纤维增强复合材料及新型结构体系
关于建筑材料的论文

关于建筑材料的论文建筑材料是建筑工程的物质基础,其性能和质量直接影响着建筑物的安全性、耐久性、功能性以及美观性。
从古老的石头、木材和泥土,到现代的钢材、混凝土和各种新型复合材料,建筑材料的不断发展和创新推动了建筑行业的巨大进步。
一、传统建筑材料1、木材木材是人类使用最古老的建筑材料之一。
它具有良好的加工性能和保温性能,常用于建造房屋的框架、地板和家具等。
然而,木材容易受到火灾、腐朽和虫蛀的影响,其强度和耐久性相对较低。
2、石材石材坚固耐用,抗压强度高,常用于建造基础、墙壁和柱子等。
大理石和花岗岩等优质石材还具有美观的纹理和色彩,常用于装饰性建筑。
但石材开采和加工难度较大,成本较高。
3、砖和瓦砖和瓦是由黏土烧制而成的建筑材料。
砖具有良好的抗压性能,常用于砌墙;瓦则用于屋顶的防水和排水。
随着技术的发展,出现了空心砖、多孔砖等新型砖材,提高了墙体的保温和隔热性能。
二、现代建筑材料1、钢材钢材具有高强度、高韧性和良好的可塑性,广泛应用于高层建筑、桥梁和大跨度结构中。
钢结构建筑施工速度快,重量轻,但钢材容易生锈,需要进行防腐处理。
2、混凝土混凝土是由水泥、骨料(砂、石)和水按一定比例混合而成的人造石材。
它具有良好的抗压性能和耐久性,是现代建筑中最常用的结构材料之一。
预应力混凝土和高性能混凝土的出现,进一步提高了混凝土的性能和应用范围。
3、玻璃玻璃具有透明、美观和良好的采光性能,常用于窗户、幕墙和隔断等。
随着技术的进步,出现了钢化玻璃、夹层玻璃和中空玻璃等新型玻璃产品,提高了玻璃的安全性和保温隔热性能。
4、塑料塑料具有重量轻、耐腐蚀和易加工等优点,常用于建筑管道、门窗框和装饰材料等。
但塑料的强度和耐久性相对较低,且在高温下容易变形。
三、新型建筑材料1、纤维增强复合材料纤维增强复合材料(FRP)由纤维(如碳纤维、玻璃纤维)和树脂基体组成,具有高强度、高模量和耐腐蚀等优点。
FRP 在建筑加固、桥梁修复和新型结构体系中得到了广泛应用。
碳纤维增强聚醚醚酮复合材料的研究及应用

碳纤维增强聚醚醚酮复合材料的研究及应用目录1. 内容概述 (2)1.1 研究背景 (2)1.2 研究意义 (3)1.3 综述目的与范围 (4)1.4 结构与组织 (5)2. 碳纤维增强聚醚醚酮复合材料简介 (7)2.1 聚醚醚酮的基本特性 (8)2.2 碳纤维的材料特性 (9)2.3 纤维增强塑料的制造工艺 (10)3. 碳纤维增强聚醚醚酮复合材料的性能特点 (11)3.1 力学性能 (12)3.2 耐热性能 (13)3.3 电绝缘性能 (15)4. 复合材料的研究进展 (17)4.1 纤维增强方式的探索 (18)4.2 增强机制与界面研究 (20)4.3 复合材料的微观结构与性能 (21)4.4 环境耐受性与防护 (22)5. 复合材料的应用领域 (23)5.1 航空航天 (25)5.2 汽车工业 (26)5.3 体育器材 (27)5.4 电子器件 (28)5.5 能源存储 (29)6. 复合材料的生产与加工 (30)6.1 材料加工工艺 (32)6.2 表面处理与涂层 (33)6.4 质量控制与检测 (36)7. 研发挑战与展望 (37)7.1 材料成本与环境问题 (38)7.2 性能提升与界面处理 (39)7.3 可持续性与发展方向 (41)1. 内容概述本研究报告深入探讨了碳纤维增强聚醚醚酮(PEEK)复合材料的研制、性能及其在各领域的应用潜力。
我们概述了碳纤维和PEEK的基本特性及其在复合材料制备中的优势。
详细阐述了复合材料的制备工艺、结构设计以及性能优化方法。
报告重点分析了复合材料在不同工程领域的应用表现,包括航空航天、汽车制造、医疗器械以及体育器材等。
我们还讨论了复合材料在环境友好性、成本效益和可持续性方面的优势,并对其未来发展前景进行了展望。
通过本研究,旨在为相关领域的研究人员和工程技术人员提供有价值的参考信息,推动碳纤维增强PEEK复合材料技术的进一步发展和广泛应用。
1.1 研究背景随着科技的不断发展,复合材料作为一种具有优异性能的新型材料,在各个领域得到了广泛的应用。
碳纤维增强复合材料加固混凝土结构技术规程

碳纤维增强复合材料加固混凝土结构技术规程碳纤维增强复合材料加固混凝土结构技术规程一、引言在建筑结构中,混凝土是常用的材料之一,但随着时间的推移和外界环境的影响,部分混凝土结构可能会出现裂缝、变形甚至损坏的情况。
为了延长结构的寿命并增强其承载能力,碳纤维增强复合材料加固技术逐渐应用于混凝土结构的修复与加固中。
本文将深入探讨碳纤维增强复合材料加固混凝土结构的技术规程及其应用。
二、技术规程概述碳纤维增强复合材料加固混凝土结构是一种先进的结构改造技术,其基本原理是通过将碳纤维加固带粘贴于混凝土结构表面,形成与结构相互作用的复合体系,从而提高结构的抗弯、抗剪、抗震和抗冲击性能。
在进行加固设计时,需要根据结构的受力情况、裂缝分布及其他相关因素综合考虑。
下面将详细阐述碳纤维增强复合材料加固混凝土结构的技术规程。
三、评估与筛选在开始进行碳纤维增强复合材料加固前,首先需要进行结构评估与筛选工作。
通过对结构原始设计图纸、实测数据以及现场勘察等工作的综合分析,确定结构的受力情况、裂缝分布和加固需求。
同时,还需要确定碳纤维增强复合材料的种类、级别以及施工方式等。
四、材料准备选择合适的碳纤维增强复合材料是加固工程的关键。
根据结构的受力情况和需要加固的部位,确定合适的碳纤维增强复合材料类型,如碳纤维布、碳纤维板等。
同时,需要针对具体工程情况,选择相应的胶黏剂和填料,以确保加固材料与混凝土结构之间的良好粘结性能。
五、表面处理在进行碳纤维增强复合材料粘贴之前,需要对混凝土结构表面进行必要的处理。
这包括清洁、修复裂缝、打磨表面等操作,以确保碳纤维增强复合材料与混凝土结构之间的粘结强度。
六、材料施工碳纤维增强复合材料的施工过程包括胶黏剂或树脂的涂刷、碳纤维材料的粘贴和压实等步骤。
胶黏剂或树脂的涂刷需要均匀、一致地涂布在碳纤维材料的表面,并尽可能避免气泡和空隙的产生。
在粘贴碳纤维材料时,需要确保其紧密贴合于结构表面,并进行适当的压实,以提高粘结强度。
复合材料在土木工程中的发展与应用

复合材料在土木工程中的发展与应用在当前的土木工程复合材料中,FRP是纤维增强复合材料,是新型的结构材料,由多种性能较强的纤维和树脂组合而成。
这种材料的特征是重量较轻、强度较高、成型便捷、具有较强的耐腐蚀性,发挥在土木工程中实现对传统材料混凝土和钢材的有力补充,科学合理地将土木将FRP应用在土木工程中已经成为其重要的发展趋势。
本文主要对复合材料在土木工程中的发展和应用进行了探讨。
标签:复合材料;土木工程;发展;应用1、复合材料在土木工程中的发展与应用1.1工程结构加固补强复合材料在各方面的应用主要是利用各种方法将FRP附着在构件表面受力,这样就可以让原有构件的受力性能得到有效增强。
在上个世纪八十年代的时候,我国就曾尝试在工程实践中运用混凝土结构外贴玻璃纤维增强复合材料内夹高强钢丝的加固方法,但主要为了起到防腐作用,同时将钢丝和混凝土结合在一起,所以这种尝试并没有加以广泛推广。
在九十年代初期,对瑞士的多跨连续箱形梁桥使用了碳纤维增强复合材料进行了加固并取得了很好的效果之后,纤维增强复合材料的加固结构修复技术开始在全球范围内得到了研究与普及,并且在实际的工程中得到了大量的应用。
在我国第一项CFRP加固工程的成功完成是在1998年,开辟了我国FRP的发展道路,随之该技术也在一些重大工程中得到了应用。
在现阶段内,纤维增强复合材料在各种类型的结构加固中都得到了大量的运用,比如在混凝土结构、钢结构等方面,另外纤维增强复合材料除了涉及桥梁与建筑领域的结构之外,同时还涉及到了地下结构、水工结构以及隧道等等,所涉及的领域十分广泛。
其主要加固形式包括FRP布缠绕加固混凝土柱、将FRP片材粘贴在梁、板手拉面以及利用FRP片材包裹或者U形箍包裹梁、柱构件。
当前FRP 在混凝土结构加固方面应用较多,同时在钢结构、木结构以及砌体结构加固方面也有较多的应用与研究,其中FRP在钢结构加固方面的运用正在成为FRP研究的重点。
1.2FRP筋索和预应力FRP筋混凝土结构FRP筋中纤维的比重较大,其筋的重量较小,同时强度较高,是常规钢筋的6倍左右。
纤维增强水泥板外墙体系工程应用及分析

纤维增强水泥板外墙体系工程应用及分析摘要:纤维增强水泥基复合材料可用于桥面和路面(公路和机场跑道)的罩面层,建筑、桥梁、水工、隧道和采矿工程中的各种增强结构,为工程的施工建设提供了重要的支撑。
关键词:纤维增强、水泥板、外墙体系、工程、应用1材料特点和比较1.1纤维增强水泥板的特点纤维增强水泥板是由硅酸盐水泥、石英砂、植物纤维、天然矿物颜料等,经特殊工艺制造而成。
其不含石棉,无放射性及其他有害物质,是绿色环保建材。
其密度1.67g/cm3,导热系数0.379W/(m•K),其防火、力学、耐候等性能符合相关要求。
1.2芝麻白花岗岩的特点花岗岩呈细粒、中粒、粗粒的粒状构造,或似斑状构造,其颗粒均匀细密,孔隙小(孔隙度通常为0.3%~~0.7%),吸水率不高(吸水率通常为0.15%~~0.46%),有良好的抗冻功能。
芝麻白花岗岩的硬度高,摩氏硬度约为6,密度为2.63~~2.75g/cm3。
导热系数2.6~~3.6W/(m•K)。
芝麻白花岗岩的质地纹理均匀,颜色以白灰色系为主,而且其颜色相对变化不大,色差小,适合大面积的使用,也有深、浅灰色的石料可以选择。
1.3纤维增强水泥板与芝麻白花岗岩的对比这两种材料用于墙面材料时,纤维增强水泥板密度(1.67g/cm3)是石材密度(2.63~~2.75g/cm3)的三分之二。
因为石板材通过干挂片连接工艺的要求,干挂石材最少厚度要达到25mm,而纤维增强水泥板厚度7~~10mm,约占石材厚度的三分之一。
这样每块纤维增强水泥板只有石材重量的1/5。
由于重量大幅度减少,加工、运输、安装等都有很大的优势,可以节省工期,减低施工工人的劳动强度,甚至机械设备台班量也会减少。
纤维增强水泥板导热系数0.379W/(m•K)约为花岗岩2.6~~3.6W/(m•K)的八分之一,保温性能较好。
纤维增强水泥板没有天然石材的纹理,但色彩丰富,可以定制各种丰富的色泽。
2施工工艺分析2.1湿贴法的问题水泥砂浆、粘贴胶等直接铺贴的方式,由于温度变化、含水率变化等原因引起石材、砂浆的收缩率不同,会造成空鼓、开裂、脱离、甚至脱落等质量问题。
纤维增强复合材料

纤维增强复合材料在工程结构中的应用一、FRP材料简介:纤维增强复合材料(fiber reinforced polymer/plastic,简称FRP) 是由纤维材料与基体材料按一定定工艺复合形成的高性能新型材。
初期主要应用于航空、航天、国防等高科技领域,广泛应用于航天飞机、军舰、潜艇等军事装备上。
20世纪下半叶,随着FRP材料制造成本的降低,又因其轻质、高强、耐腐蚀等优点,成为土木工程的一种新型结构材料。
目前,在土木工程中应用的FRP材料主要有碳纤维增强复合材料(cFRP)、玻璃纤维增强复合材料(GFRP)和芳纶纤维增强复合材料(AFRP)三种。
近年来,PBO纤维和玄武岩纤维也开始应用于土建工程中,并取得了良好的效果。
目前,FRP材料在我国土木工程中应用最多的是用于结构加固补强。
FRP加固修复技术的研究和应用已在我国逐渐展开,且正在以高速度发展。
在新建工程结构中,FRP结构和FRP组合结构的应用也日益受到工程界的重视。
FRP材料在土木工程中的应用和研究已成为了一个新的热点。
二、FRP材料的优点:1、有很高的比强度,即通常所说的轻质高强,因此采用FRP材料可减轻结构自重。
在桥梁工程中,使用FRP结构或FRP组合结构作为上部结构可使桥梁的极限跨度大大增加。
理论上,用传统结构材料桥梁的极限跨度在5000 m以内,而上部结构使用FRP结构可达8000 m以上,有学者已经对主跨长达5000 m的FRP悬索桥进行了方案设计和结构分析E8]。
在建筑工程中,采用FRP材料的大跨空间结构体系的理论极限跨度要比传统材料结构大2~3倍,因此,FRP结构和FRP组合结构是获得超大跨度的重要途径。
在抗震结构中,FRP 材料的应用可以减轻结构自重,减小地震作用。
另外,FRP材料的应用也能使结构的耐疲劳性能显著提高。
2、有良好耐腐蚀性,FRP可以在酸、碱、氯盐和潮湿的环境中长期使用,这是传统结构材料难以比拟的。
在美国每年因钢材腐蚀造成的工程结构损失高达700亿美元,近1/6的桥梁因钢筋锈蚀而严重损坏;加拿大用于修复因老化损坏的工程结构的费用达490亿加元;我国目前因钢材锈蚀而造成的损失也在逐年增加。
四种常用FRP材料特性及其应用现状

四种常用FRP材料特性及其应用现状作者:欧盈来源:《科学导报·学术》2019年第23期摘 ;要:FRP是一种高性能复合材料,是当下土木工程领域中一个新的热点研究内容,本文就四种常用FRP的材料特性及其应用现状进行简要介绍。
关键词:CFRP;GFRP;BFRP;AFRP纤维增强复合材料(FRP)是由高性能纤维与基体材料根据一定比例混合,并经过一定工艺复合而成的一种新型复合材料,具有轻质、高强、耐久性好、耐腐蚀性好、可设计性强等优点,广泛应用于航空、航天、船舶、汽车、化工、医学和机械等领域。
近年来,FRP依靠其自身的优异性能,在土木工程领域备受关注,已成为结构加固和修复工程中使用的重要材料之一,多应用于混凝土构件,也可用作其他复合材料中的增强体。
常用的FRP包括碳纤维增强复合材料(CFRP)、玻璃纤维增强复合材料(GFRP)、玄武岩纤维增强复合材料(BFRP)和芳纶纤维增强复合材料(AFRP)。
1 CFRP碳纤维增强复合材料(CFRP)是以碳纤维为主要成分,树脂为基体材料,通过将碳纤维单向排列并按一定成型方法形成的复合材料,具有质量轻、抗拉强度高、耐久性好、耐腐蚀性强、施工简便等特点。
其抗拉强度约为3400MPa,弹性模量介于2.3×105 MPa~3.9×105MPa 之间[1]。
与钢材相比,CFRP的弹性模量高于钢材,其抗拉强度约为钢材的10倍,比强度可达钢材的20倍,但重量仅约为钢材的1/5。
同时,CFRP具有较好的疲劳性能,疲劳极限约为静荷强度的70%~80%[2]。
CFRP因其优异的性能,在宇航工业、航空工业、交通运输以及土木建筑方面得到了广泛应用。
在建筑工程中,CFRP的应用形式包括CFRP布、CFRP板、CFRP筋等。
CFRP布因其材质轻巧,外观效果及力学性能好,在加固与修复工程中备受青睐,主要用于构件受拉区,承受拉应力,多用于钢筋混凝土梁、板、柱的加强加固,可大幅度提高其承载能力。
纤维增强复合材料(FRP)桥面板

(4) 纤维增强复合材料(FRP)桥面板钢材锈蚀和混凝土劣化是阻碍钢筋混凝土和钢构件耐久性的最要紧问题,它不仅阻碍着结构的利用寿命,还会致使大量的平安隐患,乃至造成事故。
由于桥梁结构长期暴露在自然环境中,加上近海地域的氯离子等缘故,使得桥梁结构的锈蚀退化问题尤其突出。
因此,桥面结构的劣化一直是困扰公路桥梁的一个“恶疾”。
由于纤维增强复合材料(FRP)有专门好的耐侵蚀性能,因此用FRP制造桥面体系被以为是提高传统桥梁结构耐久性的一个进展方向。
FRP桥面体系一样为全FRP结构或FRP-混凝土叠合梁板,断面形式多样。
它与传统的钢筋混凝土桥板相较具有明显的优势:①在工厂中加工成型,重量很轻,安装速度快;②能够抗击除冰盐、海水、空气中氯离子的侵蚀,保护费用低;③恒载小,可减少支撑结构和下部结构负担的荷载;④为弹性结构,而且通常设计截面尺寸由挠度操纵,偶然超载能够弹性恢复;⑤疲劳性能好。
在工程应用中,能够直接用FRP桥面体系建造新桥梁,也能够用于旧桥修复,即用FRP 桥板替换原有的混凝土桥板,一方面可减轻桥面结构自重,乃至能够提高荷载品级,另一方面取得了更好的耐侵蚀性。
①受力特点FRP桥面体系要紧有两种形式:一种是板式桥,即用FRP桥板直接实现跨越,如错误!未找到引用源。
(a)所示;另一种是梁式桥,将FRP桥面板搁置在钢梁或混凝土梁上,如错误!未找到引用源。
(b)所示。
这两种形式中,FRP桥面板要紧承弯矩、剪力和局部压力。
依照材料可分为全FRP桥面板和FRP-混凝土/木材叠合板两类:全FRP桥面板一样为上下FRP面板和腹板组成,上面板受压和下面板受拉,中间腹板部份要紧经受剪力,同时连接上下面板,如错误!未找到引用源。
(a)示意;在FRP-混凝土/木材叠合板中,混凝土或木材布置在受压区内,而FRP要紧受拉,它们之间通过剪力连接件或粘结等方式传递剪力,如错误!未找到引用源。
(b)示意。
当荷载作用在局部,FRP桥面板横向还会受弯,且同时受到冲切或挤压;看成用非对称荷载时,截面上还会有扭矩显现:这些在FRP 桥板的内力分析和设计中均需考虑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纤维增强复合材料及新型结构体系【摘要】简单介绍土木工程材料的发展与历史、几大纤维原丝的生产工艺,介绍FRP 材料的特性与种类并分析其优缺点,深入介绍为实现FRP材料高性能化所运用的技术及FRP四大加固技术,提出问题并探讨FRP材料增强新结构。
【关键词】FRP材料结构加固增强新结构引言FRP 是复合材料,由于单一材料在性能方面或者其它方面无法满足具体的需求,所以有了 FRP 的存在,FRP 是将两种或者两种以上的材料组合而成的新型材料,它是一种高性能纤维复合材料和工程专用纤维复合材料。
高性能纤维复合材料属于高分子复合材料,它是由各种高性能纤维作为增强体置于基体材料复合而成。
其中高性能纤维是指有高的拉伸强度和压缩强度、耐磨擦、高的耐破坏力、低比重等优良物性的纤维材料,它是近年来纤维高分子材料领域中发展迅速的一类特种纤维。
高性能纤维的发展是一个国家综合实力的体现,是建设现代化强国的重要物资基础。
高性能纤维复合材料是发展国防军工、航空航天、新能源及高科技产业的重要基础原材料,同时在建筑、通信、机械、环保、海洋开发、体育休闲等国民经济领域具有广泛的用途。
1.土木工程材料的发展与历史1.1历史远古时期,人类于穴巢居住;石器时代,人们挖土凿石为洞(古崖居)、伐木搭竹为棚;封建时期,人们可用砖木建房;1760年欧洲工业革命,建筑材料实现了质的飞跃,其标志为钢材、水泥、混凝土的发明与应用;二十世纪开始后,复合材料及高分子材料得到快速发展。
1.2传统土木工程材料的缺点(1)耐久性差:如钢筋,型钢,拉索等(2)性能单一性,不可设计性:如震后可恢复性较差(3)低强度重量比,限制结构的发展:如大跨斜拉桥,悬索桥等(4)无法实现自监测功能:结构安全性能隐患1.3土木工程材料的基本性质(1)材料的力学性质 A 强度与比强度 B 材料的弹性与塑性 C 脆性和韧性 D 硬度和耐磨性;(2)材料与水有关的性质: A 材料的亲水性与憎水性B 材料的含水状态C 材料的吸湿性和吸水性 D 耐水性 E 抗渗性 F 抗冻性(3)材料的热性质: A 热容性B 导热性 C 热变形性(4)材料的耐久性,是指用于构筑物的材料在环境的各种因素影响下, 能长久的保持其性能的性质1.4土木工程材料的发展趋势随着地球人口的增长,人类为了生存之需,土木工程材料未来至少应朝5个方向发展,及高空、地下、海洋、沙漠及太空。
同时,绿色、高性能的材料亦是土木工程材料的发展趋势。
2.纤维原丝2.1我国鼓励发展的四大高科技纤维:碳纤维(CF)、芳纶(AF)、超高分子量聚乙烯纤维(UHMWPE)、连续玄武岩纤维(CBF)2.2碳纤维生产工艺碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为230~430Gpa亦高于钢。
因此CFRP的比强度即材料的强度与其密度之比可达到2000Mpa/(g/cm3)以上,而A3钢的比强度仅为59Mpa/(g/cm3)左右,其比模量也比钢高。
2.3玻璃纤维生产工艺池窑拉丝工艺又被称为一次成型工艺,这种生产工艺是将各种玻璃配合料在池窑熔化部经高温熔成玻璃液,在澄清部排除气泡成为均匀的玻璃液,再在成型通路中辅助加热,经池窑漏板,高速拉制成一定直径的玻璃纤维原丝。
一座窑炉可以通过数条成型通路,安装上百台拉丝漏板同时生产。
2.4玄武岩纤维的制备2.4.1玄武岩的分布与作用玄武岩(basalt)属基性火山岩。
是地球洋壳和月球月海的最主要组成物质,也是地球陆壳和月球月陆的重要组成物质。
玄武岩在地球上分布广泛,遍及各大洋和各大洲。
月球玄武岩是构成月球的主要岩石之一。
主要分布在深海洋脊、洋盆内群岛和海山岛、弧和活动大陆边缘、大陆内部,可作为基石研磨材料来磨金属、磨石料,同时可用于作过滤器、干燥器、催化剂等。
2.4.2连续玄武岩纤维连续玄武岩纤维(Continuous Basalt Fibre 简称CBF)是以火山岩为原料经1500℃高温熔融后快速拉制而成的连续纤维,其外观为金褐色,属于非金属的无机纤维,被称为21 世纪无污染的“绿色工业原材料”。
同时,连续玄武岩纤维是关乎国家安全的重要战略物资,是支撑高技术产业发展的新型高技术绿色纤维材料;又是国民经济发展新的基础材料;也是国民经济发展新的增长点的绿色原材料!2.4.3中国发展玄武岩连续纤维的前景(1)原料,我国地域辽阔,玄武岩储量非常丰富,但不同玄武岩纤维需要不同类型的玄武岩(2)市场,中国本身就具有新材料应用的庞大市场(3)成本,中国具有低成本制造玄武岩纤维得天独厚的条件(4)技术,全球玄武岩纤维的技术及规模尚处于初级阶段,这给我们追赶乃至超过国外的先进技术水平提供了很大的发空间和市场机遇3.纤维复合材料纤维复合材料是以纤维材料作为增强材与基体结合形成的复合材料,简称FRP(Fiberreinforced polymer)。
在城市工程中常用的FRP材料有:碳纤维FRP,芳纤维FRP,玻璃纤维FRP和玄武岩纤维FRP。
3.1 FRP材料的种类(1)FRP 片材,包括FRP 布和FRP 板:主要用来粘贴在混凝土结构的表面对其进行加固补强(2)FRP 棒材,包括 FRP 筋和 FRP 索:主要在 FRP 筋混凝土结构、FRP 预应力混凝土结构和桥索中替代钢筋和钢绞线;(3)FRP 网格材和FRP 格栅:作为混凝土结构中的配筋或简易工作平台(4)FRP 拉挤型材:截面形式灵活多样,力学性能好,用途广,是FRP 结构应用的主要产品(5)FRP 缠绕型材:主要用作FRP 管混凝结构土,可以作为柱、桩,甚至梁,使构件性能大大优于普通钢筋混凝土(6)FRP 夹层结构和蜂窝板:由上下面的FRP 板和夹心材料组成,充分利用了面层FRP 材料强度,有很高的强度重量比和刚度重量比,是非常合理的构件形式,主要在梁和桥板中应用(7)还有一些其它工艺的FRP 产品,如:模压产品、层压和卷管产品、热塑性成型产品以及手糊产品(低压接触)等等3.2 FRP材料的特性(1)轻质高强。
FRP 材料最突出的优点在于它有很高的比强度(极限强度/相对容重),即通常所说的轻质高强。
FRP 的比强度是钢材的20~50 倍,因此采用FRP 将会大大减轻结构自重。
在桥梁工程中,使用 FRP 结构或 FRP 组合结构作为上部结构可使桥梁的极限跨度大大增加[4,5],并且可以减小地震作用的影响(2)良好的耐腐蚀性。
可以在酸、碱、氯盐和潮湿的环境中抵抗化学腐蚀,这是传统结构材料难以比拟的。
目前在化工建筑、地下工程和水下特殊工程中,FRP 材料耐腐蚀的优点已经得到实际工程的证明(3)良好的可设计性。
与传统结构材料相比,这是FRP 所独有的。
工程师可以通过使用不同纤维种类、控制纤维的含量和铺陈不同方向的纤维设计出各种强度和弹性模量的 FRP 产品。
而且 FRP 产品成型方便,形状可灵活设计4.纤维复合材料的高性能化4.1混杂/复合技术主要包括多种纤维混杂技术与纤维与钢筋复合技术。
其中,由于单种纤维性能较为单一,如碳纤维的价格高、抗冻融不佳、抗辐射差,玻璃纤维、玄武岩纤维等疲劳强度不高、蠕变大、耐碱腐蚀不佳等,从而产生了多种纤维混杂/复合技术。
即将性能各异的多种纤维材料,按照不同的结构性能要求,进行混杂设计达到不同的力学性能,从而从根本上改变传统材料单一不可设计性。
而纤维与钢筋复合技术则是通过复合界面粘结提升技术、树脂提升技术、筋材表面处理技术,实现钢筋与纤维有效混杂和复合,从而提高其性能。
4.2 FRP智能化 FRP智能化主要体现在两种材料的应用上,即混杂碳纤维传感材料与自传感FRP智能筋/索。
首先,单种碳纤维在出现断裂前尽管线性好,但在很大一个应变区间电阻变化率很小,一般在1-2%以下,在现场很难进行精确测量;且在通常情况下,碳纤维电阻的快速变化往往伴随着碳纤维的最终断裂,导致有效测量范围较窄。
所以,我们运用碳纤维传感混杂技术与碳纤维传感增敏技术来降低小电阻变化率所对应的应变范围,同时在整个测量范围内,可以使电阻随应变的变化出降现一个阶梯状变化的关系。
其次,由于分布式光纤传感具有分布式的测量优势和光学测量的稳定性,是最佳的传感元件之一,但是光纤本身比较脆弱,与土木工程的恶劣环境不能相容,而FRP 具有优异的力学性能和耐久性能,且与光纤之间存在天然的物理相容性,所以我们将光纤与FRP进行复合,得到了自传感BFRP智能材料。
这种智能材料具有优良的传感性能、高强的力学性能、卓越的耐久性能,同时在环保、价格上具有较高的综合优势,被认为具有广泛应用前途。
5.纤维复合材料加固结构相比于FRP加固,传统加固方法具有施工周期长、难度大、费用高、复杂结构不易加固、不能高效修复和提升钢筋混凝土(RC)结构功能等缺点。
而如今在国际上FRP加固重大工程结构技术已进入主流地位。
如:澳大利亚西门大桥40余公里桥段采用FRP加固;3.11东日本大地震显示了FRP加固铁路高架桥效果优于钢材。
现今,纤维复合材料加固结构共有以下五大技术:一是FRP抗弯/抗剪承载力加固技术,此技术是单将FRP片材(板材)粘贴于钢筋混凝土梁的底面和侧面,这是提高钢筋混凝土构件抗弯/抗剪承载力的一个有效措施。
首先,FRP将与受拉钢筋一起提供抗弯作用从而起到抗弯加固的作用,其破坏的主要模式为FRP拉断、顶部混凝土压碎、FRP-混凝土界面剥离三种方式;其次,粘贴于混凝土梁/柱侧面的FRP与抗剪腹筋作用类似,是用于限制混凝土斜裂缝发展,从而起到抗剪加固的作用,其主要破坏模式为FRP拉断、FRP-混凝土界面剥离。
二是FRP抗震加固技术,由于FRP材料具有高强、轻、薄、易于施工的特点,因此与传统的包钢或增大混凝土截面加固方法相比,FRP材料具有明显优势。
FRP抗震加固可以通过包裹粘贴或封闭缠绕纤维布,或在柱外侧套上预制成型的FRP管来实现,此技术对柱抗震加固具有重大贡献,可提高混凝土的变形能力、柱延性、柱抗剪能力与抗压强度,同时降低轴压比。
三是FRP预应力加固技术,此技术的三大步骤为:预张拉不含浸纤维布、粘结和养护、剪断释放端部纤维布。
预应力FRP加固混凝土能显著提高构件的开裂荷载、屈服荷载和极限荷载,改善受弯构件在长期荷载的力学性能,提高构件的疲劳寿命;预应力CFRP加固钢梁后,其屈服荷载和极限荷载相对于对比梁都有明显的提高,其提高的程度随着预应力CFRP的用量和预应力水平的提高而增大;预应力CFRP加固对钢梁的刚度提高作用也比较明显,对低强度的钢材,提高效果更明显。
而采用预应力FRP 加固工程结构的关键问题在于预应力的施加体系、预应力控制值、预应力损失和端部的锚固。
四是FRP网格水下加固技术,此技术通过预制、潜水、安装、压浆四个步骤来实现,通过FRP网格水下加固技术,结构受力性能和耐久性能均显著提高,同时,此技术已形成了一套完整的施工功法,大大降低了成本与工期。