九年级数学上册第章一元二次方程解一元二次方程配方法学案新人教
人教版九年级数学上册《解一元二次方程—配方法》优秀教学设计设计

人教版九年级数学上册《解一元二次方程—配方法》优秀教学设计设计一. 教材分析人教版九年级数学上册《解一元二次方程—配方法》这一节,主要让学生掌握利用配方法解一元二次方程的方法。
教材通过引入具体的一元二次方程,引导学生发现解方程的规律,从而总结出配方法解一元二次方程的一般步骤。
教材内容由浅入深,逐步引导学生掌握解题技巧,培养学生的逻辑思维能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对一元二次方程有了初步的了解。
但在解一元二次方程方面,部分学生可能还停留在试错阶段,没有形成系统的解题方法。
因此,在教学过程中,需要关注学生的个体差异,引导他们发现解题规律,提高解题效率。
三. 教学目标1.知识与技能:使学生掌握配方法解一元二次方程的基本步骤和方法。
2.过程与方法:通过观察、分析、归纳,培养学生发现解题规律的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.重点:配方法解一元二次方程的步骤及应用。
2.难点:如何引导学生发现配方法的解题规律。
五. 教学方法1.引导发现法:通过设置问题,引导学生观察、分析、归纳,发现解题规律。
2.案例教学法:以具体的一元二次方程为例,演示配方法解题过程。
3.小组合作学习:鼓励学生分组讨论,共同探索解题方法。
六. 教学准备1.准备相关的一元二次方程案例。
2.制作课件,展示解题过程。
3.准备练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)利用一个简单的一元二次方程,引导学生回顾已知的解题方法,为新课的学习做好铺垫。
2.呈现(15分钟)展示一个具体的一元二次方程,让学生尝试利用已知的解题方法进行求解。
在学生解题过程中,教师引导学生观察、分析,发现解题规律。
3.操练(15分钟)让学生分组合作,运用配方法解一元二次方程。
教师巡回指导,解答学生遇到的问题。
4.巩固(10分钟)呈现一组类似的一元二次方程,让学生独立运用配方法进行解答。
(秋)九年级数学上册 用配方法解一元二次方程学案 (新版)新人教版

用配方法解一元二次方程【学习目标】1.掌握配方法和指导过程,能使用配方法解一元二次方程.2.通过降次的思想解方程,掌握一些转化的技能.【学习重点】配方法的解题步骤.【学习难点】用配方法解系数不为1的一元二次方程.情景导入 生成问题旧知回顾:1.填空:(1)x 2+6x +9=(x +3)2; (2)x 2-5x +⎝ ⎛⎭⎪⎫522=⎝ ⎛⎭⎪⎫x -522; (3)x 2+x +⎝ ⎛⎭⎪⎫122=⎝ ⎛⎭⎪⎫x +122. 2.若x 2-mx +64是一个完全平方式,那么m 的值是±16.自学互研 生成能力知识模块一 用配方法解二次项系数为1的一元二次方程【自主探究】阅读教材P 6第2个“探究”至P 7,完成下面的内容:解方程:x 2+6x +4=0. 解:移项,得x 2+6x =-4. 两边都加上9即⎝ ⎛⎭⎪⎫622,使左边配成x 2+2bx +b 2的形式,得 x 2+6x +9=-4+9.左边写成平方形式,得(x +3)2=5.开平方,得降次),即解一次方程,得归纳:通过配成完全平方形式的方法,叫做配方法.配方是为了降次,把一个一元二次方程化成两个一元一次方程来解.范例:用配方法解下列方程:x 2-4x -2=0解:移项,得x 2-4x =2配方,得x 2-4x +4=2+4即(x -2)2=6两边开平方,得x -2=±6,∴x 1=6+2,x 2=-2+2【合作探究】仿例:用配方法解下列方程:x 2-23x =4 解:配方,得x 2-23x +19=4+19,即⎝ ⎛⎭⎪⎫x -132=379;∴x-13=±373,∴x 1=1+373,x 2=1-373. 知识模块二 用配方法解二次项系数不为1的一元二次方程【自主探究】阅读教材P 8,完成下面的内容:范例:用配方法解下列方程:2x 2-6x +9=0.解:移项,得2x 2-6x =-9.二次项系数化为1,得x 2-3x =-92. 配方,得x 2-3x +⎝ ⎛⎭⎪⎫322=-92+⎝ ⎛⎭⎪⎫322. 即⎝ ⎛⎭⎪⎫x -322=-94. 因为实数的平方不会是负数,所以x 取任何实数时,⎝ ⎛⎭⎪⎫x -322都是非负数,上式都不成立,即原方程无实数根. 【合作探究】归纳:一般地,如果一个一元二次方程通过配方转化成(x +n)2=p 的形式,那么就有:(1)当p>0时,方程有两个不相等的实数根;(2)当p =0时,方程有两个相等的实数根;(3)当p<0时,方程无实数根.仿例:用配方法解方程.23x 2+13x -2=0 解:整理,得2x 2+x -6=0,移项,得2x 2+x =6二次项系数化为1,得x 2+12x =3 配方,得x 2+12x +116=3+116即⎝ ⎛⎭⎪⎫x +142=4916两边开平方,得x +14=±74∴x 1=32,x 2=-2交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 用配方法解二次项系数为1的一元二次方程知识模块二 用配方法解二次项系数不为1的一元二次方程当堂检测 达成目标 【当堂检测】1.用配方法解方程2x 2-5x =1时,方程的两边都应加上( D ) A .52 B .54 C .54 D .5162.x 2+6x +9=(x +3)2;x 2-5x +254=⎝ ⎛⎭⎪⎫x -522. 3.无论x 、y 取任何实数,多项式x 2+y 2-2x -4y +16的值总是正数.4.用配方法解方程.(1)x 2-2x -2=0;(2)x 2+3=23x ;(3)9y 2-18y -4=0;(4)6x 2-x =12.解:(1)x 1=1-3,x 2=1+3;(2)x 1=x 2=3;(3)y 1=1-133,y 2=1+133;(4)x 1=32,x 2=-43. 【课后检测】见学生用书课后反思 查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。
新人教版九年级数学上册:《配方法解一元二次方程》教学案

一元二次方程的解法——配方法教学目标:1、掌握用配方法解数字系数的一元二次方程.2、使学生掌握配方法的推导过程,熟练地用配方法解一元二次方程。
3.在配方法的应用过程中体会 “转化”的思想,掌握一些转化的技能。
重点难点:使学生掌握配方法,解一元二次方程。
把一元二次方程转化为q p x =+2)( 教学过程:一、复习提问解下列方程,并说明解法的依据:(1)2321x -= (2)()2160x +-= (3) ()2210x --= 通过复习提问,指出这三个方程都可以转化为以下两个类型:()()()2200x b b x a b b =≥-=≥和根据平方根的意义,均可用“直接开平方法”来解,如果b < 0,方程就没有实数解。
如()212x -=-请说出完全平方公式。
()()22222222x a x ax a x a x ax a +=++-=-+。
二、引入新课我们知道,形如02=-A x 的方程,可变形为)0(2≥=A A x ,再根据平方根的意义,用直接开平方法求解.那么,我们能否将形如20x bx c ++=的一类方程,化为上述形式求解呢?这正是我们这节课要解决的问题.三、探索:1、例1、解下列方程:2x +2x =5; (2)2x -4x +3=0.思 考能否经过适当变形,将它们转化为()2= a 的形式,应用直接开方法求解? 解(1)原方程化为2x +2x +1=6, (方程两边同时加上1)_____________________,_____________________,_____________________.(2)原方程化为2x -4x +4=-3+4 (方程两边同时加上4) _____________________,_____________________,_____________________.三、归 纳上面,我们把方程2x -4x +3=0变形为()22x -=1,它的左边是一个含有未知数的完全平方式,右边是一个非负常数.这样,就能应用直接开平方的方法求解.这种解一元二次方程的方法叫做配方法.注意到第一步在方程两边同时加上了一个数后,左边可以用完全平方公式从而转化为用直接开平方法求解。
人教版九年级数学上册配方法解一元二次方程学案

人教版九年级数学上册配方法解一元二次方程学案课题:配方法解一元二次方程主备人:课型:新授备课时间:月日授课时间:月日审批人一、学习目标1.经历探究过程,会用配方法解较简单的一元二次方程(二次项系数为1).2.培养思考能力和探索精神.二、学习重点和难点重点:用配方法解一元二次方程.难点:方程的配方.三、学习过程(一)基本训练,巩固旧知1.完成下面的解题过程:(1)解方程:2x2-8=0; (2)解方程:3(x-1)2-6=0.归纳:(上述方程的解题思路)(二)【挑战自我】例1 解方程:(1)x2-4x+4=5. (2)解方程:9x2+6x+1=4;(3)解方程:x2+6x-16=0.归纳:(上述方程的解题思路)(三)【学以致用】试探练习,1.填空:(1)x2+2·x·2+ =(x+ )2; (2)x2-2·x·6+ =(x- )2;(3)x2+10x+ =(x+ )2;(4)x2-8x+ =(x- )2.2.完成下面的解题过程:(1)解方程:x2+4x-12=0. (2)解方程:x2-8x+1=0;解:移项,得 . 解:移项,得 .配方,得,配方,得, . .开平方,得,开平方,得,x1= ,x2= . x1= ,x2= .3.用配方法解方程:x2+10x+9=0.4.用配方法解方程:x2-6x+7=0.5.填空:(1)x2-2·x·3+ =(x- )2;(2)x2+2·x·4+ =(x+ )2;(3)x2-4x+ =(x- )2; (4)x2+14x+ =(x+ )2.四、【当堂检测】:1、下列方程是一元二次方程的是()(1)3x+2=5y-3 (2) x2=4 (3) 3x2-5x=0 (4) x2-4=(x+2) 2(5) ax2+bx+c=02.方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________.3.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是________.4.已知方程5x2+mx-6=0的一个根是x=3,则m的值为________.5.将二次三项式x2-4x+1配方后得().A.(x-2)2+3 B.(x-2)2-3 C.(x+2)2+3 D.(x+2)2-36.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是().A.x2-8x+(-4)2=31 B.x2-8x+(-4)2=1 C.x2+8x+42=1 D.x2-4x+4=-117.配方法解方程2x2-43x-2=0应把它先变形为().A.(x-13)2=89B.(x-23)2=0 C.(x-13)2=89D.(x-13)2=109。
人教版初中数学九年级上册《配方法解一元二次方程》教案

《配方法解一元二次方程》教案学习目标:1.理解配方的基本过程,会用配方法解一元二次方程;2.在探究如何对比完全平方公式进行配方的过程中,进一步加深对化归的数学思想的理解.学习重点:理解配方法及用配方法解一元二次方程.教学过程一、复习:直接开平方法解方程2 (3)5 x+=二、教学过程问题1怎样解方程2695 x x++=?问题2怎样解方程264 x x+=-?问题3怎样解方程2640 x x++=?师生活动:先让学生独立思考、合作学习,然后,教师组织交流,引导学生发现转化的规律。
问题4在第二步中为什么要加9?加其他的数字可以吗?请说明理由.师生活动:教师提出问题,学生思考讨论,发表意见,引导学生发现:要使方程左边化成完全平方式,对照完全平方式中一次项系数的特征可知,当二次项系数为1时,需要在二次式加上一次项系数一半的平方,而加其他数不能化成完全平方式,所以不行。
★配方法的意义:这种通过配成完全平方式形式解一元二次方程的方法,叫作配方法.问题5结合方程2640x x ++=的解答过程你能说出配方法解方程的一般步骤吗?要注意什么问题?用配方法解一元二次方程(一般形式)的步骤:(1)移项:把常数项移到方程的右边;(2)化二次项系数为1;(3)配方:方程两边都加上一次项系数一半的平方;(4)开方:根据平方根意义,方程两边开平方(5)求解:写出方程的解.222(1)810;(2)213;(3)3640x x x x x x -+=+=-+=四、互动体验,精程精讲方练解师生活动:学生独立完成,请学生演版,明确每一步的目的,给出规范格式。
五、小结1.用配方法解一元二次方程的基本思路是什么?2.用配方法解一元二次方程的一般步骤是什么?3.用配方法解一元二次方程的过程中应该注意什么问题?六、作业教科书第六页练习,第九页练习1,2七、板书设计。
人教版九年级数学上册《一元二次方程》导学案:21.2.1配方法

人教版九年级数学上册《一元二次方程》导学案21.2.1 配方法(第一课时)【学习目标】1.会用开平方法解形式为(x+a )2=b (b ≥0)的一元二次方程;2.掌握直接开平方法解一元二次方程的步骤.【知识梳理】1.如果一元二次方程能化成()02≥=p p x 的形式,应用直接开平方法可得=x .若x 2=4,则x= .2.如果一元二次方程能化成()()0,02≥≠=+p m p n mx 的形式,应用直接开平方法可得=x .若()712=+x ,那么x= . 【典型例题】知识点 用直接开平方法解一元二次方程1.我们知道x 2=25,根据平方根的意义,直接开平方得x=±5,如果x 换元为2t+1,即(2t+1)2=8,能否也用直接开平方的方法求解呢? 2.用直接开平方法解下列方程:①x-29=0 ②(x+5)2=9 ③16x 2-13=3 ④2(3x+2)2=23.定义新运算“*”,对于非零的实数,,b a 规定a *b =2b ,若2*()1-x =3,求x 的值.4. 若关于x 的方程m(x-3)2-q=0(m ≠0)无实数根,则mq_______0.(填“<”“>”或“=”>)【巩固训练】1.若x 2+10x+m 是一个完全平方式,则m 的值是( )A.25B.-25C.±25D.以上都不对2.用配方法解方程x 2+4x+4=0的根为( )A.2B.-2C.2或-2D.-43.已知关于x 的一元二次方程()c m x a =+2的解为2,321-==x x ,方程()c m x a =++22的解为 . 4.若x 2-4x+p=(x+q )2,那么p 、q 的值分别是( ).A .p=4,q=2B .p=4,q=-2C .p=-4,q=2D .p=-4,q=-25、解下列方程.(1)y 2-6y+9=0 (2)3x 2=5 (3)x 2-4x+4=1(4)x 2-10x=-25 (5)x 2=-4x-4 (6)9(y+3)2=16(7) 4x 2-121=0 (8) 4(2x-1)2-36=0【拓展延伸】6.某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m ),•另三边用木栏围成,木栏长40m .(1)鸡场的面积能达到180m 2吗?能达到200m 吗?(2)鸡场的面积能达到210m 2吗?人教版九年级数学上册《一元二次方程》导学案21.2.1 配方法(第二课时)【学习目标】1.理解配方法,会用配方法解二次项系数为1的一元二次方程;2.体会转化的思想.。
新人教版九年级数学上册:《解一元二次方程》教学学案

解一元二次方程学习目标:1、理解并掌握用直接开平方法、配方法、公式法、因式分解法解一元一次方程的方法2、选择适合的方法解一元二次方程要点、难点1、要点:用直接开平方法、配方法、公式法、因式分解法解一元一次方程2、难点:选择适合的方法解一元二次方程【课前预习】一、梳理知识1、解一元二次方程的基本思路是:将二次方程化为一次方程,即降次2、一元二次方程主要有四种解法,它们的理论依据和合用范围以下表:方法名称理论依据合用方程的形式直接开平方法平方根的定义x2p 或 (mx n)2p ( p 0)配方法完整平方公式全部的一元二次方程公式法配方法全部的一元二次方程两个因式的积等于0,一边是 0,另一边易于分解成两因式分解法那么这两个因式起码个一次因式的乘积的一元二次有一个等于 0方程3、一般考虑选择方法的次序是:直接开平方法、分解因式法、配方法或公式法二、用适合的方法解以下方程:1. x27x 02.x212x 273、X(x-2 ) +X-2=0 4.x2x 242236.4( x 2)29(2x 1)25、5x -2X- 41=x -2X+ 4【讲堂活动】活动 1:预习反应活动 2:典型例题1.用直接开方法解方程:⑴ 36x21 0⑵ 4x281⑶ x 5 216⑷ x22x 1 42.用因式分解法解方程:⑴ x2x 0⑵ 4x2121 0⑶ 3 2x 1 x 2x 1 0⑷ x 42 5 2x 203.用配方法解方程:⑴x2 10x 16 0⑶3x2 6x 5 04.用公式法解方程:⑴ x2x 120⑶ x 24x 8 2x 11x 2 x3⑵4⑷ 4x2x 90x 22x1⑵4⑷x x 4 2 8x⑸ x22x 0活动 3:讲堂小结解一元一次方程的方法:【课后稳固】1.用直接开方法解方程:⑴ 4x29 0⑶9 x 2212.用因式分解法解方程:⑴ x22 3x 0⑶ 5 x21 x232x2 x44⑹ x22 5x 10 0⑵x 221⑷x22x 1 4⑵ 3x 2x 1 4x 2⑷ 2x123 x23.用配方法解方程:⑴ x28x 1 0⑵ 2x21 3x⑶ 3x26x 4 0⑷ x 210x 9 0⑸ 3x26x 4 0⑹ x x 4 8x 124.用公式法解方程:⑴ x2x 1 0⑵ x23x1 0⑶ 3x26x 2 04⑷ 4x26x 0⑸ x24x 8 4x 11⑹ x 2x 4 58x21.2 解一元二次方程( 2)【学习目标】1 、理解一元二次方程求根公式的推导过程,认识公式法的观点,会娴熟应用公式法解一元二次方程.2、复习详细数字的一元二次方程配方法的解题过程,引入 ax2+bx+c=0( a≠0)的求根公式的推导公式,并应用公式法解一元二次方程.【学习要点】求根公式的推导和公式法的应用.【学习难点】一元二次方程求根公式法的推导.【学习过程】一、知识回首1.用配方法解以下方程( 1) 6x2-7x+1=0(2)4x2-3x=522.用配方法解一元二次方程的步骤.二、研究新知【研究】假如一元二次方程是一般形式 ax2+bx+c=0( a≠ 0),请用配方法的步骤求出它的根?解:移项,得:,二次项系数化为1,得配方,得:即∵a≠ 0,∴ 4a2>0,式子 b2-4ac 的值有以下三种状况:( 1)当 b2-4ac > 0 时,则 x1=,x2=( 2)当 b2-4ac=0 时,则此时方程的根为( 3)当 b2-4ac < 0 时,则方程实数根定义:一般地,式子叫做一元二次方程ax2+bx+c=0( a≠ 0)根的鉴别式 . 往常用“△”表示,即概括:当△ >0 时,一元二次方程ax 2+bx+c=0( a≠ 0) ?有实数根;当△ =0时,一元二次方程ax2+bx+c=0 (a≠ 0)有实数根;当△ <0 时,一元二次方程2ax +bx+c=0(a≠ 0)实数根.定义:当△≥ 0 时,一元二次方程ax2+bx+c=0 ( a≠ 0)的实数根可写为的形式,这个式子叫做一元二次方程的求根公式.叫公式法.利用求根公式解一元二次方程的方法【例题解说】例 2.用公式法解以下方程.( 1) x2― 4x― 7=0( 2)x2 2 2x 2( 3) 5x2-3x=x+1( 4)x2+17=8x三、稳固练习教材 P12 练习 1教材 P12 练习 2四、讲堂小结1.本节课你有什么收获?2.你还有哪些疑问?五、当堂清一、选择题1.用公式法解方程4x2-12x=3 ,获得().A. x= 36 B . x=36 C . x=3 2 3D . x=32 322222.方程 2 x2+4 3 x+62=0 的根是().1, 23B.x 1,212, 2212=-6A.x = 2x ==6x = 2 C.x =2x = D.x =x3、方程 x2-4x+4=0的根的状况是()A 有两个不相等的实数根B 有两个相等的实数根C有一个实数根D没有实数根二、填空题4 .一元二次方程 ax 2+bx+c=0(a ≠ 0)的求根公式是 ________,条件是 ________.5 .当 x=______ 时,代数式 x 2 -8x+12 的值是 -4 . 三、解答题6、利用鉴别式判断以下方程的根的状况: (1) 2x 2-3x-3=0(2) 16x 2-24x+9=027、用公式法解方程.x 2x 1参照答案: 1.D 2.D 3.B 4b b 24ac2≥0 5 .4 6 .(1)有两个不. x=, b -4ac2a相等的实数根(2)有两个相等的实数根7. .解: a=1, b=1, c=-1 .b2-4ac=1 2-4 × 1×( -1 ) =1+4=5.15(4 分)x=12 15x=2x 1=15, x 2=1522六、学习反省。
解一元二次方程(配方法)(导学案)九年级数学上册系列(人教版)

21.2.1 解一元二次方程(配方法)导学案1. 掌握用配方法解一元二次方程的基本步骤。
2. 通过配方法将一元二次方程变形,让学生进一步体会转化的思想,增强他们的数学应用意识和能力,激发学生学习的兴趣。
★知识点1:配方法解一元二次方程的步骤1)移项:将含有x的项移到方程的左边,常数项移到方程的右边;2)二次项系数化为1:两边同除以二次项的系数;3)配方:方程两边都加上一次项系数一半的平方;4)将原方程变成(x+n)2=p的形式;5)判断右边代数式的符号,若p≥0,可以利用直接开方法求解;若p<0,原方程无实数根。
【注意】配方的关键:利用已知两项a2±2ab来确定第三项,只要二次项系数为1,则第三项一定是b2 . ★知识点2:一般地,如果一个一元二次方程通过配方转化成(x+n)2=p ①的形式,那么就有:1)当p>0时,根据平方根的意义,方程①有两个不相等的实数根x1=-n-√p,x2=-n+ √p;2)当p=0时,方程①有两个相等的实数根x1=x2=-n;3)当p<0时,因为对于任意实数x,都有(x+n)2≥0,所以方程①无实数根。
1.配方法解一元二次方程的步骤1)移项:将含有x的项移到方程的_________,常数项移到方程的________;2)二次项系数化为1:两边同除以_______________;3)配方:方程_________都加上____________________;4)将原方程变成(x+n)2=p的形式;5)判断右边代数式的符号,若p______0,可以利用_______________求解;若p______0,原方程_____________实数根。
【注意】配方的关键:利用已知两项a2±2ab来确定第三项,只要二次项系数为1,则第三项一定是b2 .2.一般地,如果一个一元二次方程通过配方转化成(x+n)2=p ①的形式,那么就有:1)当p_____0时,根据平方根的意义,方程①有两个不相等的实数根_______________________;2)当p_____0时,方程①有两个相等的实数根_______________;3)当p_____0时,因为对于任意实数x,都有(x+n)2_____0,所以方程①______实数根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21.2.1 解一元二次方程——配方法一、温故知新 1.解方程:(1)(x -2)2-9=0;(2) x 2-6x+9=52.我们把形如222b ab a ++或222b ab a +-的二次三项式称为完全平方....式..已知下列各式均为完全平方式,请填空:(1)x 2+ 6x+ =(x+3)2(2)x 2-12x+ =(x- )2二、设问导读问题1: 怎样解方程x 2+6x+4=0?自学课本6页7页内容,可尝试独立完成框图问题2:典例解下列方程: (1)0182=+-x x(2)x x 3122=+(3)04632=+-x x归纳1:配方法解一元二次方程的步骤: 归纳2:一般地,如果一个一元二次方程通过配方转化成(x+n )²=p 的形式,那么就有: (1)当p>0时,方程有________实数根; (2)当p=0时,方程有________实数根; (3)当p>0时,方程________ ___.三、巩固训练1.用配方法解下列方程(1) 09102=++x x(2)0472=--x x(3) 04632=-+x x(4)112942-=-+x x x(5) 128)4(+=+x x x2..用配方法解下列方程时,配方正确的是( )A.方程x2-6x-5=0,可化为(x-3)2=4B.方程y2-2y-5=0,可化为(y-1)2=5C.方程a2+8a+9=0,可化为(a+4)2=25D.方程2x2-6x-7=0,可化为(x-32)2=2343.把一元二次方程x2-6x +4=0化成(x+n)2=m的形式时,m+n的值为( )A.8 B.6 C.3 D.24.若方程4x2-(m-2)x+1=0的左边是一个完全平方式,则m等于(B)A.-2 B.-或6C.-2或-6 D.2或-6四、拓展延伸当a为何值时,多项式a2+2a+18有最小值?并求出这个最小值.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.若二元一次方程组3,354x y x y +=⎧⎨-=⎩的解为,,x a y b =⎧⎨=⎩则-a b 的值为( ) A .1 B .3C .14-D .74【答案】D【解析】先解方程组求出74x y -=,再将,,x a y b =⎧⎨=⎩代入式中,可得解. 【详解】解:3,354,x y x y +=⎧⎨-=⎩①②+①②,得447x y -=,所以74x y -=,因为,,x a y b =⎧⎨=⎩所以74x y a b -=-=. 故选D. 【点睛】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a-b 的值,本题属于基础题型.2.下列图形中,既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个【答案】B【解析】解:第一个图是轴对称图形,又是中心对称图形;第二个图是轴对称图形,不是中心对称图形;第三个图是轴对称图形,又是中心对称图形;第四个图是轴对称图形,不是中心对称图形;既是轴对称图形,又是中心对称图形的有2个.故选B .3.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( ) A .3cm ,4cm ,8cm B .8cm ,7cm ,15cmC .13cm ,12cm ,20cmD .5cm ,5cm ,11cm 【答案】C【解析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】A 、3+4<8,不能组成三角形; B 、8+7=15,不能组成三角形; C 、13+12>20,能够组成三角形; D 、5+5<11,不能组成三角形. 故选:C . 【点睛】本题考查了三角形的三边关系,关键是灵活运用三角形三边关系.4.已知抛物线y=ax 2+bx+c 的图象如图所示,顶点为(4,6),则下列说法错误的是( )A .b 2>4acB .ax 2+bx+c≤6C .若点(2,m )(5,n )在抛物线上,则m >nD .8a+b=0【答案】C【解析】观察可得,抛物线与x 轴有两个交点,可得240b ac- ,即24b ac > ,选项A 正确;抛物线开口向下且顶点为(4,6)可得抛物线的最大值为6,即26ax bx c ++≤,选项B 正确;由题意可知抛物线的对称轴为x=4,因为4-2=2,5-4=1,且1<2,所以可得m<n ,选项C 错误; 因对称轴42bx a=-= ,即可得8a+b=0,选项D 正确,故选C. 点睛:本题主要考查了二次函数y=ax 2+bx+c 图象与系数的关系,解决本题的关键是从图象中获取信息,利用数形结合思想解决问题,本题难度适中. 5.如图,已知11(,)3A y ,2(3,)B y 为反比例函数1y x=图象上的两点,动点(,0)P x 在x 轴正半轴上运动,当线段AP 与线段BP之差达到最大时,点P 的坐标是( )A .1(,0)3B .4(,0)3C .8(,0)3【答案】D【解析】求出AB 的坐标,设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入求出直线AB 的解析式,根据三角形的三边关系定理得出在△ABP 中,|AP-BP|<AB ,延长AB 交x 轴于P′,当P 在P′点时,PA-PB=AB ,此时线段AP 与线段BP 之差达到最大,求出直线AB 于x 轴的交点坐标即可. 【详解】把11(,)3A y ,2(3,)B y 代入反比例函数1y x =,得:13y =,213y =, 11(,3),(3,)33A B ∴,在ABP ∆中,由三角形的三边关系定理得:AP BP AB -<,∴延长AB 交x 轴于P',当P 在P'点时,PA PB AB -=,即此时线段AP 与线段BP 之差达到最大, 设直线AB 的解析式是y kx b =+,把A ,B 的坐标代入得:133133k b k b ⎧=+⎪⎪⎨⎪=+⎪⎩,解得:101,3k b =-=, 1215x ->∴直线AB 的解析式是103y x =-+,当0y =时,103x =,即10(,0)3P ,故选D. 【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P 点的位置,题目比较好,但有一定的难度.6.如图,某小区计划在一块长为31m ,宽为10m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 1.若设道路的宽为xm ,则下面所列方程正确的是( )A .(31﹣1x )(10﹣x )=570B .31x+1C .(31﹣x )(10﹣x )=31×10﹣570D .31x+1【答案】A【解析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm ,根据草坪的面积是570m 1,即可列出方程:(31−1x)(10−x)=570, 故选A.7.﹣3的绝对值是( ) A .﹣3 B .3C .-13【答案】B【解析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-1|=1. 故选B . 【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.8.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( ) A .6折 B .7折C .8折D .9折【答案】B【解析】设可打x 折,则有1200×10x-800≥800×5%,解得x≥1. 即最多打1折. 故选B . 【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以2.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.9.如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a ,b ,c ,d 之间关系的式子中不正确的是( )A .a ﹣d =b ﹣cB .a+c+2=b+dC .a+b+1【答案】A 【解析】观察日历中的数据,用含a 的代数式表示出b ,c ,d 的值,再将其逐一代入四个选项中,即可得出结论.【详解】解:依题意,得:b =a+1,c =a+7,d =a+1.A 、∵a ﹣d =a ﹣(a+1)=﹣1,b ﹣c =a+1﹣(a+7)=﹣6,∴a ﹣d≠b ﹣c ,选项A 符合题意; B 、∵a+c+2=a+(a+7)+2=2a+9,b+d =a+1+(a+1)=2a+9,∴a+c+2=b+d ,选项B 不符合题意; C 、∵a+b+14=a+(a+1)+14=2a+15,c+d =a+7+(a+1)=2a+15,∴a+b+14=c+d ,选项C 不符合题意; D 、∵a+d =a+(a+1)=2a+1,b+c =a+1+(a+7)=2a+1,∴a+d =b+c ,选项D 不符合题意. 故选:A . 【点睛】考查了列代数式,利用含a 的代数式表示出b,c,d是解题的关键.10.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABCC.AB2=AD•AC D.AD AB AB BC=【答案】D【解析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【详解】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴AC ABAB AD=,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、ADAB=ABBC不能判定△ADB∽△ABC,故此选项符合题意.故选D.【点睛】点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.二、填空题(本题包括8个小题)11.农科院新培育出A、B两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量100 200501000200A出芽种子数96 1654919841965 发芽率0.960.830.980.980.98B出芽种子数96 1924869771946 发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;②随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98;③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是__________(只填序号).【答案】②③【解析】分析:根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以②中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.故答案为:②③.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键. 12.已知关于x,y的二元一次方程组2321x y kx y+=⎧⎨+=-⎩的解互为相反数,则k的值是_________.【答案】-1【解析】∵关于x,y的二元一次方程组23{+2=1①②+=-x y kx y的解互为相反数,∴x=-y③,把③代入②得:-y+2y=-1,解得y=-1,所以x=1,把x=1,y=-1代入①得2-3=k,即k=-1.故答案为-113.⊙O的半径为10cm,AB,CD是⊙O 的两条弦,且AB∥CD,AB=16cm,CD=12cm.则AB与CD之间的距离是cm.【答案】2或14【解析】分两种情况进行讨论:①弦AB 和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】①当弦AB和CD在圆心同侧时,如图,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF−OE=2cm;②当弦AB和CD在圆心异侧时,如图,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=14cm.∴AB与CD之间的距离为14cm或2cm. 故答案为:2或14.14.不等式组2012xxx-≤⎧⎪⎨-<⎪⎩的最大整数解是__________. 【答案】2【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.【详解】解:2012xxx-≤⎧⎪⎨-<⎪⎩①②,由不等式①得x≤1,由不等式②得x>-1,其解集是-1<x≤1,所以整数解为0,1,1,则该不等式组的最大整数解是x=1.故答案为:1.【点睛】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.15.如图,直线y=x+2与反比例函数y =kx的图象在第一象限交于点P.若OP=10,则k的值为________.【答案】1【解析】设点P(m,m+2),∵OP=10,∴()222m m ++ =10,解得m 1=1,m 2=﹣1(不合题意舍去), ∴点P (1,1), ∴1=1k,解得k=1.点睛:本题考查了反比例函数与一次函数的交点坐标,仔细审题,能够求得点P 的坐标是解题的关键.16.分解因式:a 3-a= 【答案】(1)(1)a a a -+【解析】a 3-a=a(a 2-1)=(1)(1)a a a -+ 17.如图,平行于x 轴的直线AC 分别交抛物线y 1=x 2(x≥0)与y 2=23x (x≥0)于B 、C 两点,过点C 作y 轴的平行线交y 1于点D ,直线DE ∥AC ,交y 2于点E ,则DEAB=______.【答案】3﹣3【解析】首先设点B 的横坐标,由点B 在抛物线y 1=x 2(x≥0)上,得出点B 的坐标,再由平行,得出A 和C 的坐标,然后由CD 平行于y 轴,得出D 的坐标,再由DE ∥AC ,得出E 的坐标,即可得出DE 和AB ,进而得解.【详解】设点B 的横坐标为a ,则()2,B a a∵平行于x 轴的直线AC ∴()()220,,3,A aC a a又∵CD 平行于y 轴 ∴()23,3Da a又∵DE ∥AC∴()23,3E a a∴()33,DE a AB a =-= ∴DEAB=3﹣3 【点睛】此题主要考查抛物线中的坐标求解,关键是利用平行的性质.18.已知A (0,3),B (2,3)是抛物线上两点,该抛物线的顶点坐标是_________.【答案】(1,4).【解析】试题分析:把A (0,3),B (2,3)代入抛物线可得b=2,c=3,所以=,即可得该抛物线的顶点坐标是(1,4).考点:抛物线的顶点.三、解答题(本题包括8个小题)19.如图,某地方政府决定在相距50km的A、B两站之间的公路旁E点,修建一个土特产加工基地,且使C、D两村到E点的距离相等,已知DA⊥AB于A,CB⊥AB 于B,DA=30km,CB=20km,那么基地E 应建在离A站多少千米的地方?【答案】20千米【解析】由勾股定理两直角边的平方和等于斜边的平方即可求,即在直角三角形DAE和直角三角形CBE中利用斜边相等两次利用勾股定理得到AD2+AE2=BE2+BC2,设AE为x,则BE=10﹣x,将DA=8,CB=2代入关系式即可求得.【详解】解:设基地E应建在离A站x千米的地方.则BE=(50﹣x)千米在Rt△ADE中,根据勾股定理得:AD2+AE2=DE2∴302+x2=DE2在Rt△CBE中,根据勾股定理得:CB2+BE2=CE2∴202+(50﹣x)2=CE2又∵C、D两村到E点的距离相等.∴DE=CE∴DE2=CE2∴302+x2=202+(50﹣x)2解得x=20∴基地E应建在离A站20千米的地方.考点:勾股定理的应用.20.我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.平均分(分)中位数(分)众数(分)方差(分2)初中部a 85b s初中2高中部85 c 100 160(1)根据图示计算出a、b、c的值;结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?计算初中代表队决赛成绩的方差s初中2,并判断哪一个代表队选手成绩较为稳定.【答案】(1)85,85,80; (2)初中部决赛成绩较好;(3)初中代表队选手成绩比较稳定.【解析】分析:(1)根据成绩表,结合平均数、众数、中位数的计算方法进行解答;(2)比较初中部、高中部的平均数和中位数,结合比较结果得出结论;(3)利用方差的计算公式,求出初中部的方差,结合方差的意义判断哪个代表队选手的成绩较为稳定.【详解】详解: (1)初中5名选手的平均分75808585100a855++++==,众数b=85,高中5名选手的成绩是:70,75,80,100,100,故中位数c=80;(2)由表格可知初中部与高中部的平均分相同,初中部的中位数高,故初中部决赛成绩较好;(3)222 2+++=5S初中(75-85)(80-85)(85-85)(85-85 =70,∵22S S初中高中<,∴初中代表队选手成绩比较稳定.【点睛】本题是一道有关条形统计图、平均数、众数、中位数、方差的统计类题目,掌握平均数、众数、中位数、方差的概念及计算方法是解题的关键.21.在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C处(如图),然后沿BC方向走到D处,这时目测旗杆顶部A与竹竿顶部E恰好在同一直线上,又测得C、D两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.【答案】这种测量方法可行,旗杆的高为21.1米.【解析】分析:根据已知得出过F作FG⊥AB于G,交CE于H,利用相似三角形的判定得出△AGF∽△EHF,再利用相似三角形的性质得出即可.详解:这种测量方法可行.理由如下:设旗杆高AB=x.过F作FG⊥AB于G,交CE于H(如图).所以△AGF∽△EHF.因为FD=1.1,GF=27+3=30,HF=3,所以EH=3.1﹣1.1=2,AG=x﹣1.1.由△AGF∽△EHF,得AG GF EH HF=,即1.530 23x-=,所以x﹣1.1=20,解得x=21.1(米)答:旗杆的高为21.1米.点睛:此题主要考查了相似三角形的判定与性质,根据已知得出△AGF∽△EHF是解题关键.22.现有一次函数y=mx+n和二次函数y =mx2+nx+1,其中m≠0,若二次函数y=mx2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式.若一次函数y =mx+n经过点(2,0),且图象经过第一、三象限.二次函数y=mx2+nx+1经过点(a,y1)和(a+1,y2),且y1>y2,请求出a 的取值范围.若二次函数y=mx2+nx+1的顶点坐标为A(h,k)(h≠0),同时二次函数y=x2+x+1也经过A点,已知﹣1<h <1,请求出m的取值范围.【答案】(1)y=x﹣2,y=12-x2+32+1;(2)a<12;(3)m<﹣2或m>1.【解析】(1)直接将点代入函数解析式,用待定系数法即可求解函数解析式;(2)点(2,1)代入一次函数解析式,得到n=−2m,利用m与n的关系能求出二次函数对称轴x=1,由一次函数经过一、三象限可得m>1,确定二次函数开口向上,此时当y1>y2,只需让a到对称轴的距离比a+1到对称轴的距离大即可求a的范围.(3)将A (h ,k )分别代入两个二次函数解析式,再结合对称抽得h =n2m-,将得到的三个关系联立即可得到11h m =-+,再由题中已知−1<h <1,利用h 的范围求出m 的范围.【详解】(1)将点(2,1),(3,1),代入一次函数y =mx+n 中,0213m nm n =+⎧⎨=+⎩, 解得12m n =⎧⎨=-⎩,∴一次函数的解析式是y =x ﹣2, 再将点(2,1),(3,1),代入二次函数y =mx 2+nx+1,04211931m n m n =++⎧⎨=++⎩, 解得1232m n ⎧=-⎪⎪⎨⎪=⎪⎩,∴二次函数的解析式是213122y x =-++.(2)∵一次函数y =mx+n 经过点(2,1), ∴n =﹣2m ,∵二次函数y =mx 2+nx+1的对称轴是x =n 2m-, ∴对称轴为x =1,又∵一次函数y =mx+n 图象经过第一、三象限, ∴m >1, ∵y 1>y 2, ∴1﹣a >1+a ﹣1, ∴a <12. (3)∵y =mx 2+nx+1的顶点坐标为A (h ,k ),∴k =mh 2+nh+1,且h =n 2m-, 又∵二次函数y =x 2+x+1也经过A 点, ∴k =h 2+h+1, ∴mh 2+nh+1=h 2+h+1, ∴11h m =-+, 又∵﹣1<h <1, ∴m <﹣2或m >1. 【点睛】本题考点:点与函数的关系;二次函数的对称轴与函数值关系;待定系数法求函数解析式;不等式的解法;数形结合思想是解决二次函数问题的有效方法.23.观察下列等式:第1个等式:a 1=, 第2个等式:a 2=, 第3个等式:a 3第4个等式:a 4=-2,…按上述规律,回答以下问题:请写出第n 个等式:a n =__________.a 1+a 2+a 3+…+a n =_________.【答案】(1)n a =(2)1.【解析】(1)根据题意可知,1 1a ==,2a ==32a ==-42a ==,…由此得出第n个等式:a n=(2)将每一个等式化简即可求得答案. 【详解】解:(1)∵第1个等式:11a ==,第2个等式:2a ==第3个等式:32a == 第4个等式:42a ==,∴第n 个等式:a n=(2)a 1+a 2+a 3+…+a n =()()(+++++n+11.=11n+-.【点睛】此题考查数字的变化规律以及分母有理化,要求学生首先分析题意,找到规律,并进行推导得出答案.24.已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD交于点E,点F 在边AB上,连接CF交线段BE于点G,CG2=GE•GD.求证:∠ACF=∠ABD;连接EF,求证:EF•CG=EG•CB.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)先根据CG2=GE•GD得出CG GDGE CG=,再由∠CGD=∠EGC可知△GCD∽△GEC,∠GDC=∠GCE.根据AB∥CD得出∠ABD=∠BDC,故可得出结论;(2)先根据∠ABD=∠ACF,∠BGF=∠CGE得出△BGF∽△CGE,故FG EGBG CG=.再由∠FGE=∠BGC得出△FGE∽△BGC,进而可得出结论.试题解析:(1)∵CG2=GE•GD,∴CG GDGE CG=.又∵∠CGD=∠EGC,∴△GCD∽△GEC,∴∠GDC=∠GCE.∵AB∥CD,∴∠ABD=∠BDC,∴∠ACF=∠ABD.(2)∵∠ABD=∠ACF,∠BGF=∠CGE,∴△BGF∽△CGE,∴FG EGBG CG=.又∵∠FGE=∠BGC,∴△FGE∽△BGC,∴FE EGBC CG=,∴FE•CG=EG•CB.考点:相似三角形的判定与性质.25.解不等式组22(4)113x xxx-≤+⎧⎪-⎨+⎪⎩<,并写出该不等式组的最大整数解.【答案】﹣2,﹣1,0【解析】分析:先解不等式①,去括号,移项,系数化为1,再解不等式②,取分母,移项,然后找出不等式组的解集.本题解析:()224113x xxx⎧-≤+⎪⎨-<+⎪⎩①②,解不等式①得,x≥−2,解不等式②得,x<1,∴不等式组的解集为−2≤x<1.∴不等式组的最大整数解为x=0, 26.如图,在Rt △ABC 中,∠C=90°,O 为BC 边上一点,以OC 为半径的圆O ,交AB 于D 点,且AD=AC ,延长DO 交圆O 于E 点,连接AE.求证:DE ⊥AB ;若DB=4,BC=8,求AE 的长.【答案】(1)详见解析;(2)62 【解析】(1)连接CD ,证明90ODC ADC ∠+∠=︒即可得到结论;(2)设圆O 的半径为r ,在Rt △BDO 中,运用勾股定理即可求出结论. 【详解】(1)证明:连接CD,∵O D O C =∴O D C O CD ∠=∠ ∵AD AC =∴ADC ACD ∠=∠90,90,OCD ACD ODC ADC DE AB∠+∠=︒∴∠+∠=∴⊥.(2)设圆O 的半径为r ,()2224+8,3r r r ∴=-∴=,设()22222,84,6,6+662AD AC x x x x AE ==∴+=+∴=∴. 【点睛】本题综合考查了切线的性质和判定及勾股定理的综合运用.综合性比较强,对于学生的能力要求比较高.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列计算正确的是A.a2·a2=2a4B.(-a2)3=-a6C.3a2-6a2=3a2D.(a-2)2=a2-4 【答案】B【解析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得.【详解】A. a2·a2=a4,故A选项错误;B. (-a2)3=-a6,正确;C. 3a2-6a2=-3a2,故C选项错误;D. (a-2)2=a2-4a+4,故D选项错误,故选B.【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键. 2.已知△ABC,D是AC上一点,尺规在AB上确定一点E,使△ADE∽△ABC,则符合要求的作图痕迹是()A .B .C .D .【答案】A【解析】以DA为边、点D为顶点在△ABC内部作一个角等于∠B,角的另一边与AB的交点即为所求作的点.【详解】如图,点E即为所求作的点.故选:A.【点睛】本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作一角等于∠B或∠C,并熟练掌握做一个角等于已知角的作法式解题的关键.3.△ABC在正方形网格中的位置如图所示,则cosB的值为( )A .55B .255C .12D .2【答案】A【解析】解:在直角△ABD 中,BD=2,AD=4,则AB=22222425BD AD +=+=,则cosB=25525BD AB ==. 故选A .4.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( ) A .a=2,b=3 B .a=-2,b=-3 C .a=-2,b=3 D .a=2,b=-3 【答案】B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a 、b 即可. 详解:(x+1)(x-3) =x 2-3x+x-3 =x 2-2x-3所以a=2,b=-3,故选B .点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键. 5.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°【答案】A【解析】试题分析:∵AB ∥CD ,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE 的外角,∴∠3=∠C+∠2=40°+30°=70°.故选A .考点:平行线的性质.6.下列交通标志是中心对称图形的为( ) A .B .C .【答案】C【解析】根据中心对称图形的定义即可解答.【详解】解:A 、属于轴对称图形,不是中心对称的图形,不合题意;B 、是中心对称的图形,但不是交通标志,不符合题意;C、属于轴对称图形,属于中心对称的图形,符合题意;D、不是中心对称的图形,不合题意.故选C.【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.7.下列说法正确的是()A.“明天降雨的概率是60%”表示明天有60%的时间都在降雨B.“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在16附近【答案】D【解析】根据概率是指某件事发生的可能性为多少,随着试验次数的增加,稳定在某一个固定数附近,可得答案.【详解】解:A. “明天降雨的概率是60%”表示明天下雨的可能性较大,故A不符合题意;B. “抛一枚硬币正面朝上的概率为12”表示每次抛正面朝上的概率都是12,故B不符合题意;C. “彩票中奖的概率为1%”表示买100张彩票有可能中奖.故C不符合题意;D. “抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在16附近,故D符合题意;故选D【点睛】本题考查了概率的意义,正确理解概率的含义是解决本题的关键.8.如图,已知D是ABC中的边BC上的一点,BAD C∠=∠,ABC∠的平分线交边AC于E,交AD于F,那么下列结论中错误的是()A.△BAC∽△BDA B.△BFA C.△BDF∽△BEC D.△BD 【答案】C【解析】根据相似三角形的判定,采用排除法,逐项分析判断. 【详解】∵∠BAD=∠C , ∠B=∠B ,∴△BAC ∽△BDA .故A 正确. ∵BE 平分∠ABC , ∴∠ABE=∠CBE ,∴△BFA ∽△BEC .故B 正确. ∴∠BFA=∠BEC , ∴∠BFD=∠BEA ,∴△BDF ∽△BAE .故D 正确.而不能证明△BDF ∽△BEC ,故C 错误. 故选C . 【点睛】本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边和对应角. 9.若关于x 的一元二次方程x 2﹣2x+m=0有两个不相等的实数根,则m 的取值范围是( ) A .m <﹣1 B .m <1C .m >﹣1D .m >1【答案】B【解析】根据方程有两个不相等的实数根结合根的判别式即可得出△=4-4m >0,解之即可得出结论.【详解】∵关于x 的一元二次方程x 2-2x+m=0有两个不相等的实数根,∴△=(-2)2-4m=4-4m >0, 解得:m <1. 故选B . 【点睛】本题考查了根的判别式,熟练掌握“当△>0时,方程有两个不相等的两个实数根”是解题的关键.10.把一副三角板如图(1)放置,其中∠ACB =∠DEC =90°,∠A =41°,∠D =30°,斜边AB =4,CD =1.把三角板DCE 绕着点C 顺时针旋转11°得到△D 1CE 1(如图2),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A 13B 5C .22【答案】A 【解析】试题分析:由题意易知:∠CAB=41°,∠ACD=30°. 若旋转角度为11°,则∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°. 在等腰Rt △ABC 中,AB=4,则AO=OC=2.在Rt △AOD 1中,OD 1=CD 1-OC=3, 由勾股定理得:AD 1=13.故选A.考点: 1.旋转;2.勾股定理. 二、填空题(本题包括8个小题) 11.分解因式:3ax 2﹣3ay 2=_____. 【答案】3a (x +y )(x -y )【解析】解:3ax 2-3ay 2=3a (x 2-y 2)=3a (x+y )(x-y ). 【点睛】本题考查提公因式法与公式法的综合运用.12.分解因式:a 3-a= 【答案】(1)(1)a a a -+【解析】a 3-a=a(a 2-1)=(1)(1)a a a -+13.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_________.【答案】1【解析】画出图形,设菱形的边长为x ,根据勾股定理求出周长即可.【详解】当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm , 在Rt △ABC 中,由勾股定理:x 2=(8-x )2+22, 解得:x=174, ∴4x=1,即菱形的最大周长为1cm . 故答案是:1. 【点睛】解答关键是怎样放置纸条使得到的菱形的周长最大,然后根据图形列方程.14.如图,是用火柴棒拼成的图形,则第n 个图形需_____根火柴棒.【答案】2n+1.【解析】解:根据图形可得出: 当三角形的个数为1时,火柴棒的根数为3;当三角形的个数为2时,火柴棒的根数为5;当三角形的个数为3时,火柴棒的根数为7;当三角形的个数为4时,火柴棒的根数为9;……由此可以看出:当三角形的个数为n时,火柴棒的根数为3+2(n﹣1)=2n+1.故答案为:2n+1.15.同一个圆的内接正方形和正三角形的边心距的比为_____.【答案】2:1【解析】先画出同一个圆的内接正方形和内接正三角形,设⊙O的半径为R,求出正方形的边心距和正三角形的边心距,再求出比值即可.【详解】设⊙O的半径为r,⊙O的内接正方形ABCD,如图,过O作OQ⊥BC于Q,连接OB、OC,即OQ为正方形ABCD的边心距,∵四边形BACD是正方形,⊙O是正方形ABCD的外接圆,∴O为正方形ABCD的中心,∴∠BOC=90°,∵OQ⊥BC,OB=CO,∴QC=BQ,∠COQ=∠BOQ=45°,∴OQ=OC×cos45°=22R;设⊙O的内接正△EFG,如图,过O作OH⊥FG于H,连接OG,即OH 为正△EFG的边心距,∵正△EFG是⊙O的外接圆,∴∠OGF=12∠EGF=30°,∴OH=OG×sin30°=12R,∴OQ:OH=2R):(12R)2 1,21.【点睛】本题考查了正多边形与圆、解直角三角形,等边三角形的性质、正方形的性质等知识点,能综合运用知识点进行推理和计算是解此题的关键.16.我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱;如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x 人,则可列方程为__________.【答案】8374x x -=+【解析】根据每人出8钱,则剩余3钱;如果每人出7钱,则差4钱,可以列出相应的方程,本题得以解决 【详解】解:由题意可设有x 人, 列出方程:8374xx +﹣=, 故答案为8374x x +﹣=. 【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.17.如图,已知AB ∥CD ,若14AB CD =,则OAOC=_____.【答案】14【解析】利用相似三角形的性质即可解决问题;【详解】∵AB ∥CD ,∴△AOB ∽△COD ,∴14OA AB OC CD ==, 故答案为14.【点睛】本题考查平行线的性质,相似三角形的判定和性质等知识,熟练掌握相似三角形的判定与性质是解题的关键.18.已知点P (2,3)在一次函数y =2x -m 的图象上,则m =_______. 【答案】1【解析】根据待定系数法求得一次函数的解析式,解答即可.【详解】解:∵一次函数y=2x-m 的图象经过点P (2,3), ∴3=4-m , 解得m=1, 故答案为:1.【点睛】此题主要考查了一次函数图象上点的坐标特征,关键是根据待定系数法求得一次函数的解析式.三、解答题(本题包括8个小题)。