立体几何高档题解析

合集下载

2023届高考数学总复习《立体几何》附答案解析

2023届高考数学总复习《立体几何》附答案解析

(2)若点 N 为 BC 的中点,求四面体 A'MNB 的体积.
【解答】证明:(1)连接 BD,设 BD∩EC=F,连接 MF,
由题意可得四边形 BCDE 为正方形,则 F 为 BD 的中点,
∴MF 为△A′BD 的中位线,可得 MF∥A′B,
又 A′B⊄平面 EMC,MF⊂平面 EMC,
∴A'B∥平面 EMC;
2023 年高考:立体几何复习题及答案
1.如图,已知直角梯形 ABCD,BC∥AD,BC=CD=2,AD=4,∠BCD=90°,点 E 为 AD 的中点,现将三角形 ABE 沿 BE 折叠,得到四棱锥 A'﹣BCDE,其中∠A'ED=120°, 点 M 为 A'D 的中点.
(1)求证:A'B∥平面 EMC;
第2页共3页
∵BE⊂平面 BEF,∴平面 BEF⊥平面 AMD, 结合题意分析知,点 F 在线段 AD 上,连接 MF, 过 A 作 AH⊥MF,交 MF 的延长线于点 H,
则结合已知条件得
,解得 AH ,
设 Dt ,
第3页共3页
【解答】解:(1)证明:由题意知 PC2+AC2=PA2,∴PC⊥AC, 同理,PC⊥BC,又 AC∩BC=C,∴PC⊥平面 ABC, ∵D,E 分别是 AC,PA 的中点,∴DE∥PC, ∴DE⊥平面 ABC, 又 DE⊂平面 BDE,∴平面 BDE⊥平面 ABC. (2)在△BDE 中,DE⊥BD,BD=2 ,DE=2,∴BE=4, 如图,过 A 作 AM⊥BE 于 M,连接 MD, 在△ABE 中,AB=BE=4,AE=2 ,解得 AM ,ME=1, ∵DM⊂平面 BDE,∴AC⊥DM, 在 Rt△ADM 中,AM ,AD=2,∴DM , ∴DM2+EM2=DE2,∴MD⊥BE, ∵AM∩MD=M,∴BE⊥平面 AMD,

(完整版)高考立体几何大题及答案(理)

(完整版)高考立体几何大题及答案(理)
由 得2AD= ,解得AD= 。
故AD=AF。又AD⊥AF,所以四边形ADEF为正方形。
因为BC⊥AF,BC⊥AD,AF∩AD=A,故BC⊥平面DEF,因此平面BCD⊥平面DEF。
连接AE、DF,设AE∩DF=H,则EH⊥DF,EH⊥平面BCD。
连接CH,则∠ECH为 与平面BCD所成的角。
因ADEF为正方形,AD= ,故EH=1,又EC= =2,
(II)设线段 、 的中点分别为 、 ,
求证: ∥
(III)求二面角 的大小。
10.如题(18)图,在五面体 中, ∥ , , ,四边形 为平行四边形, 平面 , .求:
(Ⅰ)直线 到平面 的距离;
(Ⅱ)二面角 的平面角的正切值.
11.如图,四棱锥PABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅱ)设平面BCD的法向量 则
又 =(-1,1,0),
=(-1,0,c),故
令x=1,则y=1,z= , =(1,1, ).
又平面 的法向量 =(0,1,0)
由二面角 为60°知, =60°,
故 °,求得
于是 ,

°
所以 与平面 所成的角为30°
3、(Ⅰ)证明:连接 ,在 中, 分别是 的中点,所以 ,又 ,所以 ,又 平面ACD,DC 平面ACD,所以 平面ACD
(1)证明:PA⊥BD;
(2)设PD=AD,求二面角A-PB-C的余弦值.
12(本小题满分12分)
如图,已知四棱锥P-ABCD的底面为等腰梯形,AB CD,AC BD,垂足为H,
PH是四棱锥的高,E为AD中点
(1)证明:PE BC
(2)若 APB= ADB=60°,求直线PA与平面PEH所成角的正弦值

高中数学立体几何高难度练习题及参考答案2023

高中数学立体几何高难度练习题及参考答案2023

高中数学立体几何高难度练习题及参考答案2023【题目1】已知立方体ABCDEFGH的棱长为a,M为AD的中点,N为BF的中点,P为MN的中点。

求证:四边形MNHP是一个矩形。

【解答1】根据题意,我们可以先求出MN的长度。

由于M为AD的中点,因此DM = a/2。

同理,BN = a/2。

根据勾股定理,可以得到三角形MND的斜边ND的长度:ND = √(MN² + DM²)= √(MN² + (a/2)²)根据三角形BNF的性质,可以得到BNF是一个等腰直角三角形,因此NF = BN = a/2。

同理,我们可以计算出FP的长度:FP = NF = a/2最后,我们可以比较四边形MNHP的对角线长度。

根据反证法,如果MNHP不是一个矩形,那么MN和HP的长度应该不相等,即MN ≠ HP。

假设MN > HP,即MN² > HP²由于HP = FP = a/2,我们可以得到:MN² > (a/2)²将MN²和(a/2)²的值代入,得到:(MN² + (a/2)²) > (a/2)²经过整理化简,可得:MN > a/2这与MN = a/2矛盾,因此假设成立。

同理,可以得出假设MN < HP亦不成立。

由以上推理可知,四边形MNHP是一个矩形。

证毕。

【题目2】在三棱柱ABC-A'B'C'中,已知AB = 3,BC = 4,CA = 5,且AA'垂直于平面ABCD。

求证:A'B'² = 4² + 3² + 5²。

【解答2】根据题意,我们可以利用勾股定理和垂直平面的性质来解答此题。

首先,考虑三角形ABC。

由已知条件可知,它是一个直角三角形,且AB = 3,BC = 4,CA = 5。

高考数学《立体几何》真题大题解析汇总

高考数学《立体几何》真题大题解析汇总

高考数学《立体几何》真题大题解析汇总高考数学《立体几何》真题大题解析汇总1.(高考新课标1卷)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD, 90AFD ∠=,且二面角D-AF-E 与二面角C-BE-F 都是60.(Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值. 【答案】(Ⅰ)见解析;(Ⅱ) 【解析】试题分析:(Ⅰ)先证明F A ⊥平面FDC E ,结合F A ⊂平面F ABE ,可得平面F ABE ⊥平面FDC E .(Ⅱ)建立空间坐标系,分别求出平面C B E 的法向量m 及平面C B E 的法向量n ,再利用cos ,n mn m n m⋅=求二面角. 试题解析:(Ⅰ)由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E . 又F A ⊂平面F ABE ,故平面F ABE ⊥平面FDC E .(Ⅱ)过D 作DG F ⊥E ,垂足为G ,由(Ⅰ)知DG ⊥平面F ABE .以G 为坐标原点,GF 的方向为x 轴正方向,GF 为单位长度,建立如图所示的空间直角坐标系G xyz -.由(Ⅰ)知DF ∠E 为二面角D F -A -E 的平面角,故DF 60∠E =,则DF 2=,DG 3=,可得()1,4,0A ,()3,4,0B -,()3,0,0E -,(D .由已知,//F AB E ,所以//AB 平面FDC E .又平面CD AB 平面FDC DC E =,故//CD AB ,CD//F E .由//F BE A ,可得BE ⊥平面FDC E ,所以C F ∠E 为二面角C F -BE -的平面角,C F 60∠E =.从而可得(C -.所以(C E=,()0,4,0EB =,(C 3,A =--,()4,0,0AB =-. 设(),,n x y z =是平面C B E 的法向量,则CBDEFC 0n n ⎧⋅E =⎪⎨⋅EB =⎪⎩,即040x y ⎧=⎪⎨=⎪⎩,所以可取(3,0,n =.设m 是平面CD AB 的法向量,则C 0m m ⎧⋅A =⎪⎨⋅AB =⎪⎩,同理可取()0,3,4m =.则219cos ,n m n m n m ⋅==-. 故二面角C E-B -A 的余弦值为.考点:垂直问题的证明及空间向量的应用【名师点睛】立体几何解答题第一问通常考查线面位置关系的证明,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.第二问一般考查角度问题,多用空间向量解决. 2.(高考新课标2理数)如图,菱形ABCD 的对角线AC 与BD 交于点O ,5,6AB AC ==,点,E F 分别在,AD CD 上,54AE CF ==,EF 交BD 于点H .将DEF ∆沿EF 折到D EF '∆位置,OD '=(Ⅰ)证明:D H '⊥平面ABCD ; (Ⅱ)求二面角B D A C '--的正弦值. 【答案】(Ⅰ)详见解析; 【解析】试题分析:(Ⅰ)证//ACEF ,再证'D H OH ⊥,最后证'D H ABCD ⊥平面;(Ⅱ)用向量法求解.高考数学《立体几何》真题大题解析汇总试题解析:(Ⅰ)由已知得AC BD ⊥,AD CD =,又由AE CF =得AE CFAD CD=,故//AC EF .因此EF HD ⊥,从而EF D H'⊥.由5AB =,6AC =得04DO B ==.由//EF AC 得14OH AE DO AD ==.所以1OH =,3D H DH '==. 于是1OH =,22223110D H OH D O ''+=+==, 故D H OH '⊥.又D H EF '⊥,而OH EF H ⋂=, 所以D H ABCD '⊥平面.(Ⅱ)如图,以H 为坐标原点,HF 的方向为x 轴的正方向,建立空间直角坐标系H xyz -,则()0,0,0H ,()3,2,0A --,()0,5,0B -,()3,1,0C -,()0,0,3D ',(3,4,0)AB =-,()6,0,0AC =,()3,1,3AD '=.设()111,,m x y z =是平面ABD '的法向量,则m AB m AD ⎧⋅=⎪⎨'⋅=⎪⎩,即11111340330x y x y z -=⎧⎨++=⎩, 所以可以取()4,3,5m =-.设()222,,n x y z =是平面'ACD 的法向量,则0n AC n AD ⎧⋅=⎪⎨'⋅=⎪⎩,即222260330x x y z =⎧⎨++=⎩,所以可以取()0,3,1n =-.于是cos ,25||||50m n m n m n ⋅<>===⋅,By295sin ,25m n <>=.因此二面角B D A C '-- 考点:线面垂直的判定、二面角. 【名师点睛】证明直线和平面垂直的常用方法有:①判定定理;②a ∥b ,a ⊥α⇒b ⊥α;③α∥β,a ⊥α⇒a ⊥β;④面面垂直的性质.线面垂直的性质,常用来证明线线垂直. 求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角. 3.(高考山东理数)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O '的直径,FB 是圆台的一条母线.(Ⅰ)已知G,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC ;(Ⅱ)已知EF=FB=12AC=AB=BC .求二面角F BC A --的余弦值.【答案】(Ⅰ)见解析; 【解析】 试题分析:(Ⅰ)根据线线、面面平行可得与直线GH 与平面ABC 平行;(Ⅱ)立体几何中的角与距离的计算问题,往往可以利用几何法、空间向量方法求解,其中解法一建立空间直角坐标系求解;解法二则是找到FNM ∠为二面角F BC A --的平面角直接求解.试题解析:(Ⅰ)证明:设FC 的中点为I ,连接,GI HI , 在CEF △,因为G 是CE 的中点,所以,GI F //E高考数学《立体几何》真题大题解析汇总又,F E //OB 所以,GI //OB在CFB △中,因为H 是FB 的中点,所以//HI BC , 又HI GI I ⋂=,所以平面//GHI 平面ABC , 因为GH ⊂平面GHI ,所以//GH 平面ABC . (Ⅱ)解法一:连接'OO ,则'OO ⊥平面ABC ,又,AB BC =且AC 是圆O 的直径,所以.BO AC ⊥ 以O 为坐标原点,建立如图所示的空间直角坐标系O xyz -,由题意得(0,B,(C -,过点F 作FM OB 垂直于点M ,所以3,FM =可得F故(23,23,0),(0,BC BF =--=-. 设(,,)m x y z =是平面BCF 的一个法向量.由0,0m BC m BF ⎧⋅=⎪⎨⋅=⎪⎩可得0,30z ⎧--=⎪⎨+=⎪⎩ 可得平面BCF 的一个法向量(1,1,3m =- 因为平面ABC 的一个法向量(0,0,1),n = 所以7cos ,7||||m n m n m n ⋅<>==. 所以二面角F BC A --的余弦值为7.解法二:连接'OO ,过点F 作FM OB ⊥于点M , 则有//'FM OO ,又'OO ⊥平面ABC , 所以FM ⊥平面ABC,可得3,FM =过点M 作MN BC 垂直于点N ,连接FN , 可得FN BC ⊥,从而FNM ∠为二面角F BC A --的平面角. 又AB BC =,AC 是圆O 的直径, 所以6sin 452MN BM ==从而2FN =,可得cos 7FNM ∠=所以二面角F BC A --. 考点:1.平行关系;2.异面直线所成角的计算.【名师点睛】此类题目是立体几何中的常见问题.解答本题,关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,给出规范的证明.立体几何中的角与距离的计算问题,往往可以利用几何法、空间向量方法求解,应根据题目条件,灵活选择方法.本题能较好的考查考生的空间想象能力、逻辑推理能力\转化与化归思想及基本运算能力等. 4.(高考天津理数)如图,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面OBEF ⊥平面ABCD ,点G 为AB 的中点,AB=BE=2.高考数学《立体几何》真题大题解析汇总(Ⅰ)求证:EG ∥平面ADF ;(Ⅱ)求二面角O-EF-C 的正弦值; (Ⅲ)设H 为线段AF 上的点,且AH=23HF ,求直线BH 和平面CEF 所成角的正弦值. 【答案】【解析】试题分析:(Ⅰ)利用空间向量证明线面平行,关键是求出面的法向量,利用法向量与直线方向向量垂直进行论证(Ⅱ)利用空间向量求二面角,关键是求出面的法向量,再利用向量数量积求出法向量夹角,最后根据向量夹角与二面角相等或互补关系求正弦值(Ⅲ)利用空间向量证明线面平行,关键是求出面的法向量,再利用向量数量积求出法向量夹角,最后根据向量夹角与线面角互余关系求正弦值试题解析:依题意,OF ABCD ⊥平面,如图,以O 为点,分别以,,AD BA OF 的方向为x 轴,y 轴、z 轴的正方向建立空间直角坐标系,依题意可得(0,0,0)O ,()1,1,0,(1,1,0),(1,1,0),(11,0),(1,1,2),(0,0,2),(1,0,0)A B C D E F G -------,.(Ⅰ)证明:依题意,()(2,0,0),1,1,2AD AF ==-.设()1,,n x y z =为平面ADF 的法向量,则1100n AD n AF ⎧⋅=⎪⎨⋅=⎪⎩,即2020x x y z =⎧⎨-+=⎩ .不妨设1z =,可得()10,2,1n =,又()0,1,2EG =-,可得10EG n ⋅=,又因为直线EG ADF ⊄平面,所以//EG ADF 平面.(Ⅱ)解:易证,()1,1,0OA =-为平面OEF 的一个法向量.依题意,()()1,1,0,1,1,2EF CF ==-.设()2,,n x y z =为平面CEF 的法向量,则220n EF n CF ⎧⋅=⎪⎨⋅=⎪⎩,即020x y x y z +=⎧⎨-++=⎩.不妨设1x =,可得()21,1,1n =-.因此有222cos ,OA n OA n OA n ⋅<>==-⋅,于是23sin ,3OA n <>=,所以,二面角O EF C --的正弦值为3. (Ⅲ)解:由23AH HF =,得25AH AF =.因为()1,1,2AF =-,所以2224,,5555AH AF ⎛⎫==- ⎪⎝⎭,进而有334,,555H ⎛⎫- ⎪⎝⎭,从而284,,555BH ⎛⎫= ⎪⎝⎭,因此222cos ,21BH n BH n BH n⋅<>==-⋅.所以,直线BH 和平面CEF 所成角的正弦值为21. 考点:利用空间向量解决立体几何问题5.(年高考北京理数)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,AC CD ==(1)求证:PD ⊥平面PAB ;高考数学《立体几何》真题大题解析汇总(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AMAP的值;若不存在,说明理由. 【答案】(1)见解析;(2)3;(3)存在,14AM AP = 【解析】试题分析:(1)由面面垂直性质定理知AB⊥平面PAD ;根据线面垂直性质定理可知PD AB ⊥,再由线面垂直判定定理可知⊥PD 平面PAB ;(2)取AD 的中点O ,连结PO ,CO ,以O 为坐标原点建立空间直角坐标系O xyz -,利用向量法可求出直线PB 与平面PCD 所成角的正弦值;(3)假设存在,根据A ,P ,M 三点共线,设AP AM λ=,根据//BM 平面PCD ,即0=⋅n BM ,求λ的值,即可求出AMAP的值. 试题解析:(1)因为平面PAD ⊥平面ABCD ,AB AD ⊥,所以⊥AB 平面PAD ,所以PD AB ⊥, 又因为PD PA ⊥,所以⊥PD 平面PAB ; (2)取AD 的中点O ,连结PO ,CO , 因为PA PD =,所以AD PO ⊥.又因为⊂PO 平面PAD ,平面⊥PAD 平面ABCD , 所以⊥PO 平面ABCD .因为⊂CO 平面ABCD ,所以⊥PO CO . 因为CD AC =,所以AD CO ⊥.如图建立空间直角坐标系xyz O -,由题意得,)1,0,0(),0,1,0(),0,0,2(),0,1,1(),0,1,0(P D C B A -.设平面PCD 的法向量为),,(z y x n =,则0,0,n PD n PC ⎧⋅=⎪⎨⋅=⎪⎩即⎩⎨⎧=-=--,02,0z x z y 令2=z ,则2,1-==y x . 所以)2,2,1(-=.又)1,1,1(-=PB,所以33,cos -=>=<. 所以直线PB 与平面PCD 所成角的正弦值为33.(3)设M 是棱PA 上一点,则存在]1,0[∈λ使得AM λ=. 因此点),,1(),,1,0(λλλλ--=-BM M .因为⊄BM 平面PCD ,所以∥BM 平面PCD 当且仅当0=⋅n BM , 即0)2,2,1(),,1(=-⋅--λλ,解得41=λ. 所以在棱PA 上存在点M 使得BM ∥平面PCD ,此时41=AP AM . 考点:1.空间垂直判定与性质;2.异面直线所成角的计算;3.空间向量的运用. 【名师点睛】平面与平面垂直的性质的应用:当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.6.(高考新课标3理数)如图,四棱锥P ABC -中,PA ⊥地面ABCD ,ADBC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC的中点.(Ⅰ)证明MN平面PAB ;(Ⅱ)求直线AN 与平面PMN 所成角的正弦值.高考数学《立体几何》真题大题解析汇总【答案】(Ⅰ)见解析;(Ⅱ)25. 【解析】试题分析:(Ⅰ)取PB 的中点T ,然后结合条件中的数据证明四边形AMNT 为平行四边形,从而得到MN AT ,由此结合线面平行的判断定理可证;(Ⅱ)以A 为坐标原点,以,AD AP 所在直线分别为,y z 轴建立空间直角坐标系,然后通过求直线AN 的方向向量与平面PMN 法向量的夹角来处理AN 与平面PMN 所成角.试题解析:(Ⅰ)由已知得232==AD AM ,取BP 的中点T ,连接TN AT ,,由N 为PC 中点知BC TN //,221==BC TN . 又BC AD //,故TN AM ,四边形AMNT 为平行四边形,于是AT MN //. 因为⊂AT 平面PAB ,⊄MN 平面PAB ,所以//MN 平面PAB .(Ⅱ)取BC 的中点E ,连结AE ,由AC AB =得BC AE ⊥,从而AD AE ⊥,且5)2(2222=-=-=BC AB BE AB AE . 以A 为坐标原点,AE 的方向为x 轴正方向,建立如图所示的空间直角坐标系xyz A -, 由题意知,)4,0,0(P ,)0,2,0(M ,)0,2,5(C ,)2,1,25(N , (0,2,4)PM =-,)2,1,25(-=PN ,)2,1,25(=AN . 设(,,)n x y z =为平面PMN 的法向量,则⎪⎩⎪⎨⎧=⋅=⋅00PN n PM n ,即⎪⎩⎪⎨⎧=-+=-0225042z y x z x ,可取(0,2,1)n =, 于是||85|cos ,|25||||n AN n AN n AN ⋅<>==.考点:1、空间直线与平面间的平行与垂直关系;2、棱锥的体积.【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求解空间中的角和距离常常可通过建立空间直角坐标系,利用空间向量中的夹角与距离来处理.7.(高考浙江理数)如图,在三棱台ABC DEF -中,平面BCFE ⊥平面ABC ,=90ACB ∠,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:EF ⊥平面ACFD ;(Ⅱ)求二面角B-AD-F 的平面角的余弦值.【答案】(Ⅰ)证明见解析;(Ⅱ)4. 【解析】试题分析:(Ⅰ)先证F C B ⊥A ,再证F C B ⊥K ,进而可证F B ⊥平面CFD A ;(Ⅱ)方法一:先找二面角D F B-A -的平面角,再在Rt QF ∆B 中计算,即可得二面角D F B-A -的平面角的余弦值;方法二:先建立空间直角坐标系,再计算平面C A K 和平面ABK 的法向量,进而可得二面角D F B-A -的平面角的余弦值.试题解析:(Ⅰ)延长D A ,BE ,CF 相交于一点K ,如图所示.因为平面CF B E ⊥平面C AB ,且C C A ⊥B ,所以,C A ⊥平面C B K ,因此,F C B ⊥A .又因为F//C E B ,F FC 1BE =E ==,C 2B =,所以C ∆B K 为等边三角形,且F 为C K 的中点,则F C B ⊥K .所以F B ⊥平面CFD A .高考数学《立体几何》真题大题解析汇总(Ⅱ)方法一:过点F 作FQ ⊥AK ,连结Q B .因为F B ⊥平面C A K ,所以F B ⊥AK ,则AK ⊥平面QF B ,所以Q B ⊥AK . 所以,QF ∠B 是二面角D F B-A -的平面角.在Rt C ∆A K 中,C 3A =,C 2K =,得FQ 13=. 在Rt QF ∆B中,FQ 13=,F B =,得cos QF 4∠B =. 所以,二面角D F B-A -. 方法二:如图,延长D A ,BE ,CF 相交于一点K ,则C ∆B K 为等边三角形.取C B 的中点O ,则C KO ⊥B ,又平面CF B E ⊥平面C AB ,所以,KO ⊥平面C AB . 以点O 为原点,分别以射线OB ,OK 的方向为x ,z 的正方向,建立空间直角坐标系xyz O .由题意得()1,0,0B ,()C 1,0,0-,(K , ()1,3,0A --,12⎛E ⎝⎭,1F 2⎛- ⎝⎭. 因此,()C 0,3,0A =,(AK =,()2,3,0AB =.设平面C A K 的法向量为()111,,m x y z =,平面ABK 的法向量为()222,,n x y z =. 由C 00m m ⎧A ⋅=⎪⎨AK ⋅=⎪⎩,得11113030y x y =⎧⎪⎨++=⎪⎩,取()3,0,1m =-; 由00n n ⎧AB⋅=⎪⎨AK ⋅=⎪⎩,得2222223030x y x y +=⎧⎪⎨++=⎪⎩,取(3,n =-. 于是,3cos ,4m n m n m n ⋅==⋅. 所以,二面角D F B-A -的平面角的余弦值为4.考点:1、线面垂直;2、二面角.【方法点睛】解题时一定要注意二面角的平面角是锐角还是钝角,否则很容易出现错误.证明线面垂直的关键是证明线线垂直,证明线线垂直常用的方法是直角三角形、等腰三角形的“三线合一”和菱形、正方形的对角线.8.(年高考四川理数)如图,在四棱锥P-ABCD 中,AD ∥BC ,∠ADC=∠PAB=90°,BC=CD=12AD ,E 为边AD 的中点,异面直线PA 与CD 所成的角为90°.(Ⅰ)在平面PAB 内找一点M ,使得直线CM ∥平面PBE ,并说明理由;(Ⅱ)若二面角P-CD-A 的大小为45°,求直线PA 与平面PCE 所成角的正弦值.【答案】(Ⅰ)详见解析;(Ⅱ)13.【解析】试题分析:(Ⅰ)探索线面平行,根据是线面平行的判定定理,先证明线线平行,再得线面平行,而这可以利用已知的平行,易得CD ∥EB ;从而知M 为DC 和AB 的交点;(Ⅱ)求线面角,可以先找到这个角,即作出直线在平面内的射影,再在三角形中解出,也可以利用已知图形中的垂直建立空间直角坐标系,用向量法求出线面角(通过平面的法向量与直线的方向向量的夹角来求得).试题解析:(Ⅰ)在梯形ABCD 中,AB 与CD 不平行.延长AB ,DC ,相交于点M (M ∈平面PAB ),点M 即为所求的一个点.理由如下: 由已知,BC ∥ED ,且BC=ED .所以四边形BCDE 是平行四边形.,所以CD ∥EB从而CM ∥EB .又EB ⊂平面PBE ,CM ⊄平面PBE ,所以CM ∥平面PBE .(说明:延长AP 至点N ,使得AP=PN ,则所找的点可以是直线MN 上任意一点) (Ⅱ)方法一:由已知,CD ⊥PA ,CD ⊥AD ,PA ⋂AD=A ,所以CD ⊥平面PAD .从而CD ⊥PD .所以∠PDA 是二面角P-CD-A 的平面角.所以∠PDA=45°.设BC=1,则在Rt △PAD 中,PA=AD=2.E D CB PA高考数学《立体几何》真题大题解析汇总过点A作AH⊥CE,交CE的延长线于点H,连接PH.易知PA⊥平面ABCD,从而PA⊥CE.于是CE⊥平面PAH.所以平面PCE⊥平面PAH.过A作AQ⊥PH于Q,则AQ⊥平面PCE.所以∠APH是PA与平面PCE所成的角.在Rt△AEH中,∠AEH=45°,AE=1,所以AH=2.在Rt△PAH中,,所以sin∠APH=AHPH=13.方法二:由已知,CD⊥PA,CD⊥AD,PA⋂AD=A,所以CD⊥平面PAD.于是CD⊥PD.从而∠PDA是二面角P-CD-A的平面角.所以∠PDA=45°.由PA⊥AB,可得PA⊥平面ABCD.设BC=1,则在Rt△PAD中,PA=AD=2.作Ay⊥AD,以A为原点,以AD ,AP的方向分别为x轴,z轴的正方向,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0),所以PE=(1,0,-2),EC=(1,1,0),AP=(0,0,2)设平面PCE的法向量为n=(x,y,z),由0,0,PEEC⎧⋅=⎪⎨⋅=⎪⎩nn得20,0,x zx y-=⎧⎨+=⎩设x=2,解得n=(2,-2,1).设直线PA 与平面PCE 所成角为α,则sin α=||||||n AP nAP ⋅⋅ =13= . 所以直线PA 与平面PCE 所成角的正弦值为13.考点:线线平行、线面平行、向量法.【名师点睛】本题考查线面平行、线线平行、向量法等基础知识,考查空间想象能力、分析问题的能力、计算能力.证明线面平行时,可根据判定定理的条件在平面内找一条平行线,而这条平行线一般是由过面外的直线的一个平面与此平面相交而得,证明时注意定理的另外两个条件(线在面内,线在面外)要写全,否则会被扣分,求线面角(以及其他角),一种方法可根据定义作出这个角(注意还要证明),然后通过解三角形求出这个角.另一种方法建立空间直角坐标系,用向量法求角,这种方法主要是计算,不需要“作角、证明”,关键是记住相应公式即可.9.(高考上海理数)将边长为1的正方形11AAO O (及其内部)绕的1OO 旋转一周形成圆柱,如图,AC 长为23π,11A B 长为3π,其中1B 与C 在平面11AAO O 的同侧。

高中《立体几何》大题(附答案解析)

高中《立体几何》大题(附答案解析)

《立体几何》大题及答案解析1.(2009全国卷Ⅰ)如图,四棱锥S ABCD −中,底面ABCD 为矩形,SD ⊥底面ABCD,AD =,2DC SD ==,点M 在侧棱SC 上,∠ABM=60。

(I )证明:M 是侧棱SC 的中点;()ΙΙ求二面角S AM B −−的大小。

2.(2009全国卷Ⅱ)如图,直三棱柱ABC-A 1B 1C 1中,AB ⊥AC,D 、E 分别为AA 1、B 1C 的中点,DE ⊥平面BCC 1(Ⅰ)证明:AB=AC(Ⅱ)设二面角A-BD-C 为60°,求B 1C 与平面BCD 所成的角的大小ACBA 1B 1C 1DE3.(2009浙江卷)如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====,120ACB ∠=,,P Q 分别为,AE AB 的中点.(I )证明://PQ 平面ACD ;(II )求AD 与平面ABE 所成角的正弦值.4.(2009北京卷)如图,四棱锥P ABCD −的底面是正方形,PD ABCD ⊥底面,点E 在棱PB 上.(Ⅰ)求证:平面AEC PDB ⊥平面;(Ⅱ)当PD =且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小.5.(2009江西卷)如图,在四棱锥P ABCD −中,底面ABCD 是矩形,PA ⊥平面ABCD ,4PA AD ==,2AB =.以BD 的中点O 为球心、BD 为直径的球面交PD 于点M . (1)求证:平面ABM ⊥平面PCD ; (2)求直线PC 与平面ABM 所成的角; (3)求点O 到平面ABM 的距离.6.(2009四川卷)如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,,,45AB AE FA FE AEF °==∠= (I )求证:EF BCE ⊥平面;(II )设线段CD 、AE 的中点分别为P 、M ,求证: PM ∥BCE 平面 (III )求二面角F BD A −−的大小。

高一数学立体几何试题答案及解析

高一数学立体几何试题答案及解析

高一数学立体几何试题答案及解析1.设三棱柱的体积为,分别是侧棱上的点,且,则四棱锥的体积为()A.B.C.D.【答案】C【解析】假设重合,重合,则【考点】棱柱棱锥的体积2.如图,四棱锥中,,四边形是边长为的正方形,若分别是线段的中点.(1)求证:∥底面;(2)若点为线段的中点,求三角形的面积。

【答案】(1)见解析;(2)【解析】要想证明线面平行,只需证明出该线段与面内的任意一条线段平行即可,在本题中,需要连接辅助线进行解答,在解此问题时主要运用了三角形内中位线平行于底边的性质;首先需要掌握知识,三角形的中位线的长度为底边的一半,先求出所需边的长度,再运用余弦定理,求出角的度数,在运用三角形面积公式即可得到结果。

试题解析:(1)解:连接,由题意知,为中点,为的中位线,平面平面平面(2)连接由(1)知:,同理可得:,,【考点】空间几何的运算3.如图,在四棱台中,底面,四边形为正方形,,,平面.(1)证明:为的中点;(2)求点到平面的距离.【答案】(1)详见解析;(2)【解析】(1)根据线面平行的性质定理,线面平行则,线线平行,所以可证,可证四边形是平行四边形,即证明是中点;(2)根据等体积转化,可证是直角三角形,写出体积公式,求解距离.试题解析:解(1)连接AD1,则D1C1∥DC∥AB,∴A、E、C1、D1四点共面,∵C1E∥平面ADD1A1,则C1E∥AD1,∴AEC1D1为平行四边形,∴AE=D1C1=1,∴E为AB的中点.(6分)(2),∵AD⊥DC,AD⊥DD1,∴AD⊥平面DCC1D1,AD⊥DC1.设点E到平面ADC1的距离为h,则,解得.【考点】1.线面平行的性质定理;2.等体积转化.4.设长方体的长、宽、高分别为2,1, 1,其顶点都在同一个球面上,则该球的体积为_______.【答案】【解析】球直径为长方体的体对角线,故半径为【考点】球内接长方体的性质,球体积的计算5.(本小题12分)如图所示,三棱柱ABC-A1B1C1中,.(1)证明:;(2)若,求三棱柱ABC-A1B1C1的体积.【答案】(1)见解析;(2)3【解析】(1)取AB的中点O,连接OC,OA1,A1B,证得,,则根据线面垂直的判定定理可得,进而得出;(2)先证明,进而证出,再求出,最后利用柱体的体积公式求出体积;试题解析:(1)取AB 的中点O ,连接.因为,所以.由于,故△AA 1B 为等边三角形,所以.因为,所以.又,故.(2)由题设知△ABC 与△AA 1B 都是边长为2的等边三角形,所以. 又,则,故.因为所以,为三棱柱的高.又△ABC 的面积,故三棱柱的体积.【考点】1.线面垂直的判定定理;2.线线垂直的证明方法;3.柱体的体积公式;6. 如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误的是( ).A .BD ∥平面CB 1D 1 B .AC 1⊥BDC .AC 1⊥平面CB 1D 1D .异面直线AD 与CB 1角为60°【答案】D【解析】因为易证∥,由线面平行的判定定理可证得∥面,所以A 选项结论正确; 由正方体可得面,可证得,由为正方体得,因为,所以面,从而可证得.同理可证明,根据线面垂直的判定定理可证得面,所以B ,C 选项结论都正确; 因为∥,所以为异面直线与所成的角,由正方体可得,所以D 选项的内容不正确. 故选D 。

(完整)高中数学《立体几何》大题及答案解析.doc

高中数学《立体几何》大题及答案解析( 理)1.( 2009 全国卷Ⅰ)如图,四棱锥S ABCD 中,底面 ABCD 为矩形, SD底面ABCD,AD2 ,DCo SD 2 ,点 M 在侧棱 SC 上,∠ABM=60。

(I )证明:M是侧棱SC的中点;求二面角 S AM B 的大小。

2.( 2009 全国卷Ⅱ)如图,直三棱柱DE ⊥平面 BCC 1(Ⅰ)证明: AB=AC 的角的大小ABC-A 1B1C1中, AB ⊥ AC,D 、E 分别为 AA 1、 B1C 的中点,(Ⅱ)设二面角A-BD-C 为 60°,求 B 1C 与平面 BCD 所成A 1 C1B1D EACB3. ( 2009浙江卷)如图,DC平面ABC,EB / / DC,AC BC EB 2DC 2 ,ACB 120o, P,Q 分别为 AE , AB 的中点.(I)证明: PQ / / 平面ACD;(II)求AD与平面 ABE 所成角的正弦值.4.( 2009 北京卷)如图,四棱锥P ABCD 的底面是正方形,PD 底面 ABCD ,点E在棱PB上.(Ⅰ)求证:平面AEC 平面 PDB ;(Ⅱ)当 PD2AB 且E为PB的中点时,求 AE 与平面 PDB 所成的角的大小.5.( 2009 江西卷)如图,在四棱锥P ABCD 中,底面 ABCD 是矩形, PA平面ABCD,PA AD 4 , AB 2 .以 BD 的中点 O 为球心、 BD 为直径的球面交PD 于点 M .(1)求证:平面ABM⊥平面PCD;(2)求直线PC与平面ABM所成的角;(3)求点O到平面ABM的距离.PMA DOBC6(. 2009 四川卷)如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直,△ ABE 是等腰直角三角形,AB AE , FA FE , AEF 45 (I)求证: EF 平面 BCE ;( II )设线段 CD 、 AE 的中点分别为 P 、 M ,求证: PM ∥平面BCE ( III )求二面角 F BD A 的大小。

高中立体几何典型50题及解析

高中立体几何典型500题及解析(一)1、二面角βα--l 是直二面角,βα∈∈B A ,,设直线AB 与βα、所成的角分别为∠1和∠2,则(A )∠1+∠2=900 (B )∠1+∠2≥900 (C )∠1+∠2≤900 (D )∠1+∠2<900 解析:C分别作两条与二面角的交线垂直的线,则∠1和∠2分别为直线AB 与平面,αβ所成的角。

根据最小角定理:斜线和平面所成的角,是这条斜线和平面内经过斜足的直线所成的一切角中最小的角2ABO ∴∠>∠1902190ABO ∠+∠=∴∠+∠≤2. 下列各图是正方体或正四面体,P ,Q ,R ,S 分别是所在棱的中点,这四个点中不共..面.的一个图是PPQQRSSPPPQQRR RSSSPP PQQQ R RS SS PP Q QR RRSS(A ) (B ) (C ) (D ) D解析: A 项:PS 底面对应的中线,中线平行QS ,PQRS 是个梯形B 项:如图C 项:是个平行四边形D 项:是异面直线。

3. 有三个平面α,β,γ,下列命题中正确的是(A )若α,β,γ两两相交,则有三条交线 (B )若α⊥β,α⊥γ,则β∥γ(C )若α⊥γ,β∩α=a ,β∩γ=b ,则a ⊥b (D )若α∥β,β∩γ=∅,则α∩γ=∅ D解析:A 项:如正方体的一个角,三个平面相交,只有一条交线。

B 项:如正方体的一个角,三个平面互相垂直,却两两相交。

C 项:如图4. 如图所示,在正方体ABCD -A 1B 1C 1D 1的侧面AB 1内有一动点P到直线AB 与直线B 1C 1的距离相等,则动点P 所在曲线的形状为1111C解析:11B C ⊥平面AB 111,B C PB ∴⊥,如图:点到定点B 的距离与到定直线AB 的距离相等,建立坐标系画图时可以以点B 1B 的中点为原点建立坐标系。

5. 在正方体ABCD -A 1B 1C 1D 1中与AD 1成600角的面对角线的条数是(A )4条 (B )6条 (C )8条 (D )10条C解析:如图这样的直线有4条,另外,这样的直线也有4条,共8条。

高三精选立体几何大题30题(含详细解答)

A BC第1题图ABCD第1题图立体几何大题1.如下图,一个等腰直角三角形的硬纸片ABC中,∠ACB=90°,AC=4cm,CD是斜边上的高沿CD 把△ABC折成直二面角.(1)如果你手中只有一把能度量长度的直尺,应该如何确定A,B的位置,使二面角A-CD-B是直二面角?证明你的结论.(2)试在平面ABC上确定一个P,使DP与平面ABC内任意一条直线都垂直,证明你的结论.(3)如果在折成的三棱锥内有一个小球,求出小球半径的最大值.2.如图,已知正四棱柱ABCD—A1B1C1D1的底面边长为3,侧棱长为4,连结A1B过A作AF⊥A1B垂足为F,且AF的延长线交B1B于E。

(Ⅰ)求证:D1B⊥平面AEC;(Ⅱ)求三棱锥B—AEC的体积;(Ⅲ)求二面角B—AE—C的大小的正弦值.3.如图,正三棱柱ABC—A1B1C1的底面边长为1,点M在BC上,△AMC1是以M为直角顶点的等腰直角三角形.(I)求证:点M为BC的中点;(Ⅱ)求点B到平面AMC1的距离;(Ⅲ)求二面角M—AC1—B 的正切值. 4.如图,已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,三角形ACD是正三角形,且AD=DE=2,AB=1,F是CD的中点.(Ⅰ)求证:AF∥平面BCE;(Ⅱ)求多面体ABCDE的体积;(Ⅲ)求二面角C-BE-D 的正切值.5.已知:ABCD是矩形,设PA=a,PA⊥平面ABCD.M、N分别是AB、PC的中点.(Ⅰ)求证:MN⊥AB;(Ⅱ)若PD=AB,且平面MND⊥平面PCD,求二面角P—CD—A的大小;(Ⅲ)在(Ⅱ)的条件下,求三棱锥D—AMN的体积.6.在正方体ABCD—A1B1C1D1中,P、M、N分别为棱DD1、AB、BC的中点。

(I)求二面角B1—MN—B的正切值;(II)证明:PB⊥平面MNB1;(III)画出一个正方体表面展开图,使其满足“有4个正方形面相连成一个长方形”的条件,并求出展开图中P、B两点间的距离。

立体几何高考题及解析

立体几何高考题及解析
以下是一道关于立体几何的高考题及解析:
题目:一个圆锥的底面半径是3cm,母线长为4cm。

若其高为h,求出圆锥的体积与表面积的比。

解析:
首先我们需要知道圆锥的体积和表面积的公式:
圆锥体积公式:V = 1/3 * π * r^2 * h
圆锥表面积公式:S = π * r * l + π * r^2
其中,r为底面半径,h为高,l为母线长。

给定的条件是底面半径为3cm,母线长为4cm。

我们需要求出圆锥的体积与表面积的比,即V/S。

首先计算出底面圆周长:
C = 2 * π * r = 2 * π * 3 = 6π
然后计算出母线的长度l:
l = 根号下(r^2 + h^2) = 根号下(3^2 + h^2)
代入母线长为4cm的条件,得到方程:
根号下(3^2 + h^2) = 4
解方程,得到h = 根号下(7)
将求得的h代入到圆锥体积公式和表面积公式中,求出圆锥的体积和表面积:
V = 1/3 * π * r^2 * h = 1/3 * π * 3^2 * 根号下(7) = 3π * 根号下(7) S = π * r * l + π * r^2 = π * 3 * 4π + π * 3^2 = 12π^2 + 9π
最后计算出圆锥的体积与表面积的比:
V/S = (3π * 根号下(7)) / (12π^2 + 9π) = (根号下(7)) / (4π + 3)
因此,圆锥的体积与表面积的比为(根号下(7)) / (4π + 3)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试题1:正方体棱长为1,,,M P Q 为棱1,,AA CD BC 的中点,则三棱锥1M D PQ -的体积1M D PQ V -=.
试题2:(2017清华19)在空间直角坐标系中,符合0,0,0x y z ≥≥≥,231x y z ++≤的点(,,)x y z 的体积为(
)A.136 B.118 C.19 D.172
试题3:ABC ∆为正三角形,边长为3.平面外一点P 满足3,4,5PA PB PC ===,求P ABC V -.
试题4:在四面体ABCD 中,已知AD BC ⊥,6,2AD BC ==,且2AB AC BD CD ==,则A BCD V -的最大值为_________________
试题5(2016北大6)已知1111ABCD A B C D -是边长为1的立方体,则异面直线1AB 和BD 的距离为__________
试题6(2018年5月绍兴一中高考适17)正四面体A BCD -的四个顶点在平面α的同侧,各点到平面α的距离分别为1,2,3,4,则正四面体的棱长为______________.证明:正四面体各棱在任一平面上的射影的平方和为定值.
试题7在正四面体ABCD ,//AB α,,E F 分别是线段,AD BC 上的点,且12,33
AE AD BF BC =
=,当正四面体ABCD 以AB 为轴旋转时,则直线AB ,EF 在平面α上的射影所成角的余弦值的范围是____________
试题8(2009清华7)四面体ABCD 中,,,AB CD AC BD AD BC ===;
(1)求证:四面体每个面的三角形为锐角三角形
(2)设三个侧面与底面BCD 所成角分别为,,αβγ,求证:cos cos cos 1
αβγ++=
试题9(2017北大16)已知两个同底正三棱锥E ABC -,F ABC -接于同一个外接球,E ABC -中的侧面与底面ABC 的夹角为015,求F ABC -侧面与底面夹角的正切值
试题10(2017北大15)半径为2017的三个球放在一个桌面上,两两相切。

现将另一个球放在这三球的空隙处,且这个球的顶点(最高处)与另三个球的顶点(最高处)处在同一平面上,求这个球的半径____________.
试题11将半径都为1的四个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为______________
试题12(2017清华19)在空间中过点A 作平面π的垂线,垂足为B 。

记()B f A π=。

设,αβ是两个不同的平面,对空间中任意一点P ,1[()]Q f f P βα=,2[()]Q f f P αβ=,恒有12PQ PQ =,则(
)A.
αβ⊥ B.//αβ C.α与β的(锐)二面角为045D.α与β的(锐)二面角为0
60试题13:点D 是直角ABC ∆斜边AB 上一动点,3,2AC BC ==,将直角ABC ∆沿着CD 翻折,使'B DC ∆与ADC ∆构成直二面角,则翻折后'AB 的最小值是.
试题14:四边形ABCD 是矩形,沿直线BD 将ABD ∆翻折成'A BD ∆,异面直线CD 与'A B 的所成角为α,则(
).A 'ACA α<∠.B 'ACA α>∠.C '`A CD α<∠.D 'A CD α>∠。

相关文档
最新文档