基于Ansys+Workbench的起重机吊臂结构全伸臂工况的有限元分析
ANSYS分析塔式起重机吊臂步骤

ANSYS分析塔式起重机吊臂步骤塔式起重机吊臂是一种常见的起重机构。
它通常用于吊装重物,并且能够通过伸缩吊臂的长度来适应不同的工作条件。
利用ANSYS软件进行塔式起重机吊臂的分析可以帮助工程师了解吊臂结构的强度和刚度,并优化设计以满足设计要求。
下面是使用ANSYS软件进行塔式起重机吊臂分析的一般步骤:1.几何建模:首先,需要使用CAD软件或者ANSYS自带的几何建模工具创建塔式起重机吊臂的几何模型。
这个几何模型应该包括所有的主要结构组件,例如吊臂、支撑杆、立柱等。
2.材料定义和加载:在进行分析之前,需要对所使用的材料进行定义。
材料定义应包括材料的弹性模量、泊松比和密度等。
另外,还需要定义适当的加载条件,例如自重载荷、外部工况荷载等。
3.网格划分:对几何模型进行网格划分是进行分析的关键步骤。
足够准确的网格划分可以提供更精确的分析结果。
在划分网格之前,需要根据倾斜角度和吊臂的形状来确定合适的划分方式。
4.约束和边界条件:对于塔式起重机吊臂的分析,通常需要施加一些边界条件和约束。
例如,可以将塔座固定在地面上,使其不能发生任何位移。
此外,还可以施加其他约束条件来模拟实际工作条件。
5.应力分析:完成了网格划分和约束设置后,可以进行应力分析。
应力分析可以帮助工程师了解吊臂在不同工况下的应力分布情况。
可以通过绘制应力云图和边界应力图来可视化这些结果。
6.判断强度:针对应力分析的结果,可以对吊臂的强度进行评估。
可以检查吊臂是否满足强度设计要求,例如是否超过了材料的屈服强度或破坏强度。
7.刚度分析:除了强度外,刚度也是塔式起重机吊臂设计中的重要考虑因素。
可以通过刚度分析来评估吊臂在工作状态下的形变情况。
如果形变过大,可能会影响到起重机的操作性能。
8.优化设计:根据应力和刚度分析的结果,可以对塔式起重机吊臂的设计进行优化。
例如,可以增加材料厚度、增加支撑杆数量或改变结构形式等。
优化设计可以提高吊臂的强度和刚度,在满足设计要求的前提下减少结构重量。
基于Ansys Workbench的起重机吊臂结构全伸臂工况的有限元分析

基于Ansys Workbench的起重机吊臂结构全伸臂工况的有限元分析李春风;董庆华;李少杰;郝清龙;王宇飞;曹硕【摘要】通过吊臂吊载,起重机能够实现大高度、大幅度的作业,吊臂是起重机的最主要承载构件之一,吊臂的分析研究对于起重机的结构优化起到了大的作用.以50 t 起重机吊臂为例,借助软件Ansys Workbench对吊臂结构的全伸臂工况进行有限元分析,得到其变幅平面内各处位移和应力,为结构的改进和优化提供了一定的参考.【期刊名称】《承德石油高等专科学校学报》【年(卷),期】2016(018)002【总页数】5页(P17-21)【关键词】吊臂;Ansys Workbench;有限元【作者】李春风;董庆华;李少杰;郝清龙;王宇飞;曹硕【作者单位】承德石油高等专科学校工业技术中心,河北承德 067000;承德石油高等专科学校工业技术中心,河北承德 067000;承德石油高等专科学校工业技术中心,河北承德 067000;承德石油高等专科学校工业技术中心,河北承德 067000;承德石油高等专科学校工业技术中心,河北承德 067000;承德石油高等专科学校工业技术中心,河北承德 067000【正文语种】中文【中图分类】TH21通过吊臂吊载,起重机能够实现大高度、大幅度的作业,吊臂是起重机的最主要承载构件之一,吊臂的强度对于起重机承载最大起重量时的整机起重性能起到了决定性的作用,吊臂自重对于起重机整机倾覆稳定性有着最直接的影响,吊臂结构的设计将直接影响整个起重机的性能,所以对吊臂进行有限元分析是很有必要的。
1.1 吊臂工作原理起重机升降重物,是利用吊臂顶端的滑轮组支撑卷扬钢丝绳来悬挂重物,利用吊臂的长度和倾角的变化来改变工作半径和起升的高度,如图1所示。
吊臂有两节、三节、四节、五节等不同形式,通过变幅机构来实现俯仰功能,如图2所示。
起重臂顶端可以加滑轮,实现吊钩单倍率工作,提高工作速度。
另外,起重臂顶端还可以同时加副臂,实现更大的起升高度。
汽车起重机伸缩臂结构有限元分析及优化

汽车起重机伸缩臂结构有限元分析及优化汽车起重机伸缩臂结构有限元分析及优化引言:汽车起重机作为一种重要的工程机械设备,在建筑、物流等行业中起着重要的作用。
而在汽车起重机的设计中,伸缩臂结构是其关键组成部分之一。
伸缩臂结构的合理设计和优化可以提高汽车起重机的工作效率和承载能力,降低其重量和成本。
因此,对汽车起重机伸缩臂结构进行有限元分析与优化具有重要的理论意义和实际应用价值。
1. 伸缩臂结构的设计和工作原理汽车起重机的伸缩臂结构由伸缩臂筒、伸缩臂滑块、伸缩臂大臂、伸缩臂小臂等组成。
其工作原理是通过液压系统控制伸缩臂筒的伸缩,从而实现伸缩臂的变化和起重高度的调节。
伸缩臂结构的设计直接影响汽车起重机的工作性能和稳定性。
2. 有限元分析的原理和方法有限元分析是一种数值分析方法,通过将结构离散化为有限个小元素,利用数学和力学原理对每个小元素进行计算,最后得到整个结构的应力、应变、位移等相关信息。
有限元分析方法可以精确计算伸缩臂结构在不同工况下的受力情况,为优化设计提供基础。
3. 初始结构的有限元分析首先,采用有限元分析方法对汽车起重机初始伸缩臂结构进行分析。
通过初始结构的有限元模型建立和边界条件的设定,计算得到伸缩臂结构在不同工况下的受力情况,包括应力、应变、变形等参数。
利用有限元分析结果,可以评估初始结构的工作性能,并确定需要改进的方向。
4. 结构优化设计与分析基于初始结构的有限元分析结果,可以进行伸缩臂结构的优化设计。
结构优化的目标是提高结构的工作效率和承载能力,降低结构的重量和成本。
通过在有限元模型中进行参数化设计和分析,可以获得不同设计方案下的结构性能指标。
综合考虑结构的强度、刚度、轻量化等因素,选择最优设计方案。
5. 优化设计的验证与验证对优化设计方案进行验证与评估是优化过程的重要环节。
通过将优化设计方案转化为实际工艺制造过程中的参数,并制作样件进行实际测试和评估,可以验证优化设计方案的有效性,并进一步优化设计方案。
基于ANSYS的挖掘机动臂吊具的有限元分析

( 卡特彼勒徐州有 限公 司, 江苏 徐州 2 10 ) 20 4
摘 要 : 臂 的 平 衡 吊具 受 力较 复杂 , 不 规 则 , 简化 成杆 或 者 粱的 模 型 计 算其 理 论 强度 和 实际 工 况 误 差 较 动 且 而
大, 文章 利 用有 限 元 通 用软 件 A YS 用 多栽 荷 步 的 方 法 校核 其 强度 。 NS 采
1 建立 po 模型 re
图 2 导 入 选 项
建立的 po 模 型如 图 1 r e 所示 。
此 处全 局坐标 用标 准 的笛 卡尔 坐标 系 .坐标 系在 PO R E中导 出 1 E G S格式时候设置在最上面的孑 处 , L 导入
时在 A S S中默认此坐标系。更改工程名称为 bl c , NY a ne a Tt 为 bn ie l a。
4 定义约束
在如图 3 头所示 的面上加位移约束 ,al设为 0 箭 vhe 。
G I O U I N D F N OA S/A P Y /DI P AC — U : L TO /E I E L D S P L SL E
MENT/ 0N A REAS
作者简介: 张晓辉 , 卡特彼勒徐 州有限公司。
第 3 卷第 1 期 O 4
V0 |O l3 No 1 .4
企 业 技 术 开 发
TECHNOLOGI CAL DEVELOPM ENT OF ENTERPRI SE
21 年 7 01 月
J 1 0 u. l 2 l
基于A Y NS S的挖 掘机 动臂 吊具 的 有限 元 分 析
堪 M l ¨ / x0 白 5 比
02 5 .7
设置材料 密度 7 5 , 80 设置弹性模量和泊松 比分别为
基于ANSYS Workbench的挖掘机动臂有限元分析

考依据。
关 键 词 :动 臂 ;S o lid w o r k s ;A N S Y S W o r k b e n c h ;静 力 学 分 析
中 图 分 类 号 :T Q 422. 2 文 献 标 识 码 : A
文 章 编 号 :1 0 0 7 6 9 2 1 ( 2 0 1 7 ) 0 6 0 0 8 5 01
备制造业中的应用。
• 85 •
黄 鹏 ,等 • 杨 家 坪 滑 坡 稳 定 性 研 究
2017年 第 6 期
表3
稳定性计算结果
工况组合 1 2 3 4
稳定性系数 1 2029 1 2154 1 0568 1 1838
在 运 用 三 维 软 件 Solid w o rk s建 立 动 臂 的 三 维 模 型 时 先 简 化 模 型 ,简 化 时 要 基 本 保 证 以 很 好 的 反 映 出 动 臂 实 际 结 构 特 性 为 前 提 ,做 出 一 些 的 简 化 ,去 掉 结 构 中 对 影 响 计 算 结 果 不 大 的 圆 角 、螺 纹 孔 等 。 动 臂 的 三 维 模 型 ,如 图 1 所 示 。2
挖 掘 系 列 以 挖 掘 机 为 主 流 ,可 分 为 机 械 式 挖 掘 机 和 液 压 式 挖 掘 机 ,其 中 液 压 式 挖 掘 机 是 工 程 机 械 的 主 要 产 品 之 一 ,广 泛 应 用 于 建 筑 、铁 路 、公 路 、水 利 和 军 事 等 工 程 。液 压 挖 掘 机 完 成 各 项 功 能 的 主 要 构
如 图 2 所 示 ,为 动 臂 有 限 元 网 格 模 型 ,得 到 44222个 单 元 和 73381个 节 点 。所 画 网 格 的 精 度 高 低将直接影响到求解的结果的准确性。
汽车起重机吊臂的有限元分析

第27卷第3期 辽 宁 工 学 院 学 报 V ol.27,No.32007年 6 月 Journal of Liaoning Institute of Technology Jun.2007收稿日期:2006-11-08基金项目:辽宁省重大科技攻关项目(2006219008-4A ) 作者简介:杨 晶(1982-),女,山东沂水人,硕士生。
李卫民(1965-),男,辽宁朝阳人,教授,博士。
汽车起重机吊臂的有限元分析杨 晶1,李卫民1,刘玉浩2(1.辽宁工业大学 机械工程与自动化学院,辽宁 锦州 121001;2. 空军第三飞行学院, 辽宁 锦州 121000)摘 要:以ANSYS 软件为工具,详细介绍了汽车起重机吊臂的各个臂段在不同工况下的有限元分析过程,包括实体建模、网格划分、载荷和约束的处理;并对汽车起重机吊臂进行了优化设计。
得出的结论为汽车起重机吊臂的设计提供了可靠的依据。
关键词:吊臂;工况;有限元分析;优化设计中图分类号:TP391.72 文献标识码:B 文章编号:1005-1090(2007)03-0195-03Finite Element Analysis of Truck Crane BoomYANG Jing 1,LI Wei-min 1,LIU Yu-hao 2(1.Mechanical Engineering & Automation College, Liaoning University of Technology, Jinzhou 121001, China ;2.The 3rd Flight Institute of Airforce, Jinzhou 121000,China )Key words: boom; work condition; finite element analysis; optimal designAbstract: By means of ANSYS software, finite element analysis of every boom of truck crane under different work condition was described in detail. Its procedure was expatiated, which included solid modeling, meshing, applying loads ;optimal design of the boom was analyzed. Valuable conclusions in application were obtained, with a credible theory foundation for the design of the truck crane boom rendered.吊臂是汽车起重机的重要组成部分。
基于ANSYS的铁路起重机伸缩臂模态分析研究
图9 壁温历史数据
图10 特征值监控曲线
结果表明,在堵管情况,同屏管内的沿程阻力小
内圈管道)的管道流量增加幅度较大。
在管道堵管时,沿程壁温都会有不同程度的上升;设定监测单元,通过监测单元内的变化和正常值95%(或5%)分位数的数量
中国设备工程 2024.03(上)
图1 伸缩臂整体臂架有限元模型
整体伸缩臂臂架模态分析
有限元模态分析一般有两种方式:自由模态分析和约束模态分析,本文选择约束的方式对伸缩臂整体臂架进行模态分析。
在伸缩臂尾部与转台轴连接处和基本臂头部与变幅液压油缸的轴连接处施加约束,约束了三个方向上的平动自由度和两个方向上的转动自由度,仅释放伸缩臂沿连接轴的轴线方向上的转动自由度,从而更接近实际应用地模拟出伸缩臂的工作状态。
Workbench中Modal插件对伸缩臂整体臂架进行模态分析,通过分析得出伸缩臂整体臂架的前六阶固有频率和模态振型。
前六阶固有频率分别为
z、9.8977H z、13.673H z、17.
21.983Hz,模态振型图如图3~图8所示。
~图8可以看出:整体臂架的第一阶模态振型为整体臂架绕轴旋转弯曲;第二阶模态振型为整体臂架绕轴旋转弯曲;第三阶模态振型为整体臂架绕轴旋转,图2 伸缩臂有限元模型局部放大图
图3 整体臂架第一阶模态振型图
图4 整体臂架第二阶模态振型图
图5 整体臂架第三阶模态振型图
143
中国设备工程 2024.03(上)
图6 整体臂架第四阶模态振型图
图7 整体臂架第五阶模态振型图
图8 整体臂架第六阶模态振型图144中国设备工程 2024.03(上)。
基于ANSYS的塔式起重机臂架有限元参数化建模与分析
1
参数化
在进行系列产品设计 中, 由于其 结构形式 相
同, 而结构尺寸不同 , 如果逐个进行建模分析, 需 要花费大量的人力 和物力资源 , 造成设计周 期延 长。将参数化的思想引进到有限元的分析过程中 , 可以减少系列产品有限元分析的工作量 , 缩短设计 周期 , 提高设计效率。 参数化的概念涵盖很广, 通常指的是参数化的 造型 , 它是一种重要的几何参数快速构造和修改几 何模型的造型方法。参数化设计是实现设计自动化 的主要手段之一。参数化建模用于基本结构形状相 同但具体模型形状有较小变动的系列产品的设计。 根据如何得到参数值 , 可以将常见的参数化方法分 起重运输机械 2006 ( 9)
为如下几种 : 代数法、人工智能法、直接操作法和 语言描叙法。本文中有限元参数化模型的建立采用 的就是 ANSYS 的 APDL 语言描述法。
2
臂架结构参数化建模分析算例
采用交互式建立塔机的有限元模型, 建模的工
作量将十分巨大, 而且当臂架结构发生变化时 , 需 要重新建立模型。如果把结构模型都以参数化技术 进行有限元建模, 当需要新产品结构设计时, 只需 要输入必要的、合理的参数值, 即可自动建模。考 虑到塔机结构主要以型钢焊接结构为主, 结构具有 相似性, 为进行参数化建模分析提供了必要条件。 可以采用 VB、VC 等程序设计语言编制程序 , 用户 只要输入建立塔机结构所需的一些必要参数, 就可 以输出 ANSYS 参数化建模分析所需的参数化文件, 自动建立塔机有限元分析模型, 这样就可以减小模 型建立需要 的时间, 提 高工作效 率。利用 ANSYS 进行结构参数化建模与分析的基本流程见图 1。 2 1 臂架结构相关参数确定 塔机臂架形式多种多样 , 这里以最常见的正三 角形截面双吊点吊臂为例进行说明。要构建臂架的 有限元参数化模型 , 首先要确定与臂架相关的结构 参数, 主要包括以下数据: ( 1) 基本数据: 包括起 重量、小车轮距、臂架段数、臂架根部到回转中心 距离、小车及吊钩质量等。 ( 2) 臂架的基本数据: 包括臂架高 度、宽度、臂架 段数、每段长 度、节 11
基于ANSYSWorkbench汽车起重机副臂的性能分析
基于ANSYSWorkbench汽车起重机副臂的性能分析针对汽车起重机副臂长细比较大,在考虑自重、载重和拉力时,副臂结构易发生变形的这种情况,分别利用有限元分析软件ANSYS Workbench和力学计算方法对副臂进行位移及应力的计算,得到在不同工况下副臂所承受的最大位移和最大应力,为副臂机构的设计计算及以后的结构上的优化提供依据。
标签:副臂;ANSYS Workbench;变形;应力.引言随着现代化速度的不断增加,起重机械在生产生活中应用范围逐步增大,所起到的作用也日益增加。
又由于汽车起重机作业性能高、使用灵活、价格相对便宜的特点,使得其在工程施工和城市建设中扮演着重要的角色。
但是由于伸缩主臂结构布置紧凑,并且自身质量很大,而且回转工作时对机动性能有一定的要求,使得主臂的伸长范围受到一定的限制。
又由于起重机工作时要求幅度很大、扬程较高,副臂为了满足这些要求,渐渐成为主臂结构和性能的补充和延伸。
但是副臂工作时受力大、工作条件恶劣并且结构复杂,人们便提出其自身工作重量轻,工作可靠的要求,因此对副臂进行准确的结构分析也显得十分重要。
ANSYS Workbench是一款大型CAE分析软件和应用平台,它综合了建模工具、分析工具、优化分析等多种功能于一身,其中的概念建模使副臂这种悬臂梁结构创建与修改变得简便。
1 材料属性的建立副臂弦杆材料采用Q345B,屈服极限?滓s=345Mpa。
其安全系数n=1.34,弹性模量E=210000MPa,泊松比?滋=0.28,密度?籽=7.9g/cm3。
Q345B属于普通低合金钢,其塑形及焊接性能十分良好,并且有一定的强度,实用性能好而且价格也比较便宜,性价比较高,适用于副臂这种悬臂梁结构。
2 概念建模概念建模对于创建和修改线体或面体非常便利,并最终将这些体生成有限元中的梁模型或板壳模型,在Design Modeler 使用概念建模中对副臂的桁架结构进行建模时,系统将自动连接梁单元组成的桁架结构,和一般CAD 软件建立的三维模型相比更加适合桁架结构的有限元分析,并且还可以对模型尺寸进行随时的修改,计算结果也可以快速更新,也比普通的CAD 软件模型修改再导入计算的模式更加的方便快捷。
基于ANSYS WORKBENCH的六自由度机械臂有限元分析及结构优化
1 六 自由度机械臂有 限元分析
1 . 1 有限元模型的建立
臂构 件 较 多且 等 效 简化 后造 型 简单 , 因此 可 以选 用Me c h a n i c a l , 网格 大 小 为 2 0 , 自动 网格 划 分 ,如 图1 所 示 ,节 点数 量 为4 7 4 4 2 ,单 元数 为2 2 8 1 2 。后
下 点 :
行 的可 靠 性 ,需 要 对 其 进 行 机 械 结 构 分 析 。近 年
来 对 机 械 结 构 的 分 析 已 经 从 结 构 静 力 学 延 伸 到 了
动 力 特 性 领 域 ,特 别 是 对 振 动 分 析 的 模 态 仿 真 已
1 )简 化 各种 连 接 ,将 齿轮 啮 合 简化 为 轴 和孔
姜振 廷 ,郑忠 才 ,董 旭
J l ANG Zh e n . t i n g,ZHENG Z h o n g . c a i , DO NG Xu
( 山东建筑大学 ,济南 2 5 0 1 0 1 )
摘 要 : 六 自由度机械臂作为机器人的 主要执 行机构 ,其机械性能决定 了工作的可靠性 。论文针对机械 臂的整体结 构进行 静力学特性和 振动特 性研究 ,基于A N S Y S WO R K B E N C H 的有 限元分析功 能 ,得到 了静 力学仿真和 模态仿 真的结果 ,并对 结果进行 了分析 ,在此基础 上对机械 臂进行 了减重优化 ,通过模态分析 ,验证 了优 化结果的可靠性。 关键 词 :机械臂 ;有限元 ;A N S Y S WO R K B E N C H
限 元分 析 。
软 件 中完 成 材 料 属性 的加 载 ,接 触 面 的 约 束 , 网
格 的 划 分 。 其 中 机 械 臂 连 接 部 分 及 夹 持 手 材 料 为 不 锈钢 , 弹性 模 量 l 9 3 G P a ,泊 松 比0 . 3 1 , 密度 7 7 5 0 k g / m。 ,其 他 部 分 等效 为硬 铝 合 金 ,弹 性模 量 7 1 GP a ,泊松 比0 . 3 3 ,密度 2 7 7 0 k g / m 。接 触面 选用 Bo n d e d 和N o S e p a r a t i o n 两种 面约 束 定义 , 由于 机械
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全伸臂工况的有限元分析
李春风,董庆华,李少杰,郝清龙 ,王宇飞,曹
(承德石油高等专科学校工业技术中心,河北
硕
承德067000)
摘要:通过吊臂吊载,起重机能够实现大高度、大幅度的作业,吊臂是起重机的最主要承载构件之一,吊臂的 分析研究对于起重机的结构优化起到了大的作用。以50 t起重机吊臂为例,借助软件Ansy。w。,kbench对吊 臂结构的全伸臂工况进行有限元分析,得到其变幅平面内各处位移和应力,为结构的改进和优化提供了一定
的参考。
关键词:吊臂;Ansys Workbench;有限元
中图分类号:TH21 文献标识码:A 文章编号:1008.9446(2016)02-0017-05
Finite Element Analysis of Crane Boom Device in Full Arm Condition Based
吊臂工作原理、结构尺寸及其受力分析
1.1吊臂工作原理 起重机升降重物,是利用吊臂顶端的滑轮组支撑卷扬钢丝绳来悬挂重物,利用吊臂的长度和倾角的 变化来改变工作半径和起升的高度,如图1所示。吊臂有两节、三节、四节、五节等不同形式,通过变幅
机构来实现俯仰功能,如图2所示。起重臂顶端可以加滑轮,实现吊钩单倍率工作,提高工作速度。另
位移。 2.3后处理
Ansys
Workbench的后处理中Geometry按钮控制云图的显示方法,共有四个可用选项:Exterior是默
认的显示方式并且是常用的方式,IsoSuffaces对于显示相同的值域是非常有用的,Capped IsoSurfaces是 指删除了模型的一部分后的显示结果,删除的部分是可变的,高于或者低于某个指定值的部分被删除,
uY、Uz
3个方向平移自由度进行约束,释放绕销轴中心回转的转动自由度ROTX。同时为保证臂的刚
度和强度,设定应力Stressm和位移Deflm为状态变量,通过控制应力和位移来保证臂满足刚度和强度 要求。 约束条件包括强度条件和刚度条件,强度条件为盯≤[盯],式中or为危险点最大应力;[or]为材料
许用应力;刚度条件为DEFLM<。[f],式中DE儿w一变幅平面内最大位移;[门一变幅平面内允许最大
a
reference for subsequent structure developing and optimization.
Key words:boom;Ansys Workbench;finite element
通过吊臂吊载,起重机能够实现大高度、大幅度的作业,吊臂是起重机的最主要承载构件之一,吊臂 的强度对于起重机承载最大起重量时的整机起重性能起到了决定性的作用,吊臂自重对于起重机整机 倾覆稳定性有着最直接的影响,吊臂结构的设计将直接影响整个起重机的性能,所以对吊臂进行有限元 分析是很有必要的。
x
m,
480、385×540、420×600、
455×660(mm);起重举升臂的主体材料为合金结构钢,适当的选取16Mn进行加固,截面形状采用如 图4所示的“U”型截面。
吲f一,
u
一tI
U
—
◆
’、—J
j 一
.审l
r】■■■■■■-r一
.1’・o叫■・_o’II
L一…一~了
图3吊臂结构图
…一
图4吊臂截面图
外,起重臂顶端还可以同时加副臂,实现更大的起升高度。
收稿日期:2015.10—28
作者简介:李春风(1981一),男,河北石家庄人,承德石油高等专科学校工业技术中心讲师,硕士,主要从事机械设 计、有限元、可靠性等方面研究。
万方数据
承德石油高等专科学校学报
2016年第18卷
第2期
图1起重机示意图
图2吊臂示意图
Slice
Planes允许用户去真实的去切模型。本文采用第一个选项。得到后处理云图结果:如图5所示的
LI Chun-feng,DONG HAO
on
ANSYS
Workbench
Qing—hua,LI Shao-jie,
Yu—fei,CAO Shuo
Qing—long,WANG
(Industrial
Technology Center,Chengde Petroleum College,Chengde 067000,Hebei,China)
万方数据
・20・
承德石油高等专科学校学报
2016年第18卷第2期
结构特征的情况下,不在模型中建立吊臂的伸缩机构H1。由于各节臂的筒体是由薄板构成的,因此建模 时取中面尺寸进行造型,而基本臂的尾部及四节臂的头部结构复杂且刚性大,故建模时将其简化成了实 体。利用ANSYS Workbench强大的造型功能,建立了吊臂简化结构的几何模型。 2.1.2各节臂与滑块间的连接简化 吊臂共有四节,各节臂相互之间可以滑动,每节之间有3个滑块,通过各节臂搭接处滑块的接触和 挤压来实现力的传递。有两个思路,可以实现建模。思路1是建立接触单元,思路2是利用节点处的自 由度耦合来实现,本文采用后者。添加约束使得吊臂和各个滑块之间保持接触,沿着接触面可以相对滑 动,相应的节点(Coincident Node)间沿着接触面的法线方向自由度是耦合的,切线方向自由度是释放 的。利用各节臂和相应的滑块在同一个节点位置的耦合,实现滑块和吊臂对应各个节点的耦合模拟。 2.1.3单元选取和网格划分 输入材料属性:查阅机械设计手册,选取相应的材料系数为:弹性模量E=2×105 MPa,泊松比肛= 0.3,密度p=7
Abstract:As the main load bearing component of the crane,boom is used chieve great height and range operations.A research
structure
on
to
elevate load.and
boom device in full arm condition is researched.and the displace.
ment and stress in different positions in the variable amplitude plane is obtained,which will provide
T.=Tcos/3
(2)
在旋转平面,伸缩臂的侧向载荷为货物的偏摆载荷,侧向力Is,如公式(3)所示: Sy=(Qo+Go)gtgcY 其中a为旋转平面摆角。 没有安装副臂时,力矩M“=0,此时侧向力S,中的货物偏摆载荷S作用于臂端定滑轮的轴心处,吊 臂受到扭矩肘。作用,如公式(4)所示: MⅣ=(Qo+Go)geltga 带入实际工况数据,得到吊臂受力汇总见表1。
1.2吊臂结构尺寸 本文涉及到起重机基本参数为:回转速度:2 r/min,行走速度:70 km/h,最大起重量50 t,最大起重 力矩721.3 kNm,最大起升高度38.5 m,基本臂(第1节臂)举升高度为10.4 m;举升臂的总长为38 基本臂长10.2 m。举升臂为四节,结构见图3,四节的尺寸依次为:350
to
a.
boom plays
an
important role in bettering the
of
a
crane.Taking the 50
crane
ton
crane
boom for example,with the help of Ansvs Workbench.
finite element analysis of
850
kg/m3。根据材料系数定义相应的材料参数。
实体选用8节点的6面体单元Solid45,板采用Shell63板壳单元。Shell63为4节点的线弹性单元, 遵循基尔霍夫假设,即变形前垂直中面的法线且变形后仍然与中面相垂直,且该单元能够同时考虑中面 内的膜力以及弯曲变形,与吊臂的实际受载情况比较符合。 进行网格划分时,对吊臂的各个节臂筒体采用映射(mapped)和自由(free)的方式;滑块处为保证其 形状为六面体,本文采用扫掠(sweep)的方式进行划分。整个网格的划分,为避免形状畸形,应保证控制 单元形状尽可能规则。 由于每个节臂之间都有搭接部分,而且大部分节臂的板厚都不一样,不易选中,若是每块板逐个进 行网格划分,不仅效率低下,计算繁琐,而且很容易出现错误,为此在建模前应先在实体模型上指定对应 的属性,即将需要划分的单元、材料特性、实常数等赋予所有的实体,然后再对所有块、板等单元进行网 格划分,最终得到吊臂所对应的有限元模型。 2.2边界条件 2.2.1施加载荷 吊臂所受的载荷包括侧载、吊重、钢丝绳在臂头的拉力;风载、液压缸的作用力以及伸缩机构钢丝绳 的拉力。其中风载载荷作用在吊臂侧面上,而其它的载荷则需要加到各载荷相应位置的节点上或关键 点上,为了使这些载荷加载点能成为节点,需在相应节点的位置处创建硬点(Hard points)。此外,由于 钢丝绳在臂头的拉力及伸缩机构钢丝绳拉力的方向与整体坐标系方向不一致,为了便于加载荷,在建模 时还需要旋转这些节的点坐标系。 2.2.2施加约束 在基本臂尾部与转台铰接处,变幅液压缸铰点处,对ROTY、ROTZ 2个方向的转动自由度和UX、
咒=Tsi邶;将垂直载荷Q分解,垂直于吊臂轴线方向的分力为Q。=Qcos卢,平行于吊臂轴线方向的分力
为R=Qsirq3。其中J|B为伸缩臂在变幅平面倾角,Q为由起升载荷以及吊臂重量引起的垂直载荷。 伸缩臂有两个支点,分别是臂根车架之间的铰接点以及吊臂与变幅油缸之间的铰接点,因此可把吊
万方数据
李春风,等:基于Ansys Workbench的起重机吊臂结构全伸臂工况的有限元分析
表1 吊臂受力汇总
(3)
(4)
2
应用Ansys Workbench对吊臂结构进行有限元分析