函数的基本性质详细知识点和题型分类(含课后作业)

合集下载

函数的基本性质 知识总结

函数的基本性质 知识总结

《函数的基本性质》知识总结1.单调性函数的单调性是研究函数在定义域内某一范围的图象整体上升或下降的变化趋势,是研究函数图象在定义域内的局部变化性质。

⑴函数单调性的定义一般地,设函数()y f x =的定义域为A ,区间I A ⊆.如果对于区间I 内的______两个值1x ,2x ,当1x <2x 时,都有1()f x _____2()f x ,那么()y f x =在区间I 上是单调增函数,I 称为()y f x =的单调_____区间. 如果对于区间I 内的______两个值1x ,2x ,当1x <2x 时,都有1()f x _____2()f x ,那么()y f x =在区间I 上是单调减函数,I 称为()y f x =的单调_____区间.如果函数()y f x =在区间I 上是单调增函数或单调减函数,那么函数()y f x =在区间I 上具有________.单调性的等价定义:①)(x f 在区间M 上是增函数,,21M x x ∈∀⇔当21x x <时,有0)()(21<-x f x f0)]()([)(2121>-⋅-⇔x f x f x x 00)()(2121>∆∆⇔>--⇔xy x x x f x f ; ②)(x f 在区间M 上是减函数,,21M x x ∈∀⇔当21x x <时,有0)()(21>-x f x f0)]()([)(2121<-⋅-⇔x f x f x x 00)()(2121<∆∆⇔<--⇔xy x x x f x f ; ⑵函数单调性的判定方法①定义法;②图像法;③复合函数法;④导数法;⑤特值法(用于小题),⑥结论法等.注意:①定义法(取值——作差——变形——定号——结论):设12[]x x a b ∈,,且12x x ≠,那么0)]()([)(2121>-⋅-x f x f x x 0)()(2121>--⇔x x x f x f )(x f ⇔在区间],[b a 上是增函数;0)]()([)(2121<-⋅-x f x f x x 0)()(2121<--⇔x x x f x f )(x f ⇔在区间],[b a 上是减函数。

函数的基本性质知识点归纳与题型总结

函数的基本性质知识点归纳与题型总结

函数的基本性质知识点归纳与题型总结一、知识归纳1.函数的奇偶性2.函数的周期性(1)周期函数对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数f(x)为周期函数,称T为这个函数的周期.(2)最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.解题提醒:①判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.②判断函数f(x)的奇偶性时,必须对定义域内的每一个x,均有f(-x)=-f (x )或f (-x )=f (x ),而不能说存在x 0使f (-x 0)=-f (x 0)或f (-x 0)=f (x 0).③分段函数奇偶性判定时,误用函数在定义域某一区间上不是奇偶函数去否定函数在整个定义域上的奇偶性.题型一 函数奇偶性的判断典型例题:判断下列函数的奇偶性: (1)f (x )=(x +1)1-x1+x; (2)f (x )=⎩⎪⎨⎪⎧-x 2+2x +1,x >0,x 2+2x -1,x <0;(3)f (x )=4-x 2x 2;(4)f (x )=log a (x +x 2+1)(a >0且a ≠1). 解:(1)因为f (x )有意义,则满足1-x1+x ≥0,所以-1<x ≤1,所以f (x )的定义域不关于原点对称, 所以f (x )为非奇非偶函数. (2)法一:(定义法)当x >0时,f (x )=-x 2+2x +1,-x <0,f (-x )=(-x )2+2(-x )-1=x 2-2x -1=-f (x ); 当x <0时,f (x )=x 2+2x -1,-x >0,f (-x )=-(-x )2+2(-x )+1=-x 2-2x +1=-f (x ).所以f (x )为奇函数. 法二:(图象法)作出函数f (x )的图象,由奇函数的图象关于原点对称的特征知函数f (x )为奇函数.(3)因为⎩⎨⎧4-x 2≥0,x 2≠0,所以-2≤x ≤2且x ≠0,所以定义域关于原点对称. 又f (-x )=4-(-x )2(-x )2=4-x 2x 2,所以f (-x )=f (x ).故函数f (x )为偶函数. (4)函数的定义域为R , 因为f (-x )+f (x ) =log a [-x +(-x )2+1]+log a (x +x 2+1)=log a (x 2+1-x )+log a (x 2+1+x )=log a [(x 2+1-x )(x 2+1+x )]=log a (x 2+1-x 2)=log a 1=0, 即f (-x )=-f (x ),所以f (x )为奇函数.通性通法:判定函数奇偶性的3种常用方法 (1)定义法(2)图象法(3)性质法①设f (x ),g (x )的定义域分别是 D 1,D 2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.②复合函数的奇偶性可概括为“同奇则奇,一偶则偶”.[提醒] (1)“性质法”中的结论是在两个函数的公共定义域内才成立的.(2)判断分段函数的奇偶性应分段分别证明f (-x )与f (x )的关系,只有对各段上的x 都满足相同的关系时,才能判断其奇偶性.题型二 函数的周期性典型例题(1)已知函数f (x )=⎩⎪⎨⎪⎧2(1-x ),0≤x ≤1,x -1,1<x ≤2,若对任意的n ∈N *,定义f n (x )=f {f [f …n 个f (x )]},则f 2 019(2)的值为( )A.0B.1C.2 D.3(2)设定义在R上的函数f(x)满足f(x+2)=f(x),且当x∈[0,2)时,f(x)=2x-x2,则f(0)+f(1)+f(2)+…+f(2 019)=________.解析:(1)∵f1(2)=f(2)=1,f2(2)=f(1)=0,f3(2)=f(0)=2,∴f n(2)的值具有周期性,且周期为3,∴f2 019(2)=f3×673(2)=f3(2)=2,故选C.(2)∵f(x+2)=f(x),∴函数f(x)的周期T=2,∵当x∈[0,2)时,f(x)=2x-x2,∴f(0)=0,f(1)=1,∴f(0)=f(2)=f(4)=…=f(2 018)=0,f(1)=f(3)=f(5)=…=f(2 019)=1.故f(0)+f(1)+f(2)+…+f(2 019)=1 010.答案:(1)C(2)1 010通性通法:1.判断函数周期性的2个方法(1)定义法.(2)图象法.2.周期性3个常用结论(1)若f(x+a)=-f(x),则T=2a.(2)若f(x+a)=1f(x),则T=2a.(3)若f(x+a)=-1f(x),则T=2a(a>0).题型三函数性质的综合应用函数的奇偶性、周期性以及单调性是函数的三大性质,在高考中常常将它们综合在一起命制试题,其中奇偶性多与单调性相结合,而周期性常与抽象函数相结合,并以结合奇偶性求函数值为主.多以选择题、填空题形式出现.角度一:奇偶性的应用1.函数y=f(x)是R上的奇函数,当x<0时,f(x)=2x,则当x>0时,f(x)=()A.-2x B.2-xC.-2-x D.2x解析:选C x>0时,-x<0,∵x<0时,f(x)=2x,∴当x>0时,f(-x)=2-x.∵f(x)是R上的奇函数,∴当x>0时,f(x)=-f(-x)=-2-x.故选C.角度二:单调性与奇偶性结合2.已知f(x)为奇函数,且当x>0时,f(x)单调递增,f(1)=0,若f(x-1)>0,则x的取值范围为()A.{x|0<x<1或x>2}B.{x|x<0或x>2}C.{x|x<0或x>3} D.{x|x<-1或x>1}解析:选A因为函数f(x)为奇函数,所以f(-1)=-f(1)=0,又函数f(x)在(0,+∞)上单调递增,所以可作出函数f(x)的示意图,如图,则不等式f(x-1)>0可转化为-1<x-1<0或x-1>1,解得0<x<1或x>2.角度三:周期性与奇偶性结合3.定义在R上的偶函数f(x)满足f(x+3)=f(x).若f(2)>1,f(7)=a,则实数a的取值范围为()A.(-∞,-3) B.(3,+∞)C.(-∞,-1) D.(1,+∞)解析:选D∵f(x+3)=f(x),∴f(x)是定义在R上的以3为周期的函数,∴f(7)=f(7-9)=f(-2).又∵函数f(x)是偶函数,∴f(-2)=f(2),∴f(7)=f(2)>1,∴a>1,即a∈(1,+∞).角度四:单调性、奇偶性与周期性结合4.定义在R上的奇函数f(x)满足f(x+2)=-f(x),且在[0,2)上单调递减,则下列结论正确的是()A.0<f(1)<f(3) B.f(3)<0<f(1)C.f(1)<0<f(3) D.f(3)<f(1)<0解析:选C由函数f(x)是定义在R上的奇函数,得f(0)=0.由f(x+2)=-f(x),得f(x+4)=-f(x+2)=f(x),故函数f(x)是以4为周期的周期函数,所以f(3)=f(-1).又f(x)在[0,2)上单调递减,所以函数f(x)在(-2,2)上单调递减,所以f(-1)>f(0)>f(1),即f(1)<0<f(3).故选C.通性通法:函数性质综合应用问题的常见类型及解题策略(1)函数单调性与奇偶性结合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.。

(完整版)函数的基础知识大全(完整)(包括函数在高考中所有考点知识)

(完整版)函数的基础知识大全(完整)(包括函数在高考中所有考点知识)

函数基础知识大全§1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.3.两个函数的相等:函数的定义含有三个要素,即定义域A 、值域C 和对应法则f .当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定.因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数. §1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法. 1.函数的三种表示法(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式.(2)列表法:就是列出表格来表示两个变量的函数关系. (3)图象法:就是用函数图象表示两个变量之间的关系. 2.求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法; (3)已知函数图像,求函数解析式;(4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式解方程组法; (5)应用题求函数解析式常用方法有待定系数法等. 求函数解析式的常用方法: 1、换元法( 注意新元的取值范围)2、待定系数法(已知函数类型如:一次、二次函数、反比例函数等)3、整体代换(配凑法) 4.赋值法:3.映射的定义:一般地,设A 、B 是两个集合,如果按照某种对应关系f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,那么,这样的对应(包括集合A 、B ,以及集合A 到集合B 的对应关系f )叫做集合A 到集合B 的映射,记作f :A →B.由映射和函数的定义可知,函数是一类特殊的映射,它要求A 、B 非空且皆为数集.4.映射的概念中象、原象的理解:(1) A 中每一个元素都有象;(2)B 中每一个元素不一定都有原象,不一定只一个原象;(3)A 中每一个元素的象唯一。

函数的基本性质详细知识点及题型分类(含课后作业)

函数的基本性质详细知识点及题型分类(含课后作业)

《函数的基本性质》专题复习(一)函数的单调性与最值★知识梳理一、函数的单调性1、定义:设函数)(x f y =的定义域为A ,区间A I ⊆如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f <,那么就说)(x f y =在区间I 上是 ,I 称为)(x f y =的 。

如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f >,那么就说)(x f y =在区间I 上是 ,I 称为)(x f y =的 。

2、单调性的简单性质:①奇函数在其对称区间上的单调性相同; ②偶函数在其对称区间上的单调性相反; ③在公共定义域内:增函数+)(x f 增函数)(x g 是增函数; 减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数; 减函数-)(x f 增函数)(x g 是减函数。

3、判断函数单调性的方法步骤:利用定义证明函数f (x )在给定的区间D 上的单调性的一般步骤:○1 任取x 1,x 2∈D ,且x 1<x 2; ○2 作差f (x 1)-f (x 2); ○3 变形(通常是因式分解和配方);○4 定号(即判断差f (x 1)-f (x 2)的正负);○5 下结论(即指出函数f (x )在给定的区间D 上的单调性)。

★热点考点题型探析 考点1 判断函数的单调性【例】试用函数单调性的定义判断函数2()1f x x =-在区间(1,+∞)上的单调性.【巩固练习】证明:函数2()1xf x x =-在区间(0,1)上的单调递减.考点2 求函数的单调区间1.指出下列函数的单调区间:(1)|1|y x =-; (2)22||3y x x =-++.2. 已知二次函数2()22f x x ax =++在区间(-∞,4)上是减函数,求a 的取值范围.【巩固练习】1.函数26y x x =-的减区间是( ).A . (,2]-∞ B. [2,)+∞ C. [3,)+∞ D. (,3]-∞2.在区间(0,2)上是增函数的是( ).A. y =-x +1B. yC. y = x 2-4x +5D. y =2x3. 已知函数f (x )在-1∞(,)上单调递减,在[1+∞,)单调递增,那么f (1),f (-1),f 之间的大小关系为 .4.已知函数)(x f 是定义在]1,1[-上的增函数,且)31()1(x f x f -<-,求x 的取值范围.5. 已知二次函数2()22f x ax x =++在区间(-∞,2)上具有单调性,求a 的取值范围.二、函数的最大(小)值:1、定义:设函数)(x f y =的定义域为A如果存在定值A x ∈0,使得对于任意A x ∈,有)()(0x f x f ≤恒成立,那么称)(0x f 为)(x f y =的 ;如果存在定值A x ∈0,使得对于任意A x ∈,有)()(0x f x f ≥恒成立,那么称)(0x f 为)(x f y =的 。

函数的基本性质

函数的基本性质

题型方法
一、函数的单调性及其应用 1.判断函数单调性(单调区间)的常用方法 (1)定义法:先求定义域,再根据取值、作差、变形、定号的顺序得结论. (2)图象法:若函数是以图象形式给出的,或者函数的图象可作出,可由图象的升、降判断它的单调 性或写出单调区间. (3)复合函数法:根据“同增异减”判断,即内外层函数的单调性相同时,为增函数,单调性不同时为 减函数. (4)导数法:先求导,再利用导数的正负,确定函数的单调性(区间). (5)性质法:①在公共定义域内,增+增=增,减+减=减,增-减=增,减-增=减; ②已知f(x)单调递增,若k>0,则kf(x)单调递增;若k<0,则kf(x)单调递减.
例3
已知函数f(x)=asin
x+b
3
x
+cx+1,若f(ln
2)=4,则
ቤተ መጻሕፍቲ ባይዱ
f
ln
1 2
的值为
(
)
A.4 B.-1 C.-2 D.-3
解析 设g(x)=asin x+b 3 x +cx,x∈R,则g(-x)=asin(-x)+b 3 x +c(-x)=-asin x-b 3 x -cx=-(asin x+b 3 x +cx)
x
y2+…+y6=
.
答案 12
四、函数周期性问题的求解策略 1.周期函数的几个结论 若对于函数f(x)定义域内的任意一个x都有: (1)f(x+a)=f(x-a),则函数的周期为2a; (2)f(x+a)=-f(x),则函数的周期为2a;
(3)f(x+a)=- 1 (f(x)≠0),则函数的周期为2a;

高一数学《函数的性质》知识点总览

高一数学《函数的性质》知识点总览

高一数学《函数的性质》知识点总览一、函数的定义和性质函数是一种特殊的关系,它将一个集合中的每个元素都对应到另一个集合中的唯一元素上。

函数的定义包括定义域、值域和对应关系,并具有以下性质:1. 定义域和值域:函数的定义域是指能够使函数有意义的自变量的取值范围,而值域是函数在定义域上所有可能输出的取值范围。

2. 单调性:函数在定义域上的单调性分为增函数和减函数,根据函数的导数或几何意义可以判断函数的单调性。

3. 奇偶性:函数的奇偶性由函数的对称性决定,若函数满足f(-x) =f(x),则函数为偶函数;若函数满足f(-x) = -f(x),则函数为奇函数。

4. 周期性:函数如果存在正数T,对于定义域上的每个x,都有f(x+T) = f(x),则称函数具有周期性,T称为函数的周期。

二、函数的图像和性质函数的图像是函数在直角坐标系中的几何表示。

通过对函数图像的观察,可以获得以下性质:1. 零点:函数的零点是函数与x轴的交点,即满足f(x) = 0的x值。

2. 最值:函数的最大值和最小值分别是函数曲线上最高点和最低点的纵坐标值。

3. 对称轴:函数图像的对称轴是与函数曲线关于该轴对称的一条直线。

4. 渐近线:函数图像的渐近线是与函数曲线无限靠近而没有交点的直线。

三、函数的运算函数之间可以进行加、减、乘、除等运算,并且还可以进行复合运算。

常见的函数运算有:1. 两个函数的和差:设有函数f(x)和g(x),则它们的和函数为h(x) = f(x) + g(x),差函数为k(x) = f(x) - g(x)。

2. 函数与常数的乘积:设有函数f(x)和常数a,则它们的乘积函数为p(x) = a · f(x)。

3. 函数的乘积:设有函数f(x)和g(x),则它们的乘积函数为q(x) = f(x) · g(x)。

4. 函数的商:设有函数f(x)和g(x),其中g(x) ≠ 0,则它们的商函数为r(x) = f(x) / g(x)。

《高等数学》函数考点精讲与例题解析

《高等数学》函数考点精讲与例题解析

《高等数学》函数考点精讲与例题解析 第一部分 函数 极限 连续函数是微积分的研究对象,极限是微积分的理论基础,而连续性是可导性与可积性的重要条件。

它们是每年必考的内容之一。

第一节 函 数内容考点一、函数的定义给定两个非空数集D 和M ,若有对应法则f ,使得对于D 内的每一个x ,都有唯一确定的M y ∈与之对应,则称f 是定义在数集D 上的函数,记作)(x f y =,D x ∈,数集D 成为函数的定义域,)(D)(M f ⊂称为值域。

【考点一】会求函数的定义域及其表达式,特别是复合函数的定义域。

二、函数的奇偶性(1)首先必须要求函数的定义域关于原点对称。

例如,)(x f y =的定义域为),(a a -)0(>a 关于原点对称。

(2)验证对于任),(a a x -∈,都有)()(x f x f =-,称)(x f 为偶函数;偶函数)(x f 的图形关于y 轴对称。

(3)验证若对于任),(a a x -∈都有)()(x f x f -=-,称)(x f 为奇函数;奇函数)(x f 的图形关于坐标原点对称。

【考点二】会判定函数)(x f 的奇偶性,不管)(x f 的具体形式是什么,都需要计算)(x f -的值。

如果)()(x f x f =-,则由定义知)(x f 为偶函数;如果)()(x f x f -=-,则由定义知)(x f 为奇函数。

三、函数的周期性对函数)(x f y =,若存在常数0>T ,使得对于定义域的每一个x ,T x +仍在定义域内,且有)()(x f T x f =+,则称函数)(x f y =为周期函数,T 称为)(x f 的周期。

【考点三】判断函数是否为周期函数,主要方法是根据周期函数的定义,要先找到一个非零常数T ,计算是否有等式)()(x f T x f =+成立。

特别要求掌握三角函数的周期性四、函数的有界性设函数)(x f y =在数集X 上有定义,若存在正数M ,使得对于每一个X x ∈,都有M x f ≤)( 成立,称)(x f 在X 上有界,否则,即这样的M 不存在,称)(x f 在X 上无界。

《函数的基本性质》知识总结大全

《函数的基本性质》知识总结大全

《函数的基本性质》知识总结大全第一篇:《函数的基本性质》知识总结大全《函数的基本性质》知识总结1.单调性函数的单调性是研究函数在定义域内某一范围的图象整体上升或下降的变化趋势,是研究函数图象在定义域内的局部变化性质。

⑴函数单调性的定义一般地,设函数y=f(x)的定义域为A,区间I⊆A.如果对于区间I 上是单调增函数,I称为内的______两个值x1,x2,当x1x1,x2,当x1∈M,当x1<x2时,有f(x1)-f(x2)<0f(x1)-f(x2)∆y⇔(x1-x2)⋅[f(x1)-f(x2)]>0⇔>0⇔>0; x1-x2∆x②f(x)在区间M上是减函数⇔∀x1,x2∈M,当x1<x2时,有f(x1)-f(x2)>0f(x1)-f(x2)∆y<0⇔<0;⇔(x1-x2)⋅[f(x1)-f(x2)]<0⇔x1-x2∆x①f(x)在区间M上是增函数⇔∀x1,x2⑵函数单调性的判定方法①定义法;②图像法;③复合函数法;④导数法;⑤特值法(用于小题),⑥结论法等.注意:①定义法(取值——作差——变形——定号——结论):设x1,x2∈[a,b]且x1≠x2,那么f(x1)-f(x2)>0⇔f(x)在区间[a,b]上是增函数;x1-x2f(x1)-f(x2)<0⇔f(x)在区间[a,b]上是减函数。

(x1-x2)⋅[f(x1)-f(x2)]<0⇔x1-x2(x1-x2)⋅[f(x1)-f(x2)]>0⇔②导数法(选修):在反之,f(x)区间(a,b)内处处可导,若总有f'(x)>0(f'(x)<0),则f(x)在区间(a,b)内为增(减)函数;f(x)在区间(a,b)内为增(减)函数,且处处可导,则f'(x)≥0(f'(x)≤0)。

请注意两者之间的区别,可以“数形结合法”研究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《函数的基本性质》专题复习(一)函数的单调性与最值★知识梳理一、函数的单调性1、定义:设函数的定义域为,区间如果对于区间内的任意两个值,,当时,都有,那么就说在区间上是 ,称为的 。

如果对于区间内的任意两个值,,当时,都有,那么就说在区间上是 ,称为的 。

2、单调性的简单性质:①奇函数在其对称区间上的单调性相同; ②偶函数在其对称区间上的单调性相反; ③在公共定义域内:增函数+)(x f 增函数)(x g 是增函数; 减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数; 减函数-)(x f 增函数)(x g 是减函数。

3、判断函数单调性的方法步骤:利用定义证明函数f (x )在给定的区间D 上的单调性的一般步骤:○1 任取x 1,x 2∈D ,且x 1<x 2; ○2 作差f (x 1)-f (x 2); ○3 变形(通常是因式分解和配方); ○4 定号(即判断差f (x 1)-f (x 2)的正负);○5 下结论(即指出函数f (x )在给定的区间D 上的单调性)。

★热点考点题型探析 考点1 判断函数的单调性【例】试用函数单调性的定义判断函数2()1f x x =-在区间(1,+∞)上的单调性.)(x f y =A A I ⊆I 1x 2x 21x x <)()(21x f x f <)(x f y =I I )(x f y =I 1x 2x 21x x <)()(21x f x f >)(x f y =I I )(x f y =【巩固练习】证明:函数2()1xf x x =-在区间(0,1)上的单调递减.考点2 求函数的单调区间1.指出下列函数的单调区间:(1)|1|y x =-; (2)22||3y x x =-++.2. 已知二次函数2()22f x x ax =++在区间(-∞,4)上是减函数,求a 的取值范围.【巩固练习】1.函数26y x x =-的减区间是( ).A . (,2]-∞ B. [2,)+∞ C. [3,)+∞ D. (,3]-∞2.在区间(0,2)上是增函数的是( ).A. y =-x +1B. y y = x 2-4x +5 D. y =2x3. 已知函数f (x )在-1∞(,)上单调递减,在[1+∞,)单调递增,那么f (1),f (-1),f 之间的大小关系为 .4.已知函数)(x f 是定义在]1,1[-上的增函数,且)31()1(x f x f -<-,求x 的取值范围.5. 已知二次函数2()22f x ax x =++在区间(-∞,2)上具有单调性,求a 的取值范围.二、函数的最大(小)值:1、定义:设函数的定义域为如果存在定值,使得对于任意,有恒成立,那么称为的 ;如果存在定值,使得对于任意,有恒成立,那么称为的 。

2、利用函数单调性的判断函数的最大(小)值的方法:○1 利用二次函数的性质(配方法)求函数的最大(小)值; ○2 利用图象求函数的最大(小)值; ○3 利用函数单调性的判断函数的最大(小)值: 如果函数y =f (x )在区间[a ,b ]上单调递增,在区间[b ,c ]上单调递减则函数y =f (x )在x =b 处有最大值f (b );如果函数y =f (x )在区间[a ,b ]上单调递减,在区间[b ,c ]上单调递增则函数y =f (x )在x =b 处有最小值f (b );考点3 函数的最值【例】求函数25332,[,]22y x x x =--∈-的最大值和最小值:【巩固练习】1.函数42y x =-在区间 []3,6上是减函数,则y 的最小值是___________.2. 23()1,[0,]2f x x x x =++∈已知函数的最大(小)值情况为( ).A. 有最大值34,但无最小值B. 有最小值34,有最大值1C. 有最小值1,有最大值194D. 无最大值,也无最小值4. 已知函数322+-=x x y 在区间],0[m 上有最大值3,最小值2,求m 的取值范围.)(x f y =A A x ∈0A x ∈)()(0x f x f ≤)(0x f )(x f y =A x ∈0A x ∈)()(0x f x f ≥)(0x f )(x f y =3. 某商人如果将进货单价为8元的商品按每件10元售出时,每天可售出100件. 现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每件提价1元,其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚得的利润最大?并求出最大利润.(二)函数的奇偶性★知识梳理 函数的奇偶性1、定义:①对于函数的定义域内任意一个,都有〔或〕,则称为奇函数. 奇函数的图象关于原点对称。

②对于函数的定义域内任意一个,都有〔或〕,则称为偶函数. 偶函数的图象关于轴对称。

2、函数奇偶性的性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇±奇=奇, 偶±偶=偶,奇±偶=非奇非偶, 奇⨯奇=偶,奇÷奇=偶, 偶⨯偶=偶,偶÷偶=偶, 奇×偶=奇,奇÷偶=奇 非零常数×奇=奇, 非零常数×偶=偶。

3、利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2 确定f (-x )与f (x )的关系; ○3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数; 若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。

★热点考点题型探析 考点1 判断函数的奇偶性【例】判断下列函数的奇偶性:)(x f x )()(x f x f -=-0)()(=+-x f x f )(x f )(x f x )()(x f x f =-0)()(=--x f x f )(x f y(1)31()f x x x=-; (2)()|1||1|f x x x =-++;(3)23()f x x x =-.考点2 函数的奇偶性综合应用【例1】已知()f x 是奇函数,()g x 是偶函数,且1()()1f xg x x -=+,求()f x 、()g x .【例2】已知()f x 是偶函数,0x ≥时,2()24f x x x =-+,求0x <时()f x 的解析式.【例3】设函数()f x 是定义在R 上的奇函数,且在区间(,0)-∞上是减函数。

试判断函数()f x 在区间(0,)+∞上的单调性,并给予证明。

【巩固练习】1.函数(||1)y x x =- (|x |≤3)的奇偶性是( ).A .奇函数 B. 偶函数 C. 非奇非偶函数 D. 既奇又偶函数2.若奇函数()f x 在[3, 7]上是增函数,且最小值是1,则它在[7,3]--上是( ). A. 增函数且最小值是-1 B. 增函数且最大值是-1 C. 减函数且最大值是-1 D. 减函数且最小值是-13.若偶函数在上是增函数,则下列关系式中成立的是( )A .;B .;C .;D .4. 设是上的奇函数,,当时,,则为()f x (,1)-∞-3()(1)(2)2f f f -<-<3(1)()(2)2f f f -<-<3(2)(1)()2f f f <-<-3(2)()(1)2f f f <-<-)(x f ),(+∞-∞0)()2(=++x f x f 10≤≤x x x f =)()5.7(f5.已知53()8f x x ax bx =++-,(2)10f -=,则(2)f = .6.已知函数()f x 是R 上的奇函数,当0x >时,()(1)f x x x =-。

求函数()f x 的解析式。

课后练习一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)。

1.下面说法正确的选项( ) A .函数的单调区间可以是函数的定义域B .函数的多个单调增区间的并集也是其单调增区间C .具有奇偶性的函数的定义域定关于原点对称D .关于原点对称的图象一定是奇函数的图象 2.在区间上为增函数的是( ) A . B .C .D .3.函数是单调函数时,的取值范围( ) A .B .C .D .4.如果偶函数在具有最大值,那么该函数在有( )A .最大值B .最小值C .没有最大值D . 没有最小值 5.函数,是( )A .偶函数B .奇函数C .不具有奇偶函数D .与有关6.函数在和都是增函数,若,且那么( )A .B .C .D .无法确定7.函数在区间是增函数,则的递增区间是( ) A .B .C .D .8.函数在实数集上是增函数,则 ( )A .21->kB .21-<k C . D .9.定义在R 上的偶函数,满足,且在区间上为递增,则( ) A .B .C .D .10.已知在实数集上是减函数,若,则下列正确的是( )A .B .C .D .二、填空题:请把答案填在题中横线上(每小题6分,共24分). 11.函数在R 上为奇函数,且,则当,.12.函数,单调递减区间为 ,最大值和最小值的情况为 .13.定义在R 上的函数(已知)可用的=和来表示,且为奇函数,为偶函数,则= .14.构造一个满足下面三个条件的函数实例,①函数在上递减;②函数具有奇偶性;③函数有最小值为; . 三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分). 15.(12分)已知,求函数得单调递减区间.16.(12分)判断下列函数的奇偶性 ①; ②;③;17.(12分)已知8)(52017--+=xbax x x f ,10)2(=-f ,求)2(f .18.(12分))函数)(),(x g x f 在区间[]b a ,上都有意义,且在此区间上①为增函数,;②为减函数,.判断)()(x g x f 在[]b a ,的单调性,并给出证明.19.(14分)在经济学中,函数)(x f 的边际函数为)(x Mf ,定义为)()1()(x f x f x Mf -+=,某公司每月最多生产100台报警系统装置。

生产x 台的收入函数为2203000)(x x x R -=(单位元),其成本函数为4000500)(+=x x C (单位元),利润的等于收入与成本之差。

相关文档
最新文档