(4-4)圆筒形件拉深工艺计算汇总

合集下载

有凸缘圆筒形件的拉深

有凸缘圆筒形件的拉深

有凸缘圆筒形件的拉深山东建筑大学备课纸三、有凸缘圆筒形件的拉深(一) 一次成形拉深极限,首先要讨论的问题:如何判断有凸缘筒形件能否一次拉出, ,在拉深有凸缘筒形件时,采用相同毛坯直径和相同工件直径时,可拉深出不同凸Dd1缘直径d和不同高度h的工件。

显然,工件t高度和凸缘直径都影响着实际变形程度,当工件凸缘直径越小,高度越大,其变形程度也越大。

因此用一般的m=d/D不能表11 达在拉深不同的d和h时的实际变形程度。

t,,筒形件第一次拉深的许可变形程度可用相应于d/d不同比值的最t1 大相对高度h/d来表示(表4-9)。

11 当工件的相对拉深高度h/d>h1/d1时,则该工件就不能用一道工序拉深出来,需要两次或多次才能拉出。

(二)窄凸缘圆筒形件拉深,d/d=1.1~1.4 t,其拉深系数确定、拉深工艺计算与无凸缘的圆筒形件相同。

,因凸缘很小,可以当作一般圆筒形件进行拉深,只在倒数第二道工序时才拉出凸缘或拉成锥形凸缘,最后校正成水平凸缘。

,若 h/d?1时,则第一次即可拉成口部具有锥形凸缘的圆筒形,最后校正凸缘即可。

(三)宽凸缘圆筒形件的多次拉深, 宽凸缘件的拉深原则:凸缘不能减小,一次成型。

第页山东建筑大学备课纸, 假若零件的拉深系数大于表4-10所给的第一次拉深系数极限值, 则该零件可一次拉成。

,,或者零件的相对高度小于表4-9所给的第一次拉深的最大相对高度值,则该零件可一次拉成。

宽凸缘件多次拉深工艺通常有两种情况:中小型零件( d <200mm): t减小圆筒形直径并增加其高度,r和r基本不变。

pd制成的零件,表面质量较差,容易在筒壁部分和凸缘上残留有中间工序中形成的圆角部分弯曲和厚度的局部变化的痕迹,所以最后要加一道整形工序大型零件( dt ,200mm),厚料改变圆角半径r和r并减小圆筒形直径,高度基本不变。

pd制成的零件表面光滑平整,而且厚度均匀,不存在中间拉深工序中圆角部分的弯曲和局部变薄的痕迹。

圆筒形件拉深尺寸计算和成形过程模拟

圆筒形件拉深尺寸计算和成形过程模拟

圆筒形件拉深尺寸计算和成形过程模拟摘要:在冲压生产中,拉深是广泛使用的工序。

通过拉深可获得筒形、阶梯形、锥形、球形等零件。

平板毛坯拉深成筒状开口零件时口部出现飞边卷口现象,对此进行切边设计。

关键词:筒形件;模具结构;拉深间隙Dynaform作为近年来板料成形数值模拟技术中常用的软件,可以预测成形过程中板料的破裂、起皱、回弹等,从而帮助设计人员显著减少模具开发设计时间及试模周期。

在利用该软件进行模拟分析时,应该采用理论计算和软件模拟共用,以找出合适的成形工艺。

带凸缘的圆筒形件是日常生活中常用的零件,如不锈钢的面盆、压力锅的锅盖等物品,均属于带凸缘的圆筒形件。

本文利用所给的拉深件,首先计算了拉深过程中的部分尺寸,而后在理论计算的基础上,结合Dynaform软件对零件的拉伸过程进行模拟,找出了较为合适的压边力,从而为后续拉深模具设计提供依据。

1、带凸缘圆筒形件拉深尺寸计算图1是带凸缘圆筒形件的零件图,其壁厚为2mm,材料为304不锈钢,精度为IT14级。

本文计算的拉深尺寸包括拉深毛坯的尺寸、拉深次数的计算、压边装置的使用与否以及压边力的计算。

1.1带凸缘圆筒形件毛坯尺寸的计算由图1,零件的厚度t=2mm,因此在计算毛坯尺寸时应采用中线尺寸计算。

该零件的相对直径dt/d=380/320=1.18,其中dt为凸缘直径,d为圆筒件底部直径,取修边余量δ=6mm。

由拉深毛坯尺寸的计算公式可知:根据图1,d4=380+2δ=392mm,r=6mm,d2=d+2r=332mm,H=98mm由此计算出防尘盖毛坯尺寸:1.2是否需要压边装置和拉深次数的计算本零件采用普通平面凹模拉深,毛坯不起皱条件为:t/D≥(0.09~0.17)(1-m)由图1和D可计算出:t/D=2/527=0.38%,总拉深系数m=d2/D=332/527=0.63。

因此(0.09~0.17)(1-m)=0.0333~0.0629,则t/D<(0.09~0.17)(1-m),因此该零件拉深时需使用压边圈。

拉伸工艺系数(常用)

拉伸工艺系数(常用)

拉深件坯料形状和尺寸是以冲件形状和尺寸为基础,按体积不变原则和相似原则确定。

体积不变原则,即对于不变薄拉深,假设变形前后料厚不变,拉深前坯料表面积与拉深后冲件表面积近似相等,得到坯料尺寸;相似原则,即利用拉深前坯料的形状与冲件断面形状相似,得到坯料形状。

当冲件的断面是圆形、正方形、长方形或椭圆形时,其坯料形状应与冲件的断面形状相似,但坯料的周边必须是光滑的曲线连接。

对于形状复杂的拉深件,利用相似原则仅能初步确定坯料形状,必须通过多次试压,反复修改,才能最终确定出坯料形状,因此,拉深件的模具设计一般是先设计拉深模,坯料形状尺寸确定后再设计冲裁模。

由于金属板料具有板平面方向性和模具几何形状等因素的影响,会造成拉深件口部不整齐,因此在多数情况下采取加大工序件高度或凸缘宽度的办法,拉深后再经过切边工序以保证零件质量。

切边余量可参考表4.3.1和表4.3.2。

当零件的相对高度H/d很小,并且高度尺寸要求不高时,也可以不用切边工序。

首先将拉深件划分为若干个简单的便于计算的几何体,并分别求出各简单几何体的表面积。

把各简单几何体面积相加即为零件总面积,然后根据表面积相等原则,求出坯料直径。

图 4.3.1 圆筒形拉深件坯料尺寸计算图在计算中,零件尺寸均按厚度中线计算;但当板料厚度小于1mm时,也可以按外形或内形尺寸计算。

常用旋转体零件坯料直径计算公式见表4.3.3。

4才对比较准确该类拉深零件的坯料尺寸,可用久里金法则求出其表面积,即任何形状的母线绕轴旋转一周所得到的旋转体面积,等于该母线的长度与其重心绕该轴线旋转所得周长的乘积。

如图4.3.2所示,旋转体表面积为 A。

图4.3.2 旋转体表面积计算图1.拉深系数的定义图4.4.1 圆筒形件的多次拉深在制定拉深工艺时,如拉深系数取得过小,就会使拉深件起皱、断裂或严重变薄超差。

因此拉深系数减小有一个客观的界限,这个界限就称为极限拉深系数。

极限拉深系数与材料性能和拉深条件有关。

4-4旋转体拉深件毛坯尺寸计算(模具设计与制造)

4-4旋转体拉深件毛坯尺寸计算(模具设计与制造)
1.表面积相等原则 平板毛坯被拉成圆筒形工件后,板料厚度发生
变化,上部变厚,下部变薄。为了计算简便,假 设板厚的平均值为原来板料厚度。按体积不变条 件,则有毛坯的表面积等于拉深件的表面积。 2.截面形状相似原则
毛坏的形状一般与工件截面形状相似。如工 件的断面是圆形的、椭圆形的,则拉深前毛坯的 形状基本上也是圆形的或椭圆形的,并且毛坯周 边必须制成光滑曲线,无急剧转折。
教育部十一五规划教材《模具设计与制造》
第4章 拉深工艺与拉深模具
2020/7/9
教育部十一五规划教材《模具设计与制造》
第4章 拉深工艺与拉深模具
教育部十一五规划教材《模具设计与制造》
第4章 拉深工艺与拉深模具
教育部十一五规划教材《模具设计与制造》
第4章 拉深工艺与拉深模具
4.4.1 确定毛坯尺寸的原则
2020/7/9
2020/7/9
教育部十一五规划教材《模具设计与制造》
第4章 拉深工艺与拉深模具
4.4.2 旋转体拉深件毛坯尺寸确定的方法
2.解析法
形状复杂的旋转体拉深件可以根据久里金 法则求毛坯尺寸,即:任何形状的母线绕轴线 旋转一周所得到的旋转体面积,等于该母线的 长度与其形心绕该轴线旋转所得周长的乘积。
D0 8RXL
2020/7/9
教育部十一五规划教材《模具设计与制造》
第4章 拉深工艺与拉深模具
4.4.1 确定毛坯尺寸的原则
3.毛坯尺寸应包括修边余量 为了获得规则的工件,拉深后需要进行修边,
毛坯尺寸应包括修边余量,即在计算拉深件毛坯 尺寸前,将修边部位增加一定的修边余量。
另外,计算毛坯尺寸时通常以工件最后一次 拉深后的尺寸为计算基础,当板料厚度t > 1 mm时,按工件中线尺寸计算。

圆筒件的拉深系数

圆筒件的拉深系数

若某相邻两阶梯直径比值dn/dn-1小于相应圆筒 形件的极限拉深系数时,则由直径dn-1到dn按 凸缘件的拉深办法,其拉深顺序由小阶梯到大 阶梯依次拉深。
若mΣ>m(极限拉深系数),则该零件只 需拉深一次,否则必须多次拉深。
多次拉深时,拉深次数的确定:
取首次拉深系数为m1,则m1=d1/D,故d1=m1D 取第二次拉深系数为m2,则m2=d2/d1
故d2=m2d1=m1m2D … 第n次拉深时,工作直径则为:dn=m1m2m3……mnD 因而mΣ=m1m2m3…mn
工序图:
二、有凸有凸缘圆筒形件的拉深将毛坯拉深至某一时刻 达到零件所要求的凸缘直径dt时不再拉深。
毛坯直径为 :D d2t1 4d1h1 3.44d1r
当圆角半径rd=rp=r时,第一次拉深 系数为 :
m1
d1 D
1
d t1 d1
2
h1 4
d1
3.44 r d1
对于中小型零件(d t<200mm), 采用减小圆筒形部分直径、增加 高度来达到,而圆角半径rp和rd 在整个变形过程中基本保持不变。
用此方法制成的零件,表面质量较差, 容易在筒壁部分和凸缘上残留有中间工 序中形成的圆角部分弯曲和厚度的局部 变化的痕迹,所以最后要加一道整形工 序。
2.改变圆角半径并减小圆筒形直径
当工件的相对拉深高度h/d>h1/d1时,则该 工件就不能用一道工序拉深出来,而需 要两次或多次才能拉出。
以后各次拉深的拉深系数为mn=dn/dn-1。
(二)窄凸缘圆筒形件拉深
对 dt / d 1.11.4 之间的凸缘件称为窄凸缘件。
这类零件因凸缘很小,可以当作一般圆筒形件 进行拉深,只在倒数第二道工序时才拉出凸缘 或拉成具有锥形的凸缘,而最后通过校正工序 压成水平凸缘。

拉深件各个计算

拉深件各个计算

(i=2、3、…、n)
以上计算所得凹模圆角半径不应小于制件底部圆角半径。
2) 凸模圆角半径的确定 拉深凸模除最后一次应取与零件底部圆角半径r相等 的数值外,中间各次拉深可以取与凹模圆角相等或略小一些 的数值,且各次拉深凸模圆角半径应逐次减少。 拉深凸模可取: rT 1 ( 0 . 7 ~ 1 . 0 ) r A 1 但零件圆角半径如果小于拉深工艺性要求时,则凸模圆角 半径应按工艺性的要求确定(即rT≥t),然后通过整形工序 得到零件要求的圆角半径。
D d
2
h 6 mm
4 d ( H h ) 1 . 72 dr 0 . 56 r
2
代已知条件入上式得D=98.2mm
(2)确定拉深次数 坯料相对厚度为
t D

2 98 . 2
100 % 2 . 03 % 2 %
按表可不用压料圈,但为了保险,首次拉深仍采用压料圈。 根据t/D=2.03%,查表6-6得各次极限拉深系数m 1 =0.50, m2=0.75,m3=0.78,m4=0.80,…。

d1=m1D=0.50×98.2mm=49.2mm
d2=m2d1=0.75×49.2mm=36.9mm d3=m3d2=0.78×36.9mm=28.8mm d4=m4d3=0.8×28.8mm=23mm 此时d4=23mm<28mm,所以应该用4次拉深成形。
筒形件在以后各次拉深时的特点及方法
1)筒形毛坯的壁厚及机械性能是不均匀的; 2)凸缘变形区保持不变,拉深终了以前,逐渐缩小; 3)拉深力在整个拉深过程中一直都在增加,直到拉深的最后阶段 才由最大值下降至零; 4)破裂常发生在拉深的终结阶段; 5)外缘有筒壁刚性支持,稳定性较好,在拉深最后阶段,才易起 皱; 6)极限拉深系数要比首次拉深大得多 。

圆筒形拉深件工序件尺寸计算

圆筒形拉深件工序件尺寸计算

例:试对图所示圆筒形件进行拉深工艺计算,材料为L3,壁厚0.5mm 。

圆筒形拉深件解:1.确定修边余量Δh 该件H =90mm ,H/d =1.8,查表2-37得Δh =5mm 。

则拉深高度H =90+5=95mm 。

2.计算毛坯直径由于板厚t 小于1mm ,故计算毛坯直径可直接用工件图所注尺寸计算,不需按中心层尺寸计算。

D =2222256.072.14r rd H d d --+=225.056.0505.072.19550450⨯-⨯⨯-⨯⨯+=146.53.确定拉深次数按毛坯相对厚度t/D =0.5/146.5=0.34%和工件相对高度H/d =95/50=1.9,查表4-15得拉深次数n =3。

初步确定需要三次拉深。

考虑到工件圆角半径为0.5mm ,故需增加一次整形工序。

4.计算各次工序件直径考虑到板料为软铝l3,拉深系数按表4-11中值减小1.5%计算,初步确定三次拉深的拉深系数分别为:m 1=0.54,m 2=0.77,m 3=0.79,初步计算各次拉深工序件直径为:1.489.6079.09.601.7977.01.795.14654.023312211=⨯===⨯===⨯==d m d d m d D m d第三次拉深直径已小于工件的直径,需调整各次的拉深系数,取m 1=0.55,m 2=0.78,m 3=796.078.055.05.1465021=⨯=m m D d因此得各次拉深工序件直径为:508.62796.08.626.8078.06.805.14655.023312211=⨯===⨯===⨯==d m d d m d D m d5.选取凸模与凹模的圆角半径An Tn Ai Ai A r r r r t d D r )8.0~7.0()8.0~7.0(5.55.0)505.146(8.0)(8.011===⨯-=-=-计算各次拉深凸模与凹模的圆角半径并取整结果为:mm r mmr mmr mmr mmr mmr T T T A A A 345456321321======6.计算各次工序件的高度将D =146.5;d 1=80.6、r 1=5;d 2=62.8、r 2=4;d 3=50、r 3=3分别代入如下公式: )56.072.1(4122n n n n n n d r r d d D H ++-=可计算出:H 1=48.6mmH 2=71.5mmH 3=96.1mm计算拉深工序件的高度是为了设计再拉深模时确定压边圈的高度,再拉深模压边圈的高度应大于前道工序件的高度。

筒形件拉深

筒形件拉深

2.拉深系数
习惯上常用拉深系数m来表示变形量。 对于首次拉深,ml=d1/d0; 对于第二次拉深m2=d2/d1;

对于第n次拉深,mn=dn/dn-1。
在制定拉深工艺时,通常采用尽可能小的 拉深系数。
但所能采用的拉深系数不能低于某一极限值, 该极限值称为极限拉深系数。
数次拉深的极限拉深系数分别用[m1]、[m2]、 [m3]等来表示。
1 2
d0 d1
1
2
对于多次拉深,变形系数为
cn
hn h
d
2 0
d
2 n
4d1
t0 tn
d 0 dn
d0 dn 2dn
t0 tn
1 2
d0 dn
1
t0 tn
2
(4.3) (4.4)
式中,dn——经过n次拉深后工件侧壁的平均直径 t0——毛坯厚度;
tn——经过n次拉深后工件侧壁的平均厚度。
式中
d0——坯料直径;
d——工序件直径;
r——工序件圆角半径。
1.3 带法兰筒形件的拉深
1.拉深系数
实际上,带法兰筒形件
的拉深是无法兰筒形件
拉深的某一中间状态,
如图4.7所示。带法兰筒
形件的拉深系数以mf来
表示:
mf= d
d0
(4.8)
图4.7 筒形件拉深过程
表4.6 带法兰筒形件首次拉深的极限相对深度 h1/d1(10钢)
表4.7 带法兰筒形件首次拉深的极限拉深系数[mf] (10钢)
表4.8 带法兰筒形件首次拉深的极限拉深系数 (10钢)
2.多次拉深
需要多次拉深的带法兰工件,应在首次拉深中 就获得工件所要求的法兰直径。在以后各工序 中,法兰直径不再变化,只要逐次减小筒形部 分的直径而已,如图4.8所示。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 拉深工艺与拉深模设计
复习上次课的内容
1.拉深件坯料尺寸的计算遵循什么原则?
2.简单旋转体与复杂旋转体的拉深件坯料尺寸的计算方法 与步骤?
第四章 拉深工艺与拉深模设计
第四节 圆筒形件拉深工艺计算
一、拉深系数与极限拉深系数
1.拉深系数的定义
拉深系数m是以拉深后的
直径d与拉深前的坯料D
(工序件dn)直径之比表
第四节 圆筒形件拉深工艺计算
二、拉深次数与工序件尺寸
1.拉深次数的确定 (2)推算方法
1)由表4.2.4或表4.2.5中查得各次的极限拉深系数; 2)依次计算出各次拉深直径,即
d1=m1D;d2=m2d1;…;dn=mndn-1; 3)当dn≤d时,计算的次数即为拉深次数。
第四节 圆筒形件拉深工艺计算
3)材料的表面质量 材料表面光滑,拉深时摩擦力小而容易流动, mmin可减小。
第四节 圆筒形件拉深工艺计算
一、拉深系数与极限拉深系数
2.影响极限拉深系数的因素
(2)模具方面
1)凸模圆角半径和凹模圆角半径
凸模圆角半径过小时,筒壁和底部的过渡区弯曲变形大,使危险断面 的强度受到削弱, mmin应取较大值;
一、拉深系数与极限拉深系数
2.影响极限拉深系数的因素
(1)材料方面
1)材料的力学性能和组织 塑性好、组织均匀、屈强比小,拉深成形性能好,可以采用较小的mmin 。 2)毛坯的相对厚度 t / D
t / D 小时,拉深变形区易起皱。为了防皱增加压料力,又会引起摩 擦阻力增大,变形抗力加大,使mmin提高。t / D 小, mmin可提高;反之, 可选用较小mmin。
D 98.2
按表4.4.4可不用压料圈,但为了保险,首次拉深仍采用压料圈。
根 据 t/D = 2.03% , 查 课 本 表 4.2.4 得 各 次 极 限 拉 深 系 数 m1=0.50,m2=0.75,m3=0.78,m4=0.80,…。
故 d1=m1D=0.50×98.2mm=49.2mm d2=m2d1=0.75×49.2mm=36.9mm d3=m3d2=0.78×36.9mm=28.8mm d4=m4d3=0.8×28.8mm=23mm 此时d4=23mm<28mm,所以应该用4次拉深成形。
二、拉深次数与工序件尺寸
1.拉深次数的确定 (3)计算方法
拉深次数 n 1 lg d 1gm1D
lg m均
式中 d——工件直径; D——坯料直径; m1——第一次拉深系数; m均——第一次拉深以后各次的平均拉深系数。
第四节 圆筒形件拉深工艺计算
二、拉深次数与工序件尺寸
2.各次拉深工序件尺寸的确定
凹模圆角半径过小时,毛坯沿凹模口部滑动的阻力增加,筒壁的拉应 力相应增大, mmin也应取较大值。
2)凹模表面粗糙度
凹模表面光滑,可以减小摩擦阻力和改善金属的流动情况,可选择 较小的mmin 。
第四节 圆筒形件拉深工艺计算
一、拉深系数与极限拉深系数
2.影响极限拉深系数的因素
(2)模具方面
3)模具间隙
H 76 1 75 2.7 d 30 2 28
查表4.2.1得切边量 h 6mm
坯料直径为 D d 2 4d(H h) 1.72dr 0.56r 2
将d=28mm, r=4mm,H=75mm代入上式 得 D=98.2mm
例4.4.1(续) (2)确定拉深次数
坯料相对厚度为 t 2 100% 2.03% 2%
模具间隙小时,材料进入间隙后的挤压力增大,摩擦力增加, 拉深力大,故mmin提高。
4)凹模形状
采用锥形凹模—减少材料流过凹模圆角时的摩擦阻力和弯曲变形力, mmin可降低。
(3)拉深条件
是否采用压边圈,拉深次数,润滑情况,工件形状,拉深速度。
第四节 圆筒形件拉深工艺计算
一、拉深系数与极限拉深系数
3.极限拉深系数的确定 课本P151表4.2.4和表4.2.5是圆筒形件在不同条件下各次
第示一。次拉深系数:m1
d1 D
第二次拉深系数:m2
d2 d1
第n次拉深系数:mn
dn d n1
第四节 圆筒形件拉深工艺计算
一、拉深系数与极限拉深系数
1.拉深系数的定义(续)
拉深系数m表示拉深前后坯料(工序件)直径的变化率。
m愈小,说明拉深变形程度愈大,相反,变形程度愈小。 拉深件的总拉深系数等于各次拉深系数的乘积,即
2.各次拉深工序件尺寸的确定
(2)工序件高度的计算
根据拉深后工序件表面积与坯料表面积相等的原则,可得
到如下工序件高度计算公式。计算前应先定出各工序件的底部
圆角半径(见4.6.2节)。
h1
0.25
D2 d1
d1
0.43 r1 d1
d1
0.32r1
h2
0.25
D2 d2
d2
0.43
r2 d2
d2
(1)工序件直径的确定
确定拉深次数以后,由表查得各次拉深的极限拉深系数,
适当放大,并加以调整,其原则是:
1)保证m1m2…mn=
d D
2)使m1<m2<…mn 最后按调整后的拉深系数计算各次工序件直径:
d1=m1D d2=m2d1 …
dn=mndn-1
第四节 圆筒形件拉深工艺计算
二、拉深次数与工序件尺寸
0.32r2
...
hn
0.25
D2 dn
dn
0.43
rn dn
dn
0.32rn
第四节 圆筒形件拉深工艺计算
二、拉深次数与工序件尺寸
例 求图所示筒形件的坯料尺寸及拉深各工序件尺寸。 材料为10钢,板料厚度 t=2mm。
解:因 t>1mm,故按板厚中径尺寸计算。 (1)计算坯料直径
根据零件尺寸,其相对高度为
拉深的极限拉深系数。
为了提高工艺稳定性和零件质量,适宜采用稍大于极限拉深
系数mmin的值。
第四节 圆筒形件拉深工艺计算
二、拉深次数与工序件尺寸
1.拉深次数的确定 当m总>m1时,拉深件可一次拉成,否则需要多次拉深。 其拉深次数的确定有以下几种方法: (1)查表法(课本P151表4.2.6) (2)推算方法 (3)计算方法
m
dn D
d1 Dபைடு நூலகம்
d2 d1
d3 d2
d n1 d n2
dn d n1
m1m2 m3 mn1mn
如果m取得过小,会使拉深件起皱、断裂或严重变薄超差。
极限拉深系数mmin:把材料既能拉深成形又不被拉断时
的最小拉深系数。
从工艺的角度来看,mmin越小越有利于减少工序数。
第四节 圆筒形件拉深工艺计算
相关文档
最新文档