数学史和方法论 自学考试提纲

合集下载

数理方法复习提纲

数理方法复习提纲

复变函数论复数平面:在直角坐标平面xOy 上,把复数iy x z +=用坐标为),(y x 的点来表示,这个直角坐标平面xOy 叫做复数平面。

复数平面复数的模:复数iy x z +=的对应点),(y x 的极坐标的极径或矢量→Oz 的长度ρ称为复数z 的模z ,记做22y x z +==ρ。

复数的辐角:复数iy x z +=对应点),(y x 的极坐标的极角或向量→Oz 与x 轴正方向的夹角θ称为z 的辐角,记做θ=Argz 。

一个复数iy x z +=的辐角可以取无穷多个值,并且彼此相差π2的整数倍,通常把满足条件ππ≤<-Argz 或π20<≤Argz 的一个特定值,称为辐角的主值,表示为z arg ,则z 的任意辐角可表示为: ,...)2,1,0(2arg ±±=+==k k z Argz πθ复数iy x z +=的三角式: )sin (cos θθi r iy x z +=+= 复数iy x z +=的指数式:θθθθθθi i re z i e i r iy x z =⇒⎭⎬⎫+=+=+=)(sin cos )sin (cos 欧拉公式 复数)sin (cos θθi r iy x z +=+=的n 次乘方的三角和指数形式:θθθin n n n e r n i n r z =+=)sin (cos复数)sin (cos θθi r iy x z +=+=的n 次方根的三角和指数形式:)1,...1,0(2arg ,)sin (cos -=+==+==n k k z e r ni n r z w n innnπθθθθ复变函数:若在复数平面上存在一个点集E ,对于E 中的每一点z ,按照一定的规律,有一个或多个复数值w 与之相对应,则说在点集E 上定义了一个复变函数,记作:)(z f w =,点集E 叫作函数的定义域令:iv u z f w +==)(,并将iy x z +=代入,则有:),(),()()(y x iv y x u z f w iv u z f w iy x z +==⇒⎭⎬⎫+==+=初等复变函数:指数函数:)sin (cos y i y e e e e e x iy x iy x z +===+ 例题:)2222()4sin 4(cos 3343i e i e ei+=+=--+-πππ三角函数: ()iz iz e e i z --=21sin , z z z cos sin tan =, zz z sin cos cot = 1)因为z z sin )2sin(=+π,z z cos )2cos(=+π,所以z sin ,z cos 具有实周期π2 2)z sin ,z cos 为无界函数。

高中数学史选讲知识提纲

高中数学史选讲知识提纲

高中数学史选讲知识提纲第一章数学发展概述§1 从数学的起源早期发展到初等数学形成一、数学的起源,早期发展(p1-p3)主要标志:数的概念、记数系统、算术、几何等初步形成。

1.数的概念和计数系统 2.经验几何的发展中国最早的数学著作《周髀算经》中,记载了勾股定理。

古埃及在19世纪中期和末期发现两卷纸草书,一卷是“莱茵德草卷”,一卷是“莫斯科草卷”。

3.算术二、初等数学(常量数学的形成)(p3-p7)到公元16世纪,经过系统整理和理论概括形成初等数学,也就是常说的常量数学。

1.希腊(坚持数学中的演绎法和抽象方法)(1)欧几里得,著作《原本》(中文翻译:《几何原本》)是数学史上的第一座理论丰碑,其最大的攻绩在于确定了数学中的演绎模式。

(2)阿基米德对面积和体积的计算接近于积分计算。

(3)丢番图的《算术》是古希腊人在代数方面取得的最高成就,书中不仅解决了许多不定方程,而且开始用一套缩写符号表示代数问题,这为以后符号数学的发展开了先河。

2.中国(p4-p6)《九章算术》可追溯到公元前1世纪,它是中国最重要的数学著作,包含了丰富的数学成果,例如,算术方面的此例算术,盈不足术,代数方面的方程术、正负术、开方术等。

(P4)刘徽撰《九章算术注》,其中割圆术是极限思想的萌芽。

刘徽和南北朝时期的祖暅计算球体积的方法是积分学的萌芽。

公元5世纪的《张邱建算经》提出了世界著名的百鸡问题。

他发了三组答案,他是数学史上发出一题多解的第一人。

祖冲之,给出了的上下界。

南朝《孙子算经》中有“物不知数”问题,通常称作“孙子问题”即孙子定理,中国剩余定理。

杨辉的著作《详解九章算经》中有一张珍贵的图——“开方作法本源图”,也即“贾宪三角,这张图给出了指数为正整数的二次式展开的系数表。

西方人把此三角称作“帕斯卡三角形”。

(p6)宋元一个最深刻的动向是向代数符号化的进展,这就是天元术与四元术的出现。

元朝李治所著《测圆海镜》和《益古演段》是最先阐述天元术的著作(天元术:设未知数列方程的一般方法)。

数学史考试大纲

数学史考试大纲

数学史考试大纲一、考试目的与要求本考试旨在评估学生对数学发展史的基本知识、重要数学概念的起源与发展、以及数学思想在不同文化和历史时期的传播与影响的理解。

考试要求学生能够:1. 掌握数学史上的重要时期、人物和事件。

2. 理解数学概念的形成和发展过程。

3. 分析数学思想在不同文化中的传播及其对社会的影响。

4. 能够运用数学史知识解决实际问题。

二、考试内容1. 数学史的起源- 古埃及数学- 古巴比伦数学- 古印度数学2. 古希腊数学- 毕达哥拉斯学派- 欧几里得《几何原本》- 阿基米德的贡献3. 伊斯兰数学- 阿拉伯数字的传播- 代数学的发展- 阿尔·花拉子米4. 中世纪欧洲数学- 欧洲数学的复兴- 斐波那契数列- 欧洲文艺复兴时期的数学5. 近代数学的兴起- 笛卡尔坐标系- 牛顿与莱布尼茨的微积分- 概率论的初步6. 18世纪数学- 欧拉的贡献- 拉格朗日与拉普拉斯的分析学7. 19世纪数学- 非欧几何的发现- 群论的诞生- 康托尔的集合论8. 20世纪数学- 布尔巴基学派- 计算机与算法的发展- 现代数学的分支9. 数学在现代社会的应用- 数学在物理学中的应用- 数学在经济学中的应用- 数学在计算机科学中的应用10. 当代数学的发展趋势- 跨学科的数学研究- 数学在解决现实问题中的作用- 数学教育的改革与发展三、考试形式与题型考试形式为闭卷笔试,题型包括:1. 选择题:测试学生对数学史基本知识点的掌握。

2. 填空题:考察学生对数学概念和事件的准确记忆。

3. 简答题:要求学生对数学史上的重要人物或事件进行简要描述。

4. 论述题:评估学生对数学思想传播与影响的分析能力。

5. 案例分析题:运用数学史知识解决实际问题的能力。

四、评分标准1. 选择题和填空题:根据正确答案评分。

2. 简答题和论述题:根据内容的准确性、逻辑性和条理性评分。

3. 案例分析题:根据分析的深度、广度和创新性评分。

五、参考书目1. 莫里斯·克莱因《数学:确定性的丧失》2. 伊恩·斯图尔特《数学史》3. 约瑟夫·马祖尔《数学史概论》六、考试准备建议1. 阅读教材和参考书目,系统掌握数学史的基本知识。

数学复习全书提纲30页word

数学复习全书提纲30页word

第一篇高等数学第一章极限、连续与求极限的方法一、极限的概念与性质(一)极限的定义(二)极限的基本性质与两个重要极限二、极限存在性的判别(极限存在的两个准则)(一)夹逼定理(二)单调有界数列必收敛定理(三)单侧极限与双侧极限的关系(四)证明一元函数的极限不存在常用的两种方法三、无穷小及其阶(一)无穷小与无穷大的定义(二)无穷小与无穷大、无穷小与极限的关系(三)无穷小阶的概念(四)重要的等价无穷小(五)等价无穷小的重要性质(六)确定无穷小阶的方法四、求极限的方法(一)利用极限的四则运算与幂指数运算法则求极限(二)利用函数的连续性求极限(三)利用变量替换法与两个重要极限求极限(四)利用等价无穷小因子替换求极限(五)利用洛必达法则求未定式的极限(六)分别求左右极限求得函数极限(七)利用函数极限求数列极限(八)用夹逼法求极限1.简单的放大缩小手段2利用极限的不等式性质进行放大或缩小2.对积分的极限可利用积分的性质进行放大或缩小(九)递归数列极限的求法(十)利用定积分求某些n项和式的极限(十一)利用泰勒公式求未定式的极限(十二)利用导数定义求极限五、函数的连续性及其判断(一)连续性的概念(二)间断点的定义与分类(三)判断函数的连续性与间断点的类型(四)连续函数的性质常考题型与其解题方法与技巧题型一求0/0 或者无穷大比无穷大未定式的极限题型二求0乘无穷大或无穷大乘无穷大的极限题型三求指数型未定式的极限题型四求含变限积分未定式的极限题型五由极限值确定函数式中的参数题型六利用适当放大缩小法求极限题型七求n项和数列的极限题型八求n项积数列的极限题型九利用函数极限求数列极限题型十无穷小的比较与无穷小阶的确定题型十一讨论函数的连续性与间断点的类型题型十二有关连续函数性质的命题第二章一元函数的导数与微分的概念及其计算一、一元函数的导数与微分(一)导数的定义、几何意义与力学意义(二)单侧可导与双侧可导的关系(三)可微的定义、微分的几何意义及可微、可导与连续之间的关系(四)函数在区间上的可导性、导函数与高阶导数(五)奇偶函数与周期函数的导数性质二、按定义求导数及其适用的情形(一)按照定义求导数(二)按照定义求导数适用的情形(三)利用导数定义求极限三、基本初等函数导数表,导数四则运算法则与复合函数微分法则(一)基本初等函数导数表与求导法则(二)导数与微分的四则运算法则(三)复合函数的微分法则(四)初等函数求导法四、复合函数求导法的应用——由复合函数求导法则导出的微分法则(一)幂指数函数的求导法(二)反函数求导法(三)由参数方程确定的函数的求导法(四)变限积分的求导法(五)隐函数微分法五、分段函数求导法(一)按照求导法则分别求函数在连接点处的左右导数(二)按照定义求连接点处的导数或左右导数(三)连接点是连续点时,求导函数在连接点处的极限值六、高阶导数及n阶导数的求法(一)归纳法(二)分解法1.有理函数与无理函数的分解2.三角函数的分解(三)用莱布尼兹法则求乘积的n阶导数七、一元函数微分学的简单应用(一)平面曲线的切线与法线1.用显示方程表示的平面曲线2.用参数方程表示的平面曲线3.用极坐标方程表示的平面曲线4.用隐式方程表示的平面曲线(二)用导数描述某些物理量常考题型与其解题方法与技巧题型一有关一元函数的导数与微分概念的命题题型二一元函数可导函数与不可导函数乘积的可导性的讨论题型三求各类一元函数的导数或微分题型四变限积分的求导题型五一元函数与求微分的综合题题型六求一元函数的n阶导数题型七一元分段函数的可导性与导函数连续性等命题的讨论题型八一元函数导数概念的应用第三章一元函数积分概念、计算及应用一、一元函数积分的概念、性质与基本定理(一)原函数与不定积分的概念与基本性质(二)定积分的概念与基本性质(三)基本定理(四)奇偶函数与周期函数的积分性质(五)利用定积分求某些n项和式数列的极限二、积分法则(一)分项积分法(二)分段积分法(三)换元积分法(四)分部积分法三、各类函数的积分法(一)有理函数的积分(二)简单无理函数的积分(三)三角有理式的积分四、反常积分(广义积分)(一)无穷限反常积分的概念(二)无界函数反常积分的概念(三)几个常见的反常积分(四)反常积分的计算五、积分学应用的基本方法——微元分析法六、一元函数积分学的几何应用(一)平面图形的面积(二)平面曲线的弧微分与弧长(三)平面曲线的曲率、曲率圆与曲率半径(四)空间图形的体积(五)旋转面的面积七、一元函数积分学的物理应用(一)液体的静压力(二)引力问题(三)变力做功(四)质心与形心问题(五)函数在区间上的平均值常考题型与其解题方法与技巧题型一有关原函数与定积分的概念题型二积分值的比较或积分值符号的判断题型三估计积分值题型四有关原函数的存在性问题题型五求分段积分的原函数题型六各类被积函数不定积分的计算题型七各类被积函数定积分的计算题型八利用若干积分技巧计算积分题型九求形如∫的积分题型十由函数方程求积分题型十一反常积分的技术题型十二证明积分等式题型十三证明积分不等式题型十四关于变限积分的讨论题型十五一元函数积分学的几何应用题型十六一元函数积分学的物理应用题型十七综合题第四章微分中值定理及其应用一、微分中值定理及其应用(一)极值的定义(二)微分中值定理及其几何意义二、利用导数研究函数的变化(一)函数为常数的条件与函数恒等式的证明(二)函数单调性充要判别法(三)极值点充分判别法1.极值第一充分判别定理及其几何意义2.极值第二充分判别定理及其几何意义(四)凹凸性充要判别定理及其几何意义(五)拐点判别法1.拐点的定义2.拐点的必要条件3.拐点的充分判别定理(六)利用导数做函数图形三、一元函数的最大值与最小值问题常考题型与其解题方法与技巧题型一证明函数恒等式题型二利用导数讨论函数的变化1.证明函数的单调性与凹凸性2.讨论函数的极值3.求函数的单调性、凹凸性区间,极值点,拐点及渐近线题型三求指数型未定式的极限1.函数型的最值问题2.应用型的最值问题题型四与最值问题有关的综合题题型五用微分学的方法证明不等式1.直接利用拉格朗日中值定理或柯西中值定理证明不等式2.利用函数的单调性证明不等式3.利用函数的最大值或最小值证明不等式4.引进辅助函数把证明常值不等式转化为证明函数不等式5.利用函数的凹凸性证明不等式题型六讨论函数的零点题型七用微分中值定理证明函数或其导数存在某种特征点第五章一元函数的泰勒公式及其应用一、带皮亚诺余项与拉格朗日余项的n阶泰勒公式二、带皮亚诺余项的泰勒公式的求法(一)泰勒公式的唯一性(二)求泰勒公式的方法三、一元函数泰勒公式的若干应用常考题型与其解题方法与技巧题型一求泰勒公式题型二用泰勒公式求极限确定无穷小的阶题型三用泰勒公式证明不等式或高阶导数存在某种特征点题型四有关泰勒公式的中值Θ的性质第六章微分方程一、基本概念二、一阶微分方程三、可降阶的高阶方程四、线性微分方程解的性质与结构五、二阶和某些高阶常系数齐次线性方程、欧拉方程六、二阶常系数非齐次线性方程七、含变限积分的方程常考题型与其解题方法与技巧题型一变量可分离的方程与齐次方程的求解题型二通过简单代换化变量可分离的方程的求解题型三一阶线性方程与可化为一阶线性方程的求解题型四全微分方程的求解题型五可降阶的高阶微分方程的求解题型六二阶线性常系数方程的求解题型七特殊的变系数二阶线性方程的求解题型八含变限积分方程的求解题型九由自变量增量与因变量增量间的关系给出的一阶方程题型十综合题与证明题题型十一有关微分方程应用题的求解第七章向量代数和空间解析几何一.空间直角坐标系二.向量的概念三.向量的运算(一)定义与计算公式(二)运算法则(三)几何应用四.平面方程、直线方程五.平面、直线之间的相互关系与距离公式(一)两个平面之间的关系(二)两条直线间的关系(三)直线与平面的关系(四)平面束方程(五)关于距离的计算公式六.旋转面与柱面方程,常用二次曲面的方程及其图形(一)球面(二)旋转曲面(三)柱面(四)二次曲面七.空间曲线在坐标平面上的投影常考题型与其解题方法与技巧题型一向量的运算题型二求平面方程题型三求空间的直线方程题型四求点、直线、平面间的关系题型五求投影方程题型六求曲面方程第八章多元函数微分学一.多元函数的概念、极限与连续性二.多元函数的偏导数与全微分(一)偏导数概念(二)可微性,全微分及其几何意义(三)偏导数的连续性,函数的可微性,可偏导性与函数连续性之间的关系(四)高阶偏导数,混合偏导数与求导次序无关问题三.多元函数的微分法则(一)全微分四则运算法则(二)多元复合函数的微分法则(三)复合函数的二阶偏导数四.复合函数求导法的应用——隐函数微分法五.复合函数求导法则的其他应用六.多元函数极值充分判别法(一)多元函数极值及住店的定义(二)多元函数去得极值的充分与必要条件七.多元函数的最大值与最小值(一)极值问题的提法(二)求二元函数或三元函数的简单极值问题(三)求二元函数或三元函数的条件极值问题八.方向导数与梯度九.多元函数微分学的集合应用(一)空间曲面的切平面与法线(二)空间曲面的切线与法平面1.参数方程表示的空间曲线2.作为两曲面交线的空间曲线常考题型与其解题方法与技巧题型一有关多元函数偏导数与全微分概念的问题题型二求二元、三元各类函数的偏导数与全微分题型三变量替换下方程式的变形题型四多元函数的最值问题题型五求二元、三元函数的梯度与方向导数题型六多元函数微分学的几何应用题型七有关多元函数的综合题第九章多元函数积分的概念、计算及其应用一.多元函数积分的概念与性质二.在直角坐标系中化多元函数的积分为定积分三.重积分的变量替换四.如何应用多元函数积分的计算公式及简化运算五.多元函数积分学的几何应用六.多元函数积分学的物理应用第十章多元函数积分学中的基本公式及其应用一.多元函数积分学中的基本公式——格林公式、高斯公式、斯托克斯公式二.向量场的通量与散度,环流量与旋度三.格林公式,高斯公式与斯托克斯公式的一个应用——简化多元函数的积分计算四.平面上曲线积分与路径无关问题及微分式的原函数问题第十一章无穷级数一.常数项级数的概念与基本性质二.正项级数敛散性的判定三.交错级数的敛散性判别法四.绝对收敛与条件收敛五.函数项级数的收敛域与和函数六.幂级数的收敛域七.幂级数的运算与和函数的性质八.幂级数的求和与函数的幂级数展开九.傅里叶级数第二篇线性代数第一章行列式一.行列式的概念、展开公式及其性质(一)行列式的概念(二)行列式按行(列)展开公式1.上下三角行列式2.副对角线3.拉普拉斯展开式(三)行列式的性质1.经转置值不变2.公因数提出3.拆和4.对换某两行5.把某行的k倍加到另一行,值不变(四)关于代数余子式的求和1.只改变所在行或列中的值不影响其代数余子式2.一行元素与另一行元素的代数余子式乘积之和为零八.有关行列式的几个重要公式九.关于克莱姆法则常考题型与其解题方法与技巧题型一有关行列式概念与性质的问题题型二数字型行列式的计算1.三角化2.递推法3.公式法4.归纳法题型三抽象行列式的计算题型四含参数的行列式的计算题型五关于|A|=0的证明题型六克莱姆法则二.矩阵及其运算一.矩阵的概念及几类特殊方阵(一)矩阵的概念1.矩阵2.零矩阵3.同型矩阵4.矩阵相等5.方阵的行列式(二)几类特殊方阵1.对称矩阵2.反对称矩阵3.对角矩阵4.逆矩阵5.正交矩阵6.伴随矩阵二.矩阵的运算(一)矩阵的线性运算(二)关于逆矩阵的运算规律(三)关于矩阵转置的运算规律(四)关于伴随矩阵的运算规律(五)关于分块矩阵的运算规律三.矩阵可逆的充分必要条件四.矩阵的初等变换与初等矩阵(一)矩阵的初等变换(二)初等矩阵的概念(三)初等矩阵的性质五.矩阵的等价(一)矩阵等价的概念(二)矩阵等价的充分必要条件常考题型与其解题方法与技巧题型一有关矩阵的概念及运算题型二求方阵的幂题型三求与已知矩阵可交换的矩阵题型四有关初等矩阵变换的问题题型五关于伴随矩阵的命题题型六矩阵可逆的计算与证明题型七求解矩阵方程三.n维向量与向量空间一.n维向量的概念与运算二.线性组合与线性表出1.线性组合2.线性表出3.向量组等价三.线性相关与线性无关(一)线性相关与线性无关的概念(二)线性相关与线性无关的充分必要条件四.线性相关性与线性表出的关系五.向量组的秩与矩阵的秩(一)向量组的秩与矩阵的秩的概念1.极大线性无关组2.向量组的秩3.矩阵的秩(二)向量组的秩与矩阵的秩的关系六.矩阵秩的重要公式七.向量空间、子空间与基、维数、坐标(一)向量空间与子空间(二)基、维数、坐标八.基变换与坐标变换1.基变换公式及过渡过程2.坐标变换公式九.规范正交基与施密特正交化1.正交基及规范正交基2.Schmidt正交化常考题型与其解题方法与技巧题型一线性组合线性相关的判别题型二线性相关与线性无关的证明题型三求秩与极大线性无关组题型四有关秩的证明题型五关于AB=0题型六关于A=0的证明题型七有关向量空间的判定题型八向量坐标、过度矩阵及坐标变换题型九规范正交基题型十有关秩与直线平面的综合题四.线性方程组一.线性方程组的各种表达形式及相关概念二.基础解系的概念及其求法三.其次方程组有非零解的判定四.非齐次方程组有解的判定五.非齐次线性方程组解的结构六.线性方程组解的性质常考题型与其解题方法与技巧题型一线性方程组解的基本概念题型二线性方程组的求解题型三含有参数的方程组解的讨论题型四关于线性方程组公共解、同解的问题题型五有关基础解系的证明题型六关于线性方程组的证明题五.矩阵的特征值与特征向量一.矩阵的特征值与特征向量的概念、性质及求法二.相似矩阵的概念与性质三.矩阵可相似对角化的充分必要条件及解题步骤常考题型与其解题方法与技巧题型一求矩阵的特征值和特征向量题型二 n阶矩阵A能否对角化的判定题型三求相似时的可逆矩阵题型四求矩阵A中的参数题型五用特征值和特征向量反求矩阵A题型六相似对角化的应用——A^n题型七有关实对称矩阵的问题题型八有关特征值与特征向量的证明六.二次型一.二次型的概念及其标准型(一)二次型及其矩阵表示(二)二次型的标准型(三)惯性定理二.正定二次型与正定矩阵1.正定二次型与正定矩阵的概念2.二次型正定的充分必要条件三.合同矩阵1.合同矩阵的概念2.两矩阵的充分必要条件3.两矩阵合同的充分条件常考题型与其解题方法与技巧题型一有关二次型基本概念的问题题型二化二次型为标准型题型三判别或证明二次型的正定性题型四有关正定矩阵的综合题题型五合同矩阵第三篇概率论与数理统计第一章随机事件和概率一.随机事件的关系与运算(一)样本空间与随机事件的概念(二)事件间的关系与运算——有表(三)文氏图(四)事件运算法则与常用结论二.随机事件的概率(一)古典定义1.不重复排列公式2.可重复排列公式3.组合公式4.组合性质5.加法原理6.乘法原理(二)几何定义(三)统计定义(四)公理化定义(五)概率论公理的重要结论(六)条件概率(七)乘法公式(八)随机事件的概率的计算方法1.直接计算2.频率估计概率3.概率的推算4.利用概率分布三.全概率公式与贝叶斯公式(一)全概率攻势(二)贝叶斯公式四.事件的独立性与伯努利公式(一)事件的独立性(二)伯努利公式(三)常用结论常考题型与其解题方法与技巧题型一随机事件间的关系与运算题型二利用古典概型、几何概型计算概率题型三利用概率性质、条件概率计算概率题型四利用全概率公式与贝叶斯公式计算概率题型五事件独立性讨论与独立性重复试验的概念及其计算有关事件的概率第二章随机变量及其分布一.随机变量与分布函数(一)随机变量(二)随机变量的分布函数1.分布函数的概念2.分布函数的性质二.离散型随机变量与连续型随机变量(一)离散型随机变量及其概率分布1.离散型随机变量的概念2.离散型随机变量的概率函数性质(二)连续型随机变量及其概率密度1.连续型随机变量的概念2.连续型随机变量的密度函数性质三.几个常见分布(一)0-1分布(二)二项分布(三)几何分布——首次成功(四)超几何分布(五)泊松分布(六)均匀分布(七)指数分布(八)正态分布四.随机变量函数的分布的求法(一)离散型函数的分布的求法(二)连续型函数的分布的求法1.分布函数法2.公式法常考题型及其解题方法与技巧题型一确定随机变量概率分布中的未知参数题型二随机变量的概率分布题型三求随机变量函数的分布题型四综合应用题第三章多维随机变量及其分布一.多维随机变量的联合分布函数与边缘分布函数(一)多晚随机变量及其分布的概念(二)二维随机变量的联合分布函数的概念及其性质(三)二维随机变量的边缘分布函数的概念二.二维离散型随机变量(一)二维离散型随机变量的联合概率分布的概念及其性质(二)二维离散型随机变量的边缘分布(三)二维离散型随机变量的条件分布(四)离散型随机变量的条件分布函数三.二维连续型随机变量(一)二维连续型随机变量联合概率密度的概念及其性质(二)二维连续型随机变量的边缘密度(三)连续型随机变量的条件概率密度(条件密度函数)密度乘法公式(四)连续型随机变量的条件分布函数四.两个常见的二维连续型随机变量的分布(一)均匀分布的概念及性质(二)二维正态分布的概念及性质五.二维随机变量的独立性(一)独立性的概念(二)相互独立的充分必要条件1.离散型随机变量2.连续型随机变量六.二维随机变量函数的分布的求法1.离散型随机变量——列举法2.连续型随机变量——先求出分布海曙,再求出概率密度3.两个相互独立的随机变量之和——卷积公式(积分区间注意)常考题型及其解题方法与技巧题型一有关概率分布的计算题型二有关分布函数及其密度函数的命题题型三求两个随机变量函数的分布第四章随机变量的数字特征一.一维随机变量的数字特征(一)数学期望1.离散型2.连续型3.随机变量函数的数学期望4.常用结论(二)方差1.方差及标准差的概念2.关于随机变量方差的常用结论(三)随机变量的矩二.二维随机变量的数字特征(一)协方差概念及性质(二)相关系数1.概念2.性质3.对于随机变量X与Y,下面四个结论是等价的——不相关4.独立性与相关性(三)矩(四)两个随机变量函数的数学期望常考题型及其解题方法与技巧题型一随机变量的期望与方差题型二两个随机变量及其函数的数字特征题型三综合应用题第五章大数定律和中心极限定理一.大数定律(一)切比雪夫不等式(二)切比雪夫大数定律(三)伯努利大数定律(四)辛钦大数定律二.中心极限定理(一)独立同分布的中心极限定理——列维·林德伯格(二)二项分布以正态分布为极限分布——棣莫弗·拉普拉斯常考题型及其解题方法与技巧题型一有关切比雪夫不等式与大数定律的命题题型二有关中心极限定理的应用第六章数理统计的基本概念一.总体、样本、样本的数字特征(一)总体、样本、抽样的概念(二)样本的概率分布1.离散型2.连续型(三)常用样本的数字特征1.样本均值2.样本方差3.样本原点矩4.样本中心矩二.统计量及抽样分布(一)统计量(二)统计推断中常用的三个分布——分布、t分布、F分布1.分布2.t分布3.F分布(三)正态总体的抽样分布1.单个正态总体(1)样本均值的抽样分布(2)样本方差的抽样分布2.两个正态总体(1)样本均值差的抽样分布(2)样本方差比的抽样分布第七章参数估计和假设检验一.参数估计(一)参数的点估计1.估计量的概念及评价标准(1)无偏性(2)有效性(最小方差性)(3)一致性(相合性)2.求估计量的两种常用方法(1)最大似然估计法(2)矩估计法(二)参数的区间估计。

数学史和方法论 自学考试提纲

数学史和方法论 自学考试提纲

第一章数学的萌芽 1古埃及的数学 公元前2900年以后,埃及人建造了许多金字塔,作为法老的坟墓。

从金字塔的结构,可知当时埃及人已懂得不少天文和几何的知识。

例如基底直角的误差与底面正方形两边同正北的偏差都非常小。

现今对古埃及数学的认识,主要根据两卷用僧侣文写成的纸草书;一卷藏在伦敦,叫做兰德纸草书,一卷藏在莫斯科。

2埃及最古老的文字是象形文字,后来演变成一种较简单的书写体,通常叫僧侣文。

除了这两卷纸草书外,还有一些写在羊皮上或用象形文字刻在石碑上和木头上的史料,藏于世界各地。

两卷纸草书的年代在公元前1850~前1650年之间,相当于中国的夏代。

3古埃及的计数制 埃及很早就用十进记数法,古埃及人的计数系统是叠加制,但却不知道位值制,每一个较高的单位是用特殊的符号来表示的。

例如111,象形文字写成三个不同的字符,而不是将 1重复三次。

埃及算术主要是加法,而乘法是加法的重复。

他们能解决一些一元一次方程的问题,并有等差、等比数列的初步知识。

占特别重要地位的是分数算法,即把所有分数都化成单位分数(即分子是1的分数)的和。

兰德纸草书用很大的篇幅来记载2/N(N 从5到101)型的分数分解成单位分数的结果。

为什么要这样分解以及用什么方法去分解,到现在还是一个谜。

这种繁杂的分数算法实际上阻碍了算术的进一步发展。

纸草书还给出圆面积的计算方法:将直径减去它的1/9之后再平方。

计算的结果相当于用 3.1605作为圆周率,不过他们并没有圆周率这个概念。

根据莫斯科纸草书,推测他们也许知道正四棱台体积的计算方法。

总之,古代埃及人积累了一定的实践经验,但还没有上升为系统的理论。

4埃及几何的突出成就:古埃及人在建筑规模宏大的教堂、金字塔等都需要测量,尼罗河水泛滥后冲刷了许多边界标记,为他们认识基本几何形状和形成几何概念提供了实际背景。

因此古埃及人的几何学知识较为丰富,在两种纸草书中,有26个十几何问题,许多与金字塔有关,如:在莫斯科纸草书中有:一个截顶金,字塔的垂直高度为6,底边为4,顶边为2求体积。

(完整word版)数学史复习资料

(完整word版)数学史复习资料

《数学史》复习资料1、名词解释:2、可公度量:对于任何两条给定的线段, 总能找到某第三线段, 以它为单位线段能将给定的两条线段划分为整数段。

这样的两条线段为“可公度量”, 即有可公度量的度量单位。

这是古希腊毕达哥拉斯学派对世界任何量都能表示成两个整数比信念的反应。

3、出入相补原理: 一个几何图形(平面或立方体的)被分割成若干部分后, 面积或体积总保持不变。

4、费马大定理: 关于X、Y、Z的不定方程Xn+Yn =Zn , 对于任意大于2的自然数n无非零整数解。

大数定律: 概率论历史上第一个极限定理属于伯努利, 后人称之为“大数定律”。

概率论中讨论随机变量序列的算术平均值向常数收敛的定律。

P128 帕斯卡曾提出的n为正数时的二项式定理, 得到所谓伯努利定理: 若p是某一事件单独出现一次的概率, q是不出现该事件的概论, 则在n次试验中, 该事件至少出现m次的概率等于二项式(p+q)n 的展式中的从pn 项到pm qn-m 项的各项之和。

容易看出, 这实际上就是概率论中最重要的定律之一——“大数定律”的最早表现形式。

倍立方体:就是已知一立方体, 求作另一立方体, 使它的体积等于已知立方体的两倍。

也即求作一立方体的边, 使该立方体的体积为给定立方体的两倍。

祖氏原理:P65“幂势既同, 则积不容异”, 即夹在两个平行平面间的两个几何体, 被平行于这两个平面的任意平面所截, 若所得截面总相等, 则此二几何体积相等。

它被称为“祖暅原理”。

1.简述古希腊数学的特点。

答案二: (1)追求理性和唯理的论证数学特点;(2)欧氏几何开创了公理化理论体系;(3)欧式几何形成了演绎思维的特征;总之, 希腊数学是追求理性, 主要以演绎几何为特征的数学。

2.简述欧几里得《原本》中所确立的公理化思想。

答:公理化思想是古希腊时期在欧氏几何中确立数学演绎范式。

这种范式要求一门学科中的每个命题必须是在它之前已建立的一些命题的逻辑结论, 而所有这样的推理链的共同出发点, 就是一些基本定义和被认为不证自明的基本原理——公理或公设。

《数学史》考试大纲

《数学史》考试大纲青海师大民族师范学院数学系指定教材:《数学史教程》,李文林,高等教育出版社,2000年8月第1版。

一、课程性质和学习目的课程性质:选修课程。

学习目的:1、正确认识数学发展规律和中国传统数学特点,吸取营养,古为今用,洋为中用;2、正确探究数学家的成才之路,以人为镜、以史为鉴、以史为镜,指导发展开发智力,培养英才;3、正确分析数学科学内容及其蕴含的矛盾,研究数学发展的内在动因,以培养唯物辩证数学史观。

二、课程内容及考核要求总体要求:1、理解与熟悉与中学教学大纲范围内的代数、几何、三角、解析几何、微积分等有关的数学发展历史;2、了解射影几何、几何基础、数学分析和20世纪现代数学思想创立和发展和重要史料;3、熟悉上述内容中主要中外数学家的生平和他们对数学的贡献,以及著名的一些文献;4、了解中国古代数学在数学科学发展中的一些重大贡献。

课程内容:第一章数学史――人类文明史的重要篇章1、数学史的意义2、什么是数学3、数学史的分期第二章数学的起源与早期发展1、古埃及的数学2、美索不达米亚的数学第三章古代希腊数学1、希腊数学与哲学的关系2、毕达哥拉斯;毕达哥拉斯定理;可公度量;第一次数学危机3、古希腊三大著名几何问题4、欧几里得与几何原本5、阿基米德的数学成就6、阿波罗尼奥斯与圆锥曲线论经7、托勒玫的《天文学大成》8、丢番图的《算术》9、帕波斯与《数学汇编》第四章中世纪的中国数学1、《周髀算经》与勾股定理2、《九章算术》3、刘徽的数学成就4、祖冲之与祖5、《算经十书》6、贾宪三角与增乘开方法7、秦九韶与《数书九章》第五章印度与阿拉伯的数学1、印度数学与宗教的关系2、阿耶波多的数学成就;婆罗摩笈多的数学成就,马哈维拉的数学成就;婆什迦罗的数学成就3、阿拉伯的代数学4、阿拉伯的三角学与几何学第六章近代数学的兴起1、斐波那契与《算经》2、代数学;三次方程的代数解法;韦达的数学成就3、三角学4、从透视学到射影几何5、计算技术与对数6、解析几何的诞生第七章微积分的创立1、半个世纪的酝酿2、牛顿的流数术3、莱布尼茨的微积分第八章分析时代1、微积分的发展2、微积分的应用与新分支的形成3、十八世纪的几何与代数第九章几何学的变革1、欧几里得的第五公设2、非欧几何的诞生3、非欧几何的发展与确认4、希尔伯特的《几何基础》与公理化方法第十章分析的严格化1、柯西与分析基础2、魏尔斯特拉斯关于分析严格化不断贡献3、实数理论4、集合论的诞生第十一至十四章1、希尔伯特的23个数学问题2、对数学基础的深入探讨3、独立的数学应用学科:数理统计、运筹学、控制论4、计算机与现代数学5、哥哥德尔不完全性定理6、四色问题7、分形与混沌8、费马大定理的证明9数学与社会。

高等数学自学提纲

高等数学自学提纲(第一学期)一• 函数的连续性1.什么叫函数的增量(改变量)?用几何图形表示函数增量为正、为负、为零的不同情况。

2.阐述函数y = f(x)在点X连续的三种定义,为什么说这三种定义实质是一样的?3.函数y = f(x)在点X连续的几何意义是什么?4.用“ e - d ”语言叙述函数 y = f(x)在点X左连续和右连续的定义,并说明y=f(x)在(a,b) 和[a ,b]上连续的含义。

5.试说明函数y = f(x)在点X连续与函数当x趋近X时极限存在,这两个概念之间的联系与区别。

6.应用函数连续的定义,讨论下列函数在给定点是否连续。

A• 讨论 f(x) = 在x = 1是否连续?B• 若 f(x)在X点连续,g(u)在u点连续,u0= f(X) , 证明复合函数g[f(x)]在X点连续。

C• f(x)在X点是连续的, | f(x) | 和在X点是否连续?为什么?7.试阐述函数y=f(x)在X0点连续,X (a ,b);以及y = f(x)在(a ,b)上连续、在(a,b)上一致连续的区别。

8.函数间断点的定义,间断点分类的标准是什么?9.分析函数y = [x] 连续与间断的情况。

10.找出下列函数的间断点,并指出间断点的类型。

(1)y = (2)y =二• 一元函数的微分1.微分的定义是什么?若y = f(x) 是可微函数,那么当Δx=0时Δy – dy与Δx是什么关系?2.分别用语言和图形来说明微分的几何意义。

3.说明函数y = f(x) 在X点可微与可导的关系。

4.为什么说自变量的微分就等于自变量的增量?6.函数的增量可表为Δy = dy + 0(Δx),即函数y = f(x)的微分dy是Δy的主要部分,故dy必小于Δy,这个结论是否正确?为什么?6.说明的区别。

7.什么叫一阶微分形式的不变性?高阶微分是否也具有微分形式不变性?举例说明。

8.函数y = f(x)的导数和微分dx是否都与x和Δx有关?为什么?9.求下列微分:(1)y = ln(cos ) (2)y = f(arctg )10.利用微分求函数近似值的公式和步骤是什么?并计算11.在下面三种情况下,函数y = f(x)的微分有什么特点?( 1)给定点X与Δx的具体数值。

高等数学(一)自学考试大纲(史上最全的复习资料)

《高等数学(一)》考试大纲第一章函数及其图形(一)考核的知识点1.一元函数的定义及其图形2.函数的表示法(包括分段函数)3.函数的几个基本特性4.反函数及其图形5.复合函数6.初等函数7.简单函数关系的建立(二)自学要求函数是数学中最基本的概念之一,它从数学上反映各种实际现象中量与量之间的依赖关系,是微积分的主要研究对象。

本章总的要求是:理解一元函数的定义及函数与图形之间的关系;了解函数的几种常用表示方法;理解函数的几种基本特性;理解函数的反函数及它们的图形之间的关系;掌握函数的复合和分解;熟练掌握基本初等函数及其图形的性态;知道什么是初等函数;知道几种常用的经济函数;能根据比较简单的实际问题建立其中蕴含的函数关系。

本章重点:函数概念和基本初等函数难点:函数的复合(三)考核要求1.一元函数的定义及其图形,要求达到“领会”层次。

1.1 清楚一元函数的定义,理解确定函数的两个基本要素――定义域和对应法则(映射),知道什么是函数的值域。

1.2 清楚函数与其图形之间的关系1.3 对给定的解析式,会求出由它所确定的函数的自然定义域。

2.函数的表示法,要求达到“识记”层次。

2.1 知道函数的三种表示法――解析法,表格法,图像法,并知道它们各自的特点。

2.2 清楚分段函数的概念3.函数的几个基本特性,要求达到“简单应用”层次。

3.1 函数的有界性、单调性、奇偶性、周期性的含义,并会判定比较简单的函数是否具有这些特性。

4.反函数及其图形,要求达到“领会”层次。

4.1 知道函数的反函数的概念,清楚单调函数必有反函数4.2 会求比较简单的定义域、值域和图形与其反函数的定义域、值域和图形之间的关系5.复合函数,要求达到“简单应用”层次。

5.1 清楚函数的复合运算的含义,会求比较简单的复合函数的定义域。

5.2 会做多个函数按一定顺序的复合,并会把一个函数分解成简单函数的复合6.初等函数,要求达到“简单应用”层次。

6.1 知道什么是基本初等函数,熟悉其定义域、基本特性和图形(不含余切、正割、余割及其反函数的图形)。

大学《数学教学论》课程复习提纲

《数学教学论》的课程内容数学是研究现实世界数量关系和空间形式的一门科学概念间的关系有:同一关系、属种关系、全异关系、交叉关系1.绪论——为什么要学习数学教学论1.1 数学教学论的发展史1.数学教育成为一个专业的历史(数学教育逐渐存在未一个需要具备一定特殊技能的专业)2.数学教育成为一门科学学科的历史(数学教育需要警醒科学的研究,取得上课的认识)1.2 数学教学论研究的内容、方法和学科特点数学教学论是研究数学教育系统中的数学教育现象、揭示数学教育规律的一门科学主要研究方法:访谈法、问卷调查法、轮组实验法、课堂观察法数学教学论特点:边缘性学科,处于数学、教育学、逻辑学和心理学等学科的“交界”处;实践性很强的理论学科,是人们把教学过程、学习过程作为认识过程来深刻分析的成果;发展中的理论学科,随着社会的发展而不断改进完善。

1.3 学习数学教学论的意义和方法(1)科学的数学教学过程是数学教育学的基本原理的具体表现(2)数学教育学对教师专业人员具有特殊的意义(3)数学教育学现实意义(4)多观察、多思考、多比较、多交流、多实践是学习数学教育学的基本方法思考题:1、数学教师的职业性P1;数学教师是一种职业,是一种需要特殊碰欧阳的专业人士2、有两门学科对数学教育研究有过根本性影响,它们是:P3;数学、心理学3、数学教育中的主要研究方法有:P7-12访谈法(通过访谈了解学生的想法)、课堂观察法(观察一堂师生为主的问答课)、轮组实验法(通过教学实验检验理论)、问卷调查法(对教师课堂教学使用语言的调查研究)2.中学数学的教学工作2.1 数学课的备课2.1.1 备课要领备教材、备学生、备思想、备习题2.1.2 教案的基本要素及编写方法基本要素:①课题名称;②教学目的;③教学重点,教学难点;④教具准备;⑤教学过程.编写方法:详案:公开课教案: 课题名称课题名称教学时间、教学地点、教学班级及执教人教学目标教学目标教学重点、难点和关键点教学重点、难点和关键点教学重点、难点和关键点教学重点、难点和关键点教具教具教学过程教学过程板书设计板书设计教学后记教学后记2.2 课堂教学工作:☐上课是整个教学工作的中心环节——向课堂四十五分钟要质量、求效益☐正确处理好几个关系:要注意处理好主导和主体之间的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章数学的萌芽 1古埃及的数学 公元前2900年以后,埃及人建造了许多金字塔,作为法老的坟墓。

从金字塔的结构,可知当时埃及人已懂得不少天文和几何的知识。

例如基底直角的误差与底面正方形两边同正北的偏差都非常小。

现今对古埃及数学的认识,主要根据两卷用僧侣文写成的纸草书;一卷藏在伦敦,叫做兰德纸草书,一卷藏在莫斯科。

2埃及最古老的文字是象形文字,后来演变成一种较简单的书写体,通常叫僧侣文。

除了这两卷纸草书外,还有一些写在羊皮上或用象形文字刻在石碑上和木头上的史料,藏于世界各地。

两卷纸草书的年代在公元前1850~前1650年之间,相当于中国的夏代。

3古埃及的计数制 埃及很早就用十进记数法,古埃及人的计数系统是叠加制,但却不知道位值制,每一个较高的单位是用特殊的符号来表示的。

例如111,象形文字写成三个不同的字符,而不是将 1重复三次。

埃及算术主要是加法,而乘法是加法的重复。

他们能解决一些一元一次方程的问题,并有等差、等比数列的初步知识。

占特别重要地位的是分数算法,即把所有分数都化成单位分数(即分子是1的分数)的和。

兰德纸草书用很大的篇幅来记载2/N(N 从5到101)型的分数分解成单位分数的结果。

为什么要这样分解以及用什么方法去分解,到现在还是一个谜。

这种繁杂的分数算法实际上阻碍了算术的进一步发展。

纸草书还给出圆面积的计算方法:将直径减去它的1/9之后再平方。

计算的结果相当于用 3.1605作为圆周率,不过他们并没有圆周率这个概念。

根据莫斯科纸草书,推测他们也许知道正四棱台体积的计算方法。

总之,古代埃及人积累了一定的实践经验,但还没有上升为系统的理论。

4埃及几何的突出成就:古埃及人在建筑规模宏大的教堂、金字塔等都需要测量,尼罗河水泛滥后冲刷了许多边界标记,为他们认识基本几何形状和形成几何概念提供了实际背景。

因此古埃及人的几何学知识较为丰富,在两种纸草书中,有26个十几何问题,许多与金字塔有关,如:在莫斯科纸草书中有:一个截顶金,字塔的垂直高度为6,底边为4,顶边为2求体积。

他们的算法是:4的平方是16,4的二倍,8,2的平方是4,把16、8、4相加为28.取6的三分之一为2,取28的2倍为56,则是体积数。

由此可以看出,古埃及人是通过具体问题说明了高位h 底边长为ab 的正四棱台得体积公式是V=1/3(a2+ab+b2)h ,著名数学家贝尔形象地将这一古埃及数学杰作成为“最伟大的埃及金字塔” 5古巴比伦的计数制:古巴比伦的计数系统是60进制,也使用分数,总用60作为分母,但他们的分数系统是不成熟的。

古巴比伦的算术运算也是借助各种各样的表来进行的。

6试比较古埃及和巴比伦的解方程的方法,及对后来发展的启迪意义。

1古埃及解决方程问题的方法是试位法:如对于方程x+x/7=24,先给x 选一个定值,如7+7/7=8,而不是24,因为8需乘3才是24,故x 的值是21,“但试位法”对于一元一次方程,可以得到精确的解,而对于二次以上的方程一般情况下只能给出近似解。

2古巴比伦的如在英国大不列颠博物馆13901好泥板记载问题:我把我的正方形的面积加上正方形边长的三分之二的35/60,求该正方形的边长。

给出的解法是:1的三分之二是40/60.其一半是20/60,将它自乘得6/60+40/602 并把它加到35/60上得41/60+40/602 其平方根是50/60.再从中减去40/60的一半的30/60于是1/2是所求正方形的边长,这一解法相当于将方程x2+px=q 的系数代入公式 求解,只不过计算时用的60进制。

他们可能知道某些类型的一元二次方程的求根公式,但没有负数的概念。

如何得到这些解法的,没有说明。

在一块泥板上给出了数表。

专家研究:这个数表解决形如x3+x2=b 的三次方程的。

7普林顿322号泥板书的数学意义。

该泥板一损害了一部分,在残留的部分上刻有三列数,专家认为:这是一张勾股数(即x 2+y 2=z 2 的整数解)表,并且及可能用到了下列参数式:x=2uv,y=u 2-v 2,z=u 2+v 2. 而这正是在一千多年以后古希腊数学中一个极为重要的成就。

第二章 希腊的数学 1、希腊数学学派与演绎数学的产生; (1)爱奥尼亚学派和演绎证明:以演绎证明为基本特征的数学,最早诞生于古希腊爱奥尼亚地区的海滨城市米利都,享有“希腊科学之父”盛誉的泰勒斯在这里创立了古希腊历史上的第一个数学学派—爱奥尼亚学派。

其中定理“内接于半圆的角必为直角”被称为“泰勒斯定理”重要的是他对定理提供了某种逻辑推理。

如:两条直线相交,对顶角相等,证明:角a 加角c 等于平角,角b 加角c 也等于平角,因为平角是相等,所以叫a 等于角c(等量减等量。

余量相等)说明,从泰勒斯开始已经将逻辑学中的演绎推理引入了数学,奠定了演绎数学的基础。

获得了第一位数学家和论证几何学家鼻祖的美誉又被西方称为“测量学的鼻祖” (2)毕达哥拉斯学派与“万物皆数” 他组织一个集政治、宗教和学术研究于一体的秘密社会,就是著名的毕达哥拉斯学派。

致力于哲学和数学的研究。

尽管人们将许多几何学的成就归功于毕达哥拉斯学派。

但这个学派信条“万物皆数”认为:数是由单子或1产生的因此将1命名为“原因数”,每一个数都被赋予了特定的属性,而一切数中最圣神的是10,认为它是完美和谐的标志。

这种万物皆数的观念从另一个侧面强调了数学对客观世界的重要作用,数学化思想的最初表述形式。

这思想促进了对自然数分类研究,定义了许多概念,如“完美数”三角形数、正方形数。

还认为“美是和谐与比例”。

由于不可公度量大发现。

信条收到了冲击,在数学史上成为“一次数学危机”使他从对数的研究转向对形的探讨,最终导致了几何学的迅速发展。

但在客观上使得希腊数学在代数方面的发展与其几何学的成就是很不相称的。

(3)芝诺悖论与巧辩学派 三个悖论及意义:芝诺关于运动的三个悖论是:二分说;阿基里斯追龟说;飞箭静止说。

芝诺的这些悖论在当时是十分困难的,因为他的问题涉及到对于当时的希腊数学家而言还很模糊的无限与连续的概念。

更重要的是:人们明知他的悖论是不符合常理的,却又不能驳倒他,这就使人们开始思考一个理论能否自圆其说的问题。

毫无疑问,这也成为公理化思想方法产生的一个重要原因。

巧辩学派的三大几何难题:只允许用尺规作一正方形使其面积与给定的圆的面积相等;给定立方体的一边,求作另一立方体之边,使后者的体积两倍于前者体积;三等分任一已知角。

直到1831年数学家万采尔首先证明倍立方问题和三等分任意角问题不能用尺规作图解决。

德国数学家林德曼于1882年,证明了π的超越性,否定了用尺规画圆为方的可能性。

巧辩学派及其他希腊学者,把作图工具只限于直尺和圆规,反映了他们对数学的怎样认识:即他们强调在研究一个概念 必须证明它的存在,只有从真理出发,依靠演绎推理才能获得真理,在他们看来,直线和圆客观存在的,所以只有用直线和圆构作出来的图形才能保证在逻辑上没有矛盾。

这样的思想促进了希腊数学的严密化。

(4)柏拉图学派:宇宙设计说他们强调用数学解释宇宙,特别重视对立体几何的研究。

提出了数学的演绎证明因遵循的逻辑规则。

他们研究了棱柱、棱锥、圆锥,而且知道正多面体只有五种,该学派把德漠克利特的原子论和毕达哥拉斯的数学成就等结合起来,提出了几何学的原子说,他们设想物质世界的本质不是土气水火,而是两种直角三角形,即正方形之半去。

因此神就用它们构成4体的界面:火微粒是正四面体,土微粒是立方体,气微粒是正八面体,水微粒是正十二面体。

最初一切是混乱的,后来它们才被安排好,从而形成宇宙。

其中最杰出的数学家论。

它的学生梅奈赫莫斯是圆锥曲线理论的创始人。

;亚里斯多德对数学最大贡献是建立了形式逻辑学。

2希腊数学的黄金时代 亚历三大时期的三大数学巨人:阿基米德、欧几里得、阿波罗里斯。

(1)欧几里得的《几何原本》:五条公设: ⑴从任一点到任一点作直线(是可能的)。

⑵将有限直线不断沿直线延长(是可能的)。

⑶以任一点为中心与任一距离为半径作一圆(是可能的)。

⑷所有直角是相等的 ⑸若一直线与两条直线相交,且同侧所交两内角之和小于两直角,则两直线无限延长后必相交于该侧的一点。

五个公理: ⑴与同一东西相等的一些东西彼此相等。

⑵等量加等量,其和相等。

⑶等量减等量,其差相等。

⑷彼此重合的东西是相等的。

⑸整体大于部分。

(2)阿基米德的数学著作流传至今的,按时间顺序,依次为:《抛物线的求积》,《论球和圆柱》、《论劈锥曲面体和球体》、《圆之度量》、《沙粒计》,这些论著无一不是数学创造的杰出之作,正如英国数学史家希思所指出的,这些论著“无一例外地都被看作是数学论文的纪念碑。

解题步骤的循循善诱,命题次序的巧妙安排,严格摈弃叙述的枝节及对整体的修饰润色,总之,给人的完美印象是如此之深,使读者油然而生敬畏的感情。

” 阿基米德在平面几何方面的主要贡献:①开创计算π值的古典方法,利用内接和外切正多边形逼近,求得3(10/71)<π<3(1/7)。

②证明圆面积等于以圆周长为底、半径为高的三角形的面积。

③证明任何直线截抛物线所得弓形面积等于同底等高的三角形面积的4/3。

④定义了螺线ρ=a Φ,并证明螺线第一圈与初始线所围成的面积等于半径为2πa 的圆面积的1/3。

⑤椭圆与圆的面积之比等于椭圆长短轴之积与圆半径平方之比。

阿基米德在立体几何方面的主要贡献:①球表面积等于大圆面积的4倍。

②圆的外切圆柱体的体积是球体积的3/2,其表面积也是球表面积的3/2。

③任一正圆柱侧面积等于以圆柱高与底面直径的比例中项为半径的圆面积。

④任一圆锥的表面积等于以圆锥母线与底面半径的比例中项为半径的圆面积。

⑤球冠侧面积等于以其大圆弧所对弦长为半径的圆面积。

⑥椭圆、抛物线和双曲线绕轴旋转而生成的旋转体体积公式。

此外,阿基米德还研究了等比级数求和公式、大数的记数法等等阿基米德的数学成就:阿基米德确定了抛物线弓形、螺线、圆形的面积以及椭球体、抛物面体等各种复杂几何体的表面积和体积的计算方法。

在推演这些公式的过程中,他创立了“穷竭法”,即我们今天所说的逐步近似求极限的方法,因而被公认为微积分计算的鼻祖。

他用圆内接多边形与外切多边形边数增多、面积逐渐接近的方法,比较精确的求出了圆周率。

面对古希腊繁冗的数字表示方式,阿基米德还首创了记大数的方法,突破了当时用希腊字母计数不能超过一万的局限,并用它解决了许多数学难题 (3)阿波罗尼斯与《圆锥曲线》首创了通过改变截面的角度,从一对对顶圆锥得到三种圆锥曲线的方法,并依据曲线的做法推导出它们的特征关系式,进而导出了圆锥曲线的弦、直径、切线等定义和性质,甚至还得到类似于在坐标变换下曲线性质的不变性的结论,需要指出的是,他的方程是几何语言叙述的。

相关文档
最新文档