电化学阻抗谱及其数据处理与解析-张鉴清

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电化学阻抗谱的数据处理与解析
1. 数据处理的目的与途径 2. 阻纳数据的非线性最小二乘法拟合原理 3. 从阻纳数据求等效电路的数据处理方法 (Equivcrt) 4. 依据已知等效电路模型的数据处理方法 (Impcoat) 5. 依据数学模型的数据处理方法 (Impd)
数据处理的目的
1.根据测量得到的EIS谱图, 确定EIS的等效 电路或数学模型,与其他的电化学方法相结 合,推测电极系统中包含的动力学过程及其 机理; 2.如果已经建立了一个合理的数学模型或等 效电路,那么就要确定数学模型中有关参数 或等效电路中有关元件的参数值,从而估算 有关过程的动力学参数或有关体系的物理参 数
线性条件
• 由于电极过程的动力学特点,电极过程速度 随状态变量的变化与状态变量之间一般都不 服从线性规律。只有当一个状态变量的变化 足够小,才能将电极过程速度的变化与该状 态变量的关系作线性近似处理。故为了使在 电极系统的阻抗测量中线性条件得到满足, 对体系的正弦波电位或正弦波电流扰动信号 的幅值必须很小,使得电极过程速度随每个 状态变量的变化都近似地符合线性规律,才 能保证电极系统对扰动的响应信号与扰动信 号之间近似地符合线性条件。
因果性条件
• 当用一个正弦波的电位信号对电极系统进行 扰动,因果性条件要求电极系统只对该电位 信号进行响应。这就要求控制电极过程的电 极电位以及其它状态变量都必须随扰动信 号——正弦波的电位波动而变化。控制电极 过程的状态变量则往往不止一个,有些状态 变量对环境中其他因素的变化又比较敏感, 要满足因果性条件必须在阻抗测量中十分注 意对环境因素的控制。
拟合过程主要思想如下

假设我们能够对于各参量分别初步确定一个近似 值C0k , k = 1, 2, …, m,把它们作为拟合过程的初 始值。令初始值与真值之间的差值 C0k – Ck = k, k = 1, 2, …, m, 于是根据泰勒展开定理可将Gi 围绕C0k , k = 1, 2, …, m 展开,我们假定各初始值C0k与其真值非常 接近,亦即,k非常小 (k = 1, 2, …, m), 因此可 以忽略式中 k 的高次项而将Gi近似地表达为 :
现在用C1,C2,…,Cm表示这m个参量的估计值, 将它们代入到式 (8.2.1) 中,就可以计算出相应于 Xi的Gi 的数值。gi - Gi 表示测量值与计算值之 间的差值。在C 1, C 2 , … ,C m 为最佳估计值时, 测量值与估计值之差的平方和 S 的数值应该最小。 S 就称为目标函数: S =Σ (gi - Gi )2 由统计分析的原理可知,这样求得的估计值C1, C2,…,Cm为无偏估计值。求各参量最佳估计值 的过程就是拟合过程
数据处理的途径
阻抗谱的数据处理有两种不同的途径: • 依据已知等效电路模型或数学模型的数据 处理途径 从阻纳数据求等效电路的数据处理途径

• 1989年荷兰Tweate大学B. A. Boukamp 提出的CDC和非线性最小二乘法 Equivcrt软件 ZView, AutoLab, ZSimpWin软件 Circuit Description Code (CDC)
0 0 G G( X, C1 , C0 2 , Cm ) + 1 m
G Ck C k
S (gi - G i ) (gi - G i 1
2 0 1 1
n
n
m
G Ck ) 2 Ck
在各参数为最佳估计值的情况下,S的数值为最小, 这意味着当各参数为最佳估计值时,应满足下列 m个方程式:
稳定性条件
• 对电极系统的扰动停止后,电极系统 能否回复到原先的状态,往往与电极 系统的内部结构亦即电极过程的动力 学特征有关。一般而言,对于一个可 逆电极过程,稳定性条件比较容易满 足。电极系统在受到扰动时,其内部 结构所发生的变化不大,可以在受到 小振幅的扰动之后又回到原先的状态。
• 在对不可逆电极过程进行测量时, 要近似地满足稳定性条件也往往是 很困难的。这种情况在使用频率域 的方法进行阻抗测量时尤为严重, 因为用频率域的方法测量阻抗的低 频数据往往很费时间,有时可长达 几小时。这么长的时间中,电极系 统的表面状态就可能发生较大的变 化
• 总的说来,电化学阻抗谱的线性条件只 能被近似地满足。我们把近似地符合线 性条件时扰动信号振幅的取值范围叫做 线性范围。每个电极过程的线性范围是 不同的,它与电极过程的控制参量有关。 如:对于一个简单的只有电荷转移过程 的电极反应而言,其线性范围的大小与 电极反应的塔菲尔常数有关,塔菲尔常 数越大,其线性范围越宽。
• 对于复杂的电路,首先将整个电路分解 成2个或2个以上互相串联或互相并联 的“盒”,每个盒必须具有可以作为输 入和输出端的两个端点。这些盒可以是 等效元件、简单的复合元件(即由等效 元件简单串联或并联组成的复合元件)、 或是既有串联又有并联的复杂电路。对 于后者,可以称之为复杂的复合元件。 如果是简单的复合元件,就按规则(1) 或(2)表示。于是把每个盒,不论其 为等效元件、简单的复合元件还是复杂 的复合元件,都看作是一个元件,按各 盒之间是串联或是并联,用规则(1) 或(2)表示。然后用同样的方法来分 解复杂的复合元件,逐步分解下去,直 至将复杂的复合元件的组成都表示出来 为止。
从阻纳数据求等效电路的数据处理方法
电路描述码 我们对电学元件、等效元件,已经用符号 RC、RL或RQ表示了R与C、L或Q串联组 成的复合元件,用符号 (RC) 、(RL) 或 (RQ)表示了R与C、L或Q并联组成的复合 元件。现在将这种表示方法推广成为描述 整个复杂等效电路的方法, 即形成电路 描述码 (Circuit Description Code, 简写为 CDC)。规则如下:
按规则(1)将这一等效电路表示为: R CE-1 按规则(2), CE-1 可以表示为( Q CE-2 )。因 此整个电路可进一步表示为: R(Q CE-2) 将复合元件CE-2表示成(Q(W CE-3))。整个等效电 路就表示成: R(Q(W CE-3)) 剩下的就是将简单的复合元件 CE-3 表示出来。应 表示为( RC )。于是电路可以用如下的 CDC 表示: R(Q(W(RC)))
• 凡由等效元件串联组 成的复合元件,将这 些等效元件的符号并 列表示。例如凡由等 效元件并联组成的复 合元件,用括号内并 列等效元件的符号表 示。如图中的复合等 效元件以符号(RLC) 表示。复合元件,可 以用符号RLC或CLR 表示
• 凡由等效元件并联 组成的复合元件, 用括号内并列等效 元件的符号表示。 例如图中的复合等 效元件以符号 (RLC)表示。
G 0, k 1,2,...,m Ck
可以写成一个由m个线性代数方程所组成的方程组
从方程组 可以解出 1 , 2 , .... , m 的值,将其代 入下式,即可求得Ck 的估算值: Ck = C0k + k, k = 1, 2, …, m, 计算得到的参数估计值Ck比C0k 更接近于真值。在 这种情况下可以用由上式 求出的Ck作为新的初始 值C0k,重复上面的计算,求出新的Ck 估算值 这样的拟合过程就称为是“均匀收敛”的拟合过 程。
电化学阻抗测量技术 与 电化学阻抗谱的数据处理
浙江大字
张鉴清
电化学阻抗谱
电化学阻抗谱 (Electrochemical Impedance Spectroscopy ,简写为 EIS) ,早期的电 化 学 文 献 中 称 为 交 流 阻 抗 (AC Impedance) 。阻抗测量原本是电学中研 究线性电路网络频率响应特性的一种方 法,引用到研究电极过程,成了电化学 研究中的一种实验方法。
稳定结构示意图
不稳定结构示意图
线性条件
• 由于电极过程的动力学特点,电极过程速度随 状态变量的变化与状态变量之间一般都不服从 线性规律。只有当一个状态变量的变化足够小, 才能将电极过程速度的变化与该状态变量的关 系作线性近似处理。故为了使在电极系统的阻 抗测量中线性条件得到满足,对体系的正弦波 电位或正弦波电流扰动信号的幅值必须很小, 使得电极过程速度随每个状态变量的变化都近 似地符合线性规律,才能保证电极系统对扰动 的响应信号与扰动信号之间近似地符合线性条 件。
• 总的说来,电化学阻抗谱的线性条件只 能被近似地满足。我们把近似地符合线 性条件时扰动信号振幅的取值范围叫做 线性范围。每个电极过程的线性范围是 不同的,它与电极过程的控制参量有关。 如:对于一个简单的只有电荷转移过程 的电极反应而言,其线性范围的大小与 电极反应的塔菲尔常数有关,塔菲尔常 数越大,其线性范围越宽。
阻纳数据的非线性最小二乘法拟合原理
• 一般数据的非线性拟合的最小二乘法 若G是变量X和m个参量C1,C2,…,Cm的非线性函数, 且已知函数的具体表达式: G=G( X,C1,C2,…,Cm ) 在控制变量X的数值为X1,X2,…, Xn 时,测到n 个测量值(n > m):g1,g2,…,g n。非线性拟合 就 是 要 根 据 这 n 个 测 量 值 来 估 定 m 个 参 量 C1 , C2,…,Cm的数值,使得将这些参量的估定值代入 非线性函数式后计算得到的曲线(拟合曲线)与实 验测量数据符合得最好。由于测量值gi (i = 1,2,…,n) 有随机误差,不能从测量值直接计算出 m个参量, 而只能得到它们的最佳估计值。
阻纳是一个频响函数,是一个当扰动与响应都是电信号 而且两者分别为电流信号和电压信号时的频响函数。 由阻纳的定义可知,对于一个稳定的线性系统,当响 与扰动之间存在唯一的因果性时,GZ与GY 都决定于系 统的内部结构,都反映该系统的频响特性,故在GZ 与 GY之间存在唯一的对应关系:Gz = 1/ Gy G是一个随频率变化的矢量,用变量为频率f或其角频 率 的复变函数表示。故G的一般表示式可以写为:
阻纳数据的非线性最小二乘法拟合
在进行阻纳测量时,我们得到的测量数据是一 个复数: G(X)=G’(X) + jG”(X) 在阻纳数据的非线性最小二乘法拟合中目标函 数为: S =Σ (gi’, - Gi’ )2 +Σ (gi” - Gi” )2 或为: S =Σ Wi(gi’, - Gi’ )2 +Σ Wi(gi” - Gi” )2
阻抗与导纳
对于一个稳定的线性系统 M ,如以一个角频率为 的正弦波电信号(电压或电流) X 为激励信号 (在电化学术语中亦称作扰动信号)输入该系统, 则相应地从该系统输出一个角频率也是 的正弦 波电信号(电流或电压)Y,Y即是响应信号。Y与 X之间的关系可以用下式来表示: Y = G( ) X 如果扰动信号X为正弦波电流信号,而Y为正弦波 电压信号,则称G为系统M的阻抗 (Impedance)。如 果扰动信号X为正弦波电压信号,而Y为正弦波电 流信号,则称G为系统M的导纳 (Admittance)。
• 电化学阻抗谱方法是一种以小振幅的 正弦波电位(或电流)为扰动信号的 电化学测量方法。由于以小振幅的电 信号对体系扰动,一方面可避免对体 系产生大的影响,另一方面也使得扰 动与体系的响应之间近似呈线性关系, 这就使测量结果的数学处理变得简单。
• 同时,电化学阻抗谱方法又是一 种频率域的测量方法,它以测量 得到的频率范围很宽的阻抗谱来 研究电极系统,因而能比其他常 规的电化学方法得到更多Hale Waihona Puke Baidu动力 学信息及电极界面结构的信息。
G( ) = G’( ) + j G”( )
阻抗或导纳的复平面图
• 复合元件(RC)频响特征的阻抗复平面图
导纳平面图
阻抗波特(Bode)图
复合元件(RC)阻抗波特图
两个时间常数等效电路A
两个时间常数等效电路B
阻抗的复平面图
阻抗波特(Bode)图
电化学阻抗谱的基本条件
• 因果性条件:当用一个正弦波的电位信号对电极 系统进行扰动,因果性条件要求电极系统只对 该电位信号进行响应。 • 线性条件。当一个状态变量的变化足够小,才 能将电极过程速度的变化与该状态变量的关系 作线性近似处理。 • 稳定性条件。对电极系统的扰动停止后,电极 系统能回复到原先的状态,往往与电极系统的 内部结构亦即电极过程的动力学特征有关。
相关文档
最新文档