.基因组测序技术的进步随着科技的不断发展,基因组测序技术也在逐渐进步。

第一份人类基因组极速服务于2001年公布,这一过程耗费了十多年的时间,费用超过十亿美元。

而如今的基因组测序技术则迅速提速,并大幅缩短了检测时间和费用。

现在,我们只需花费数百美元就能在几天内完成基因测序。

这大大推动了基因组学研究的进展,也使更多的人有了机会进行基因检测。

2.遗传病的筛查和预测基因组测序技术的提升,为遗传病的筛查和预测提供了新的手段。

这种技术的发展使得更多的人能够知悉自己携带的基因,包括一些可遗传疾病的信息。

举个例子,BRCA1和BRCA2基因是增加乳腺癌和卵巢癌风险的重要基因,通过基因组测序就可以对这种遗传风险进行筛查,利用这些信息,个体化预防、治疗措施才能更加精准。

3.跨领域的研究基因组学的发展也推动了其他领域的发展,如社会学、人类学等。

通过对人类基因的研究,可以更好地解释人类起源、人类进化和遗传迁移等问题。

此外,基因研究还可以在食品安全、犯罪侦查、生态和环境保护等方面发挥重要作用。

二、未来趋势1.精准医疗的发展基因研究是精准医疗的核心技术之一。

目前,基因组测序技术的提升和成本的降低,为精准医疗提供了基础条件。

精准医疗需要从个体基因层面出发,开发针对个体特点的治疗方案。

基因组学研究的不断深入,可以更好地指引临床治疗,为个体制定更精准的治疗方案,从而提升治疗效果和预后预测。

2.国际合作的加强基因组学属于跨国性的重要研究领域,多国的科学家和研究机构必须加强合作以更好地利用基因组学的技术与成果。

在国际上,已经有不少跨国的基因组计划在进行中,一方面加快了研究进程,另一方面也让研究可以跨越国界,实现更多方面的应用。

人类基因组学研究的现状与未来发展趋势

人类基因组学研究的现状与未来发展趋势

人类基因组学研究的现状与未来发展趋势人类基因组学研究是一门近年来备受关注的科学研究领域,它通过分析人类基因组中的各种基因、基因组结构和功能,旨在揭示人类生物学的本质和进化历程。

本文将就当前的基因组学研究现状,以及未来的发展趋势进行探讨,并提出一些研究方向的思考。

一、基因组学研究现状基因组学研究已经走过了数十年的历程,取得了许多重要的研究成果。

当前基因组学研究主要包括以下几个方面。

1.基因组测序基因组测序是基因组学研究的基础和核心,也是最重要的研究手段之一。

早期的测序技术主要是Sanger测序,然而该技术不仅繁琐费时,而且成本高昂;后来随着高通量测序技术的不断发展,最终推出了目前主流的二代测序技术,如Illumina、Ion Torrent等。

这些技术具有快速、精确、高通量等特点,大大提高了基因组测序的效率和质量,为后续的研究铺平了道路。

2.基因组注释基因组注释是指将测序得到的DNA序列转化为具有生物学含义的信息,如基因的位点、功能和调节区域等。

基因组注释可以通过生物信息学方法进行,主要包括基因预测、转录本注释、蛋白质功能注释和遗传变异分析等,是深入理解基因组结构和功能的重要手段。

3.基因组功能研究基因组功能研究是基于基因组注释的信息,对基因组中的各种基因、基因调节区域和细胞功能进行深入研究。

这项研究包括功能基因组学、转录组学、表观遗传学、蛋白质组学等,为深入探究基因与生物学功能之间的关系提供了重要的理论基础和技术手段。

4.遗传变异和人类疾病研究遗传变异和人类疾病研究是基于基因组功能研究的基础上,研究人类疾病与基因遗传变异之间的关系。

通过分析基因组中的遗传变异,可以发现各种疾病的基因相关突变,从而深入研究人类疾病的发生、发展和治疗。

二、基因组学研究未来发展趋势基因组学研究前沿技术不断涌现,也衍生出许多新的研究方向和领域。

未来基因组学的发展趋势将有以下几个方面。

1.基因组编辑技术CRISPR技术的广泛应用和进一步的改进,将推动基因组编辑技术在医学、农业、环境等领域的应用,有望治愈许多尚无有效疗法的疾病,促进植物、动物遗传改良,解决环境污染等问题。

干细胞研究的进展与前景

干细胞研究的进展与前景

干细胞研究的进展与前景(文献综述)胞生第一组干细胞是人体内最原始的细胞,具有较强的分化再生能力,由于干细胞的应用领域非常广阔,21世纪以来一直被认为是科技发展的热点之一。

2000年干细胞研究被美国《科学》杂志列入年度世界十大科学进展。

2001年美国《科学》又将其置于2002年值得关注的六大热门科技领域之首。

2001年以来,美国、英国、中国等国家已纷纷立法允许应用干细胞进行治疗性克隆的研究。

有关干细胞治疗的研究具有不可估量的医学价值,其巨大的临床应用潜力将对医学产生巨大的影响。

1、干细胞的定义干细胞(stem cell)是具有自我复制能力的多潜能性细胞,是一种未充分分化,尚不成熟的细胞,具有再生各种组织和人体的潜在功能的细胞。

2、干细胞的分类2.1根据发育状态分类干细胞根据所处的发育阶段可以分为胚胎干细胞(embryonic stem cell)和成体干细胞(somatic stem cell)。

2.1.1胚胎干细胞:胚胎干细胞是来源于胚胎内细胞团或原始生殖细胞的一种多能细胞系,能以一种不确定的未分化状态扩增,几乎可以向所有成年组织分化。

2.1.2成体干细胞:指存在于已经分化组织中的未分化细胞,这种细胞能够自我更新和分化行成该类型组织。

目前发现的成体干细胞有造血干细胞、骨髓间充质干细胞、神经干细胞、肝干细胞、视网膜神经干细胞、胰腺干细胞等。

2.2根据发育潜能分类干细胞根据的发育潜能可分为全能干细胞(totipotent stem cell)、多能干细胞(pluripotent stem cell)和专能干细胞(unipotent stem cell)。

2.2.1全能干细胞:具有形成完整个体的分化潜能,如受精卵,胚胎干细胞。

2.2.2多能干细胞:具有分化出多种组织细胞的潜能,但失去了发育成完整个体的能力,发育潜能受到一定的限制,如骨髓多能干细胞。

2.2.3专能干细胞:这类干细胞只能像一种类型或密切相关的两种类型的细胞分化,如上皮组织基底层干细胞,肌肉中的成肌细胞。

基因科学的发展现状与未来趋势展望

基因科学的发展现状与未来趋势展望

基因科学的发展现状与未来趋势展望近年来,基因科学得到了巨大的突破与发展,引领着生命科学的未来。

本文将探讨基因科学目前的发展现状以及未来的趋势展望。

一、基因研究的现状基因科学的发展离不开对基因的深入研究和了解。

基因是生物遗传信息的基本单位,通过对基因的研究,科学家们已经成功解码了多个生物的基因组,如人类基因组计划。

这使得我们对基因组有了更深入的认识,并为其他领域的研究提供了基础。

此外,基因表达调控、基因突变与疾病的关联等领域的研究也取得了重要进展。

基因编辑技术也是基因科学的重要组成部分。

CRISPR/Cas9技术的出现使得基因编辑变得更加简单和精确。

科学家们通过CRISPR/Cas9成功地编辑了各种细胞和生物的基因,创造出了许多基因编辑模型,为疾病的研究和治疗提供了新的思路。

二、基因科学的未来趋势1. 精准医学的发展基因科学的快速发展为精准医学提供了巨大的机遇。

通过对个体基因组的分析,医生可以更准确地了解患者的疾病风险和治疗方案。

预测性基因检测已经开始应用于一些遗传性疾病的筛查,有望在未来普及。

2. 基因治疗的突破基因治疗是一种通过修复或替代异常基因来治疗疾病的方法。

随着基因编辑技术的成熟,基因治疗正朝着更广泛的应用方向发展。

目前,一些基因治疗药物已经在临床试验中取得了初步的成功,如使用基因编辑技术治疗遗传性视网膜病变。

3. 基因组学的整合应用随着高通量测序技术的不断发展,我们现在已经可以快速地获取大量的基因组数据。

基因组学与其他学科的整合应用将成为未来的趋势,如在生物学、医学、农业等领域的应用。

这将有助于我们对基因组的理解更全面,促进生物学领域的更多突破。

4. 生命伦理的思考随着基因科学的发展,生命伦理问题也日益凸显。

基因编辑技术的出现引发了许多道德和伦理上的争议,如人类胚胎基因编辑。

未来,我们需要更加深入地思考基因科学的发展对生命伦理的影响,以及如何在保障科学进步的同时维护道德和伦理的底线。

总结:基因科学正朝着更加深入和广泛的方向发展,为人类的生命科学研究和医学治疗带来了新的希望。

干细胞治疗遗传疾病治疗前景

干细胞治疗遗传疾病治疗前景

干细胞治疗遗传疾病治疗前景遗传疾病是一类由基因突变引起的疾病,通常在出生时或者年幼时就会表现出来,并且会对患者的生活质量和预期寿命产生重大影响。

干细胞治疗作为一种新兴的治疗方法,被认为具有巨大的潜力来改善遗传疾病的治疗前景。

本文将探讨干细胞治疗在遗传疾病治疗中的应用前景。

干细胞治疗作为一种治疗方法,通过将健康的干细胞注入患者体内,以修复或替代受损的细胞和组织,从而促进疾病的治疗和康复。

在遗传疾病治疗中,干细胞治疗可以通过多种方式发挥作用。

首先,干细胞治疗可以用于基因修复。

一些遗传疾病是由于某个基因突变导致的,例如囊性纤维化、血友病、黑色素瘤等。

研究人员可以利用基因编辑技术,如CRISPR-Cas9,将正常的基因序列导入到患者的干细胞中,并将这些修复后的细胞重新植入患者体内。

这样一来,修复后的细胞就可以代替原来的有缺陷的细胞,从而修复遗传疾病。

虽然目前基因编辑技术还面临一些技术和道德上的挑战,但这种方法仍然被认为是治疗遗传疾病的一种潜在途径。

其次,干细胞治疗可以通过分化为特定细胞类型来替代受损的组织或器官。

一些遗传疾病,如肌营养不良症和某些形式的失聪症,通常涉及特定的细胞类型的受损。

通过将患者自身的干细胞培养分化为这些特定的细胞类型,然后将其植入患者体内,可以恢复受损的组织或器官的功能。

这种方法被认为是一种潜在的替代器官或组织移植方法,可以避免排斥反应和供体短缺等问题。

此外,干细胞治疗还可以通过释放生长因子来促进受损组织的自愈能力。

一些遗传疾病,如肌营养不良症和帕金森病,通常会导致患者特定细胞类型的损伤或死亡。

通过注入干细胞,这些细胞可以分泌生长因子,从而促进周围组织的再生和修复。

这种方式被认为是一种在遗传疾病治疗中的可行方法,因为它可以在不需要替代整个组织或器官的情况下促进组织修复。

然而,干细胞治疗在遗传疾病治疗中还面临着一些挑战和限制。

首先,干细胞的获取和培养仍然是一项困难的任务。

不同类型的干细胞有不同的特点和限制,例如胚胎干细胞的获取存在伦理问题,而成体干细胞的数量和分化能力有限。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简明回顾:人类干细胞中的基因组不稳定性:目前的情况及将来的挑战ABSTRACT人们已经认识到,基因组的不稳定性是基于干细胞的疗法进行扩展的最重要障碍之一。

最近几年,不断积累的证据表明人类干细胞在体外培养条件下经历了多种生物学变化程序,包括染色体数量和结构上的异常,点突变端粒长度的变异,以及表观遗传上的不稳定。

随着这一领域向前发展,对与人类基因组可塑性有关的风险因素的认识,非常有力地支持将广泛基因组筛查作为质控平台的一部分,以证明基于干细胞产品的安全性。

本文中,我们做了一次及时而广泛的回顾,回顾这一领域的现状及正在出现的趋势,最终,强调了采用新调控标准的必要性,这种调控标准可以使治疗性应用的开发途径更为安全有效。

INTRODUCTION再生医学的广阔天地为使用干细胞和/或其子代来替代被疾病损伤的组织带来了令人兴奋的前景,这种取代要么是通过细胞整合(移植成活)到目标组织中,以及/或者是利用细胞产生可溶性信号分子的能力。

干细胞可以源自多种组织,也就是可以来自胚胎组织及成体组织。

首先从胚球内侧细胞团中分离出了人类胚胎干细胞(hESCs)[1],已知的是它自我更新的能力以及它的多能性,它可以产生胚胎的三个胚层(内胚层,中胚层,外胚层)能产生的所有细胞类型。

hESCs为替换治疗,疾病建模,以及药物筛查带来了巨大的希望,但最近几年人们发现了相当多的关于染色体畸变的令人心烦意乱的数据,这些数据还伴有显著的伦理争议,它们妨碍了对这些细胞的研究及临床应用。

2006年Takahashi与Yamanaka揭示了用异位共表达已知的转录因子将体细胞重编程为胚胎样状态的可行性[2]。

这种方法避免了子宫外胚胎损伤,对获取这些被称为诱导性多能干细胞(iPSCs)的热情,一定程度上掩盖了与重编程过程相关的高突变率[3]。

按现有的了解情况,hESCs和人iPSCs(hiPSCs)在基因,表观遗传,以及转录水平上有微妙的区别。

不过,这种区别是意味深长的,或仅仅是,打个比方说,不同培养环境所造成的结果,这个问题还悬而未决。

此外,最近几年里,人类成体干细胞,比如造血干细胞(HSCs),间质干/基质细胞(MSCs),神经干细胞(NSCs),表皮干细胞或皮肤干细胞,在整个成年期的组织里不同的微环境中被发现,为能够支持组织的维持与再生的静止期祖细胞提供了另一种来源。

这些多能干细胞中的某些类型,比如HSCs或MSCs,也可在新生组织中发现,比如胎盘或是脐带血。

但是,如同在多能干细胞中的那样,不断出现的证据表明这些细胞在体外培养扩张期间,基因异常和转换表现出时间依赖性累积现象。

在这种情况下,非常值得注意的是,不考虑细胞类型,体外扩张期间的质量控制对干细胞治疗方面在临床上更安全地实施十分关键。

欧洲药品管理局在其“对基于干细胞药物的反思”一文中强调了与操作步骤及多能细胞和体细胞培养有关的致癌潜能,并做了一份关于进行细胞遗传学分析以及评估参数的建议,这些评估参数包括端粒酶活性,增殖能力,以及衰老状态[4]。

关于国际干细胞银行的提议要解决同样的议题[5],它设想建立一个关于标准化优良操作的全球性网络,以便干细胞的存储与分配。

在这件事上,美国食品与药品管理局(FDA)的失职情况还在不断恶化,越来越多的诊所往往在没有什么控制力的司法权下进行操作,并用一些未经证明的疗法来应对无数的病理情况(见[6])。

在某些例子中,缺乏健全而可靠的科学追踪,引起了致命的后果[7]。

这里,我们对评估基因完整性的方法做了一个简要总结,然后对已经报道的各种发现做了一个最新的,全面的回顾,因此深入关注了hESCs,hiPSCs以及人类成体干细胞中的基因组不稳定性问题。

我们也讨论了研究的瓶颈以及未来的趋势。

评估基因组完整性的常用方法——简要回顾最常用来评估基因组完整性的技术,从本质上都是基于细胞遗传学分析和DNA分析的。

传统的核型被认为是发现非整倍体(异倍体),多倍体,以及其它大型染色体失衡。

通常这涉及到对有丝分裂中期静止的染色体进行吉姆萨染色显带,然后可以用普通光镜进行分析。

吉姆萨染色的染色体的核型可以根据人类遗传学国际命名体系(ISCN)来描述[8]。

尽管已经对传统的核型方法进行了一些优化,但这些步骤仍然十分漫长,需要熟练的人员来进行,受限于较低的平均分辨率(一般>3Mb),这种黑白染色方式难以解析复杂的重组,并且这种方法需要获取数量很多的中期细胞。

除此之外,现在已经清楚某些亚核型变异不可忽视,因为从临床角度来看它们可以有严重的含义。

综合起来考虑,这些缺点促使,特别是通过使用高分辨率非同位素技术,促使了分子细胞遗传领域的重大进步。

一个例子就是原位杂交荧光技术(FISH)。

FISH技术出现于20世纪80年代早期[10],从本质上来说它依赖于使用直接或间接探针,通过对有丝分裂中期的染色体(分辨率1~2Mb),间期核(50kb到1Mb),或DNA 纤维(10~500kb)进行荧光测量,来发现特定的DNA目标序列。

由于其高敏感性,高性价比,以及高度可重复性,FISH在生物和医学中迅速获得了广泛的承认,并证明了其对各种目的而言的巨大价值[11]。

其中一些例子包括非分裂细胞中的染色体畸变分析,3D染色体组织研究,基因图谱绘制,DNA复制/重组研究,疾病特征及诊断。

但是,FISH有一个主要的缺陷就是只能发现已知的基因畸变,限制了它在基因组范围上的应用,这使得它不能对染色体畸变做广泛的筛查。

通过与受到不同标记的DNA探针杂交并成像,使得人们可以观察到人类所有的24条染色体(22条常染色体,X和Y染色体),每条染色体都是一种单独的颜色,并且只用一步完成,这种性质极大地克服了上述的FISH缺陷。

这使人们开发出了一些新的基于FISH的技术,比如光谱分型(SKY)[12],以及多重FISH(M-FISH)[13]。

这两种技术的成像获取模式都与FISH不同:SKY依赖于通过特制的多频光滤波器来进行单步成像获取,而M-FISH用的是一套荧光染料特异性光滤波器。

这些技术的限制包括必须要有中期细胞,一般分辨率较低(大约1~3Mb),不能发现染色体内重组。

另一种很受欢迎的技术是比较基因组杂交(CGH)[14],这项技术近些年在肿瘤学研究和发现胚胎期与新生期基因组畸变方面提供了无与伦比的认识。

CGH使用测试基因组和对照基因组,它们用不同的荧光染料标记(比如,测试组染成绿色,对照组染成红色),然后与中期染色体完全杂交。

然后对每条染色体,检测测试基因组相对于对照组的荧光率,得到关于基因材料得到DNA区域(绿红比上升)或丢失DNA区域(绿红比下降)的信息。

但是,CGH有一些限制,也就是它的分辨率较低(5~10Mb),它无法发现平衡重组,比如倒位,或对等重组(reciprocal),或罗伯逊易位。

CGH的原理也与微阵列技术联合(阵列-CGH),利用细菌人造染色体(BACs)(150~200kb大小),cDNAs(0.5~2kb),聚合酶链式反应(PCR)产物(0.1~1.5kb),以及寡核苷酸(25~80bp)充当调查探针[15~18]。

阵列-CGH技术的最大分辨率是一个与长度,分布及探针间空位有关的函数,使用BACs的分辨率在50~100kb,使用寡核苷酸探针的分辨率在1~10kb。

其它基于阵列的平台使人们可以发现单核苷酸多态性(SNP),并且除了可以提供拷贝数量变异(CNVs)的信息,还有一个好处就是显示杂合性的丧失,或是片段性单亲二倍体。

我们现在处于一个节点,下一代测序技术正在成熟,那将使得人们可以在bp精度上测绘重组的情况,尽管价格不菲,并且更依赖计算机的力量(见[19]回顾)。

在日益扩展的干细胞领域,这些技术的应用已经集中于识别和描述环境获得性异常,并将继续这样下去,揭示出维持基因组所面临的真正巨大的挑战。

hESCs中的基因组不稳定性hESCs正被越来越多地认为是一种有用的工具,用于替换受损组织,以及广泛种类疾病的潜在治疗。

对它们的使用有争议,主要是因为现在要获取hESCs需要,举例来说,从多余的离体授精胚胎中,或是流产胎儿中,破坏人类的胚球。

这种引出细胞的方法,加剧了关于植入前胚胎的道德身份方面的激烈观点争论。

那些反对破坏胚胎的人,其观点的基础往往是象征或者可能性,他们的依据是植入前的人类胚胎有潜能发育成完整的人,因此应当有相等的权利,利益以及道德上的身份。

这种争论的另一方认为,胚球只不过是由一堆未分化细胞组成,没有可识别的神经系统,因此发育阶段还十分不成熟,谈不上有什么利益或是权利。

根据这些细胞在治疗上的潜力,研究者,政策制定者以及伦理学专家们应当在不同的观点之间寻找尽可能普遍的基础。

除了伦理学上的考虑,在将干细胞移入临床应用之前,还有其它一些障碍不得不解决。

越来越多的证据表明干细胞在离体培养期间出现染色体异常,这催生了一个疑问,即这些细胞应用在人体上有多安全。

这种忧虑十分重要,因为正常的核型不仅可以保证离体状态下hESCs特性的维持,也能避免在活体状态下的负面作用。

基因上异常的细胞一般在培养适应期间出现,往往表现出生长速率增高,更倾向于获得恶性转变[20]。

看起来,hESCs表现出偏倚性倾向,更容易在12号染色体(特别是12p)[20~27],17号染色体(特别是17q)[20,22,23,25,27~30],20号染色体(特别是20q)[20~22,25,27~29,31],以及X染色体[20,22,25,28,32]上形成非整倍体(主要是增多)(Fig.1)。

已经发现12号染色体的三倍体能增加hESCs的增殖潜能,促进细胞分裂,伴有多个纺锤体,并引起活体组织中的肿瘤样组织[26]。

另一方面,已经知道20q11.21的一段大小从0.5到4.6Mb片段的复制[21,23]能影响诸如ID1和BCL2L1这样的基因,后者编码抗凋亡蛋白BCL-X,最近发现其是这种复制有强烈选择优势的原因[31,34]。

20q11.21的获得性突变也常在各种人类肿瘤中发现[35,36]。

X染色体的丢失有过报道[28],但获得突变更多见[20]。

在近期的报导中,将染色体计数,FISH,以及SKY联合运用揭示出在hESCs(及hiPSCs)中有18~35%的嵌合非整倍体共存,这种现象的培养不依赖于传代数,培养技术,或是实验室[37]。

嵌合体似乎是以随机的形式出现,似乎要么引起表型异质性,要么后代产生非整倍体细胞,引起这种细胞丧失多能性,以及致癌性的增高[37]。

在另外两项研究中,使用了诸如CGH或SNP阵列这样的高分辨方法,确定了不同染色体中大小从20kb到3Mb的大量拷贝数变异,这些拷贝数变异影响肿瘤相关基因,并引起基因表达分布情况的变化[22,38]。

那些基因上异常的细胞似乎也迅速出现了分化,这意味着发现突变的工作应当继续,不止在多能状态中进行[39]。

相关文档
最新文档