吸波材料涂层讲解学习
纳米吸波材料ppt课件

与简单的吸收型材料相比, CA2RAMs 具有较好的隐 身性能。美国F—117飞机, 其座舱透明件就采用CA— RAMs。其实施方法就是 将具有一定图形结构的透 明薄膜电路网格植入透明 高聚物涂层中,并与飞机 连接成导电通路,使得整 个透明材料变成一个CA— RAMs
20
21
22
23
24
eV),为纳米材料创造了新的吸收通道。
4
2、纳米吸波材料的吸波原理
2.3 磁性纳米粒子具有较高的矫顽力,可引起 较大的磁滞损耗。在电磁场的辐射下,纳米 材料中的原子和电子运动加剧, 促使磁化,增 加电磁能转化为热能的效率,从而提高对电磁 波的吸收性能。
5
磁滞损耗 的大小与磁滞 回线所围面积 成正比,因此 磁滞回线所围 面积越大,磁 滞损耗也就越 大
17
T—50 俄罗斯
最近俄罗斯 成功地利用 纳米晶薄膜 制备了厚度 仅为20μm 的超薄型多 层膜微波吸 收材料。
18
4.2 电路模拟吸波材料 (CARAMs)
(Circuit Analysis—RAMs) 这种由计算机设计并严格控制结 构的透明导电薄片能够透过可见 光而屏蔽雷达波,并阻尼雷达波 感应产生的电场,从而吸收雷达 波,避免了反射所造成的反射能量
3
2、纳米吸波材料的吸波原理
纳米材料之所以具有优异的吸收电磁波性能, 其原 因在于:
2.1 纳米材料的界面组元所占比例大, 纳米颗粒表 面原子比例高, 不饱和键和悬挂键多, 大量悬挂键 的存在使界面极化, 吸收频带展宽。
2.2 纳米材料量子尺寸效应使电子能级分裂, 分裂
的能级间距正处于微波的能量范围( e1V0-—2 10-4
纳米吸波 材料
1
contents
吸波材料知识介绍系列

吸波材料知识介绍系列—————之一吸波材料简介在解决高频电磁干扰问题上,完全采用屏蔽的解决方式越来越不能满足要求了。
因为诸多设备中,端口的设置及通风、视窗等的需求使得实际的屏蔽措施不可能形成像法拉第电笼那样的全屏蔽电笼,端口尺寸问题是设备高频化的一大威胁。
另外,困扰人们的还有另外一个问题,在设备实施了有效的屏蔽后,对外干扰问题虽然解决了,但电磁波干扰问题在屏蔽系统内部仍然存在,甚至因为屏蔽导致干扰加剧,甚至引发设备不能正常工作。
这些都是屏蔽存在的问题,也正是因为这些问题的存在,吸波材料有了用武之地。
吸波材料是指能够有效吸收入射电磁波并使其散射衰减的一类材料,它通过材料的各种不同的损耗机制将入射电磁波转化成热能或者是其它能量形式而达到吸收电磁波目的。
不同于屏蔽解决方案,其功效性在于减少干扰电磁波的数量。
既可以单独使用吸收电磁波,也可以和屏蔽体系配合,提高设备高频功效。
目前常用的吸波材料可以对付的电磁干扰频段范围从到40GHz。
当然应用在更高和更低频段上的吸波材料也是有的。
吸波材料大体可以分成涂层型、板材型和结构型;从吸波机理上可以分成电吸收型、磁吸收型;从结构上可以分为吸收型、干涉型和谐振型等吸波结构。
吸波材料的吸波效果是由介质内部各种电磁机制来决定,如电介质的德拜弛豫、共振吸收、界面弛豫磁介质畴壁的共振弛豫、电子扩散和微涡流等。
吸波材料的损耗机制大致可以分为以下几类:其一,电阻型损耗,此类吸收机制与材料的导电率有关的电阻性损耗,即导电率越大,载流子引起的宏观电流(包括电场变化引起的电流以及磁场变化引起的涡流)越大,从而有利于电磁能转化成为热能。
其二,电介质损耗,它是一类与电极有关的介质损耗吸收机制,即通过介质反复极化产生的“摩擦”作用将电磁能转化成热能耗散掉。
电介质极化过程包括:电子云位移极化,极性介质电矩转向极化,电铁体电畴转向极化以及壁位移等。
其三,磁损耗,此类吸收机制是一类与铁磁性介质的动态磁化过程有关的磁损耗,此类损耗可以细化为:磁滞损耗,旋磁涡流、阻尼损耗以及磁后效效应等,其主要来源是与磁滞机制相似的磁畴转向、磁畴壁位移以及磁畴自然共振等。
吸波涂料标准

吸波涂料标准
吸波涂料是一种特殊的涂料,主要用于吸收电磁波。
吸波涂料的标准主要包括以下几个方面:
1. 吸波效果:吸波涂料的主要功能是吸收电磁波,因此其吸波效果是评价标准的重要指标。
吸波效果可以通过吸波率、吸波频率范围等指标来衡量。
2. 阻燃性能:吸波涂料在防火方面也是需要考虑的。
标准中会对其阻燃性能进行要求,以确保涂料在使用过程中不会引发火灾。
3. 耐候性:吸波涂料大多用于户外环境,因此其耐候性也是需要考虑的。
常见的耐候性指标包括耐紫外线性能、耐候老化性能等。
4. 耐腐蚀性能:吸波涂料还需要具备一定的耐腐蚀性能,以保证其能够在各种恶劣环境下长期使用。
5. 施工性能:标准中还会对吸波涂料的施工性能进行要求,包括涂料的粘度、干燥时间、涂布厚度等。
以上是吸波涂料标准的一些基本内容,具体的标准要求会根据不同的应用场景和产品类型而有所差异。
吸波材料涂层

谢 谢!
雷达吸波材料涂层
ห้องสมุดไป่ตู้
雷达
雷达是利用电磁波探测目 标的电子设备。发射电磁
波对目标进行照射并接收
其回波,由此获得目标至 电磁波发射点的距离、距 离变化率(径向速度)、 方位、高度等信息。
雷达吸波材料
雷达吸波材料又称隐身材 料或微波吸收材料,它是
能够衰减入射的电磁波、
并将其电磁能转为其它形 式能量耗散掉、或使电磁 波因干涉而消失的一类功 能材料。
雷达吸波材料分类
根据吸波涂层的结构可分 为:吸收型涂层结构(单层
型结构和多层划结构)、干
涉型涂层结构、谐振型涂 层结构等。
射波与反射波形成干涉抵消
层雷达隐身涂层结构示意图
谐振单元为矩形的谐振型涂层构
雷达吸波材料分类
根据雷达波吸波材料 中的损耗介质可以分 为:电损耗型、介电 损耗型和磁损耗型。
突破。
导电高聚物吸波材料
导电高聚物结构多样化、密度低,具有独特的 物理、化学特性。其电导率可在绝缘体、半导体 和金属态范围内变化。电磁参量依赖于高聚物的 主链结构、室温电导率、掺杂剂性质、微观形貌、 涂层厚度、涂层结构等凶素。将导电高聚物与无 机磁损耗物质复合,可能发展出一种新型轻质宽 带吸波涂层。
雷达吸波材料工作原理
雷达吸波材料是指能有效 吸收入射雷达波 ,使目标回
波强度显著衰减的一类功
能材料。雷达吸波材料主 要依靠材料吸收电磁波,降 低目标的回波强度 ,实现减 小目标雷达散射截面的隐
飞机等离子体涂料隐身示意图
身效果。
雷达吸波材料工作原理
材料吸收电磁波的基本条件是: 电磁波入射到材料上时,它能最大度地进入材料内 部,即要求材料具有匹配特性; 进入材料内部的电磁波能迅速地几乎全部衰减掉, 即衰减特性。
吸波材料的原理及应用

吸波材料的原理及应用一、吸波材料的原理吸波材料是一种能够吸收电磁波的材料,其主要原理是通过吸收电磁波的能量来减轻或消除反射和散射。
吸波材料通常由两部分组成:吸波层和基底材料。
吸波层是吸收电磁波能量的关键部分,其具有高电磁波损耗的特性。
常用的吸波层材料包括石墨烯、聚合物、炭黑等。
这些材料通常具有良好的导电性和吸波性能,能够将电磁波转化为热能进行耗散。
基底材料则起到支撑和固定吸波层的作用。
常用的基底材料包括聚酰亚胺、聚乙烯酮等。
这些材料具有良好的机械性能和化学稳定性,能够满足吸波材料在不同应用领域中的要求。
吸波材料的工作原理可以通过电磁波的反射、折射和透射来解释。
当电磁波遇到吸波材料时,部分电磁波会被吸波层吸收,转化为热能进行耗散,而剩余的部分则会被基底材料反射、折射或透射。
通过合理设计吸波材料的结构和性能,可以实现对特定频段的电磁波的有效吸收,从而达到减轻或消除电磁波的反射和散射的目的。
二、吸波材料的应用吸波材料在多个领域中得到广泛应用。
1. 电磁屏蔽吸波材料在电子设备和通信系统中常用于电磁屏蔽。
电子设备和通信系统会产生大量的电磁辐射,可能对周围的电子设备和通信系统产生干扰。
通过在设备和系统的周围或内部使用吸波材料,可以吸收电磁波的能量,减轻或消除电磁波对设备和系统的干扰,提高其稳定性和性能。
2. 隐身技术吸波材料在军事领域中被广泛应用于隐身技术。
通过在战斗机、导弹、舰船等军事装备上使用吸波材料,可以减少其对雷达波的反射和散射,从而降低其被侦查和追踪的可能性。
这对于提高装备的隐身性能和战场生存能力至关重要。
3. 噪声控制吸波材料在声学领域中也有广泛的应用。
通过在建筑物、汽车、船舶等结构中使用吸波材料,可以吸收噪声波的能量,减少其传播和反射,从而降低环境噪声对人们的影响。
吸波材料在噪声控制方面的应用可以改善室内和室外的声环境,提高人们的生活质量和工作效率。
4. 光学和太阳能领域吸波材料在光学和太阳能领域中也有一些应用。
吸波涂层材料技术的现状和发展

研究现状
吸波材料的研究历经了多个阶段,目前已经取得了许多重要的成果。在吸波材 料的种类方面,主要包括金属吸波材料、介质吸波材料、复合吸波材料等。金 属吸波材料主要利用金属的导电性吸收电磁波,但高频性能较差;介质吸波材 料则利用介质的介电常数和磁导率吸收电磁波,具有较好的高频性能;复合吸 波材料则是将金属和介质材料相结合,发挥各自优点,从而提高吸波性能。
谢谢观看
在吸波材料的制备方面,研究者们不断探索新的制备方法,如化学气相沉积、 溶胶-凝胶法、静电纺丝等,以提高吸波材料的性能和制备效率。此外,研究 者们还致力于研究吸波材料的机理,如电磁波在材料中的传播、吸收、散射等 机理,为提高吸波性能提供理论指导。
存在的问题
尽管吸波材料的研究已经取得了许多重要成果,但仍存在一些问题需要解决。 首先,吸波材料的吸收频带较窄,难以满足不同频率的需求பைடு நூலகம்其次,吸波材料 的耐候性、耐腐蚀性等性能有待提高;另外,吸波材料的生产成本较高,限制 了其广泛应用。
四、结论
总的来说,磁损耗型吸波材料在过去的几年中取得了显著的进步。各种新型的 磁损耗型吸波材料不断涌现,为解决电磁辐射问题提供了有效的解决方案。然 而,仍然存在一些挑战需要我们去面对,如提高材料的综合性能、拓展应用领 域以及降低成本等。我们有理由相信,随着科技的不断进步和创新,未来的磁 损耗型吸波材料将会具有更高的性能和更广泛的应用。
市场分析
吸波涂层材料市场前景广阔,未来将有更多的应用领域和市场机遇。其中,军 事和航空领域由于对安全性和性能要求较高,将成为吸波涂层材料的主要应用 领域。此外,电子信息和汽车领域也将有广阔的市场前景。市场规模方面,随 着各领域对吸波涂层材料的需求不断增加,市场规模也将不断扩大。
结论
吸波复合材料_图文

(2)超微磁性金属粉:磁性金属、合金粉末具有温度稳定性能 好,磁导率、介电常数大,电磁损耗大,有利于达到阻抗匹配 和展宽吸收频带等优点,是其成吸收材料的主要发展方向。而 超微磁性金属粉材料就是将超细磁性金属粉末与高分子黏结剂 复合而成,可通过多相超细磁性金属粉末的混合比例等调节电 磁参数,达到较为理想的吸波效果。金属微粉吸波材料主要有 两类:一是羰基金属微粉吸波材料;二是通过蒸发、还原、有 机醇盐等工艺得到的磁性金属微粉吸波材料。金属微粉吸波材 料微波磁导率较高、温度稳定性好,但抗氧化、耐酸碱能力差 ,远不如铁氧体;介电常数较大且频谱特性差,低频段吸收性 能较差;密度较大。
飞机上采用的一些吸波结构形式
(1)波纹夹层结构
波纹板可用吸波材料组成, 也可在波纹板上涂覆吸波涂料。波纹板 为两个斜面相交的结构.有利于多次吸波。
(2)角锥夹层结构
作为夹层的角锥是吸波材料,也可涂驻波涂料。角锥四个斜面相交。 角锥高度(吸收体厚度)不同,有效吸波范围不同。把碳粉或金属粉分 散于橡胶中压制成的角锥空心结构,其吸波范围随角锥高度变化。角 锥夹层的顶角一般在40。左右。
涂敷型吸波材料
将吸波涂料分散在有机高分子材料的黏结剂中,同时 加入一些其它附加物,采用涂刷或喷涂方法加工,经常温 固化形成涂层结构。该涂层适用于复杂曲面形体,且耐候 性及综合机械性能良好。涂敷型吸波材料工艺简单、使用 方便、容易调节。
(1)铁氧体吸波涂料:是把铁氧体分散在有机高分子材料的黏 结剂中,同时还加入一些其它附加物。铁氧体可分为尖晶石型 、石榴石型和磁铅石型。自然共振是铁氧体吸收电磁波的主要 机制。自然共振是指铁氧体在不加外恒磁场的情况下,由入射 的交变磁场和晶体的磁性各向异性等共同作用产生的共振。由 于铁氧体既是磁介质又是电介质,具有磁吸收和电吸收两种功 能,是性能极佳的吸波材料,与其它吸波材料相比,它还具有 体积小、吸波效果好、成本低的特点。但它也具有密度大、高 温特性差等缺点。
NFC,RFID及EMI吸波材培训资料

© 2006, ZTE Corporation. All rights reserved.
邁拓各地分公司
昆山普胜 上海迈中 东莞迈拓 东莞南波源 台湾迈拓 HK普胜
© 2006, ZTE Corporation. All rights reserved.
电磁波吸收体 小 -15dB~-20dB 小 辐射能量几乎全部吸收
低频困难 抵抗性吸收材料 介电吸收性材料 磁性吸收材料
© 2006, ZTE Corporation. All rightsபைடு நூலகம்reserved.
© 2006, ZTE Corporation. All rights reserved.
© 2006, ZTE Corporation. All rights reserved.
屏蔽材料与吸波材
屏蔽材料是将电磁波反射 回去,他们一般都是由金 属制造,其反射率基本等 于1。
吸波材料是将电磁波吸收 并且衰减,其反射率一般 要低于0.001(即-30dB) ,他一般由一些特殊的介 质制造。
N
FM
S
(V FR
F
F
(V
0)
0)
N FM
T
R
2
L
RL
RP
產品規格 應用頻率
SPEC
10MHz ~ 4GHz(吸收頻段)
13.56MHz(工作頻率)
材料
Soft magnetic metal powder軟磁粉 + Rubber橡膠)
(聚合物Complex sheet
是
© 2006, ZTE Corporation. All rights reserved.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导电高聚物吸波材料
导电高聚物结构多样化、密度低,具有独特的 物理、化学特性。其电导率 可 在绝缘体、半导体 和金属态范围内变化。电磁参量依赖 于 高聚物的 主链结构、室温电导率、掺杂剂性质、微观形貌 、涂层厚度、涂层结构等凶素。将导电高聚物与 无机磁损耗物质复合,可能发展出一种新型轻质 宽带吸波涂层。
雷达吸波材料涂层
雷达
雷达 是 利用电磁波探测目 标的电子设备。发射电磁 波对目标进行照射并接收 其回波,由此获得目标至 电磁波发射点的距离、距 离变化率(径向速度)、 方位、高度等信息。
雷达吸波材料
雷达吸波材料 又 称隐身材 料或微波吸收材料,它是 能够衰减 入 射的电磁波、 并将其电磁能转为其它形 式能量耗散掉、或使电磁 波因干涉而消失的一类功 能材料。
雷达吸波材料工作原理
雷达吸波材料是指能有效 吸收入射雷达波,使目标回 波强度显著衰减的一类功 能材料。雷达吸波材料主 要依靠材料吸收电磁波,降 低目标的回波强度,实现减 小目标雷达散射截面的隐 身效果。
飞机等离子体涂料隐身示意图
雷达吸波材料工作原理
材料吸收电磁波的基本条件是:
电磁波入射到材料上时,它能最大度地进入材料内 部,即要求材料具有匹配特性;
谢 谢!
手征性吸波材料
手征材料是一种双(对偶)各向同性(异性) 的功能材料,其电场与磁场相互耦合。理论 研究认为,手征材料的参数可调、对频率敏 感性小,可达到宽频吸收与小反射要求。目 前国内外用金属导体、陶瓷和聚苯胺作手征 性吸收剂,用单组分或复合组分树脂作基质 制作手征性材料。计算机辅助计算表明,手 征性吸收剂与组成相同的普通吸收剂相比, 吸收性能有所提高。
乙炔炭黑(电损耗型)
铁氧体(磁聚 物 吸 波 材
料 手征性吸波材料
纳米吸波材料
纳米材料是指材料组分的特征尺寸为纳米量级 的材料,具有独特的量子尺寸效应、宏观量子隧道 效应、小尺寸和界面效应。纳米微粒由于尺寸小 、比表面积大、表面原子比例高、悬挂键增多,从 而使界面极化和多重散射成为重要的吸波机制。 量子尺寸效应使纳米粒子的电子能级发生分裂,分 裂的能级间隔正处于微波的能量范围内,从而导致 新的吸波通道。
结束语
随着 雷 达 吸波材料的快速发展,有些吸波材料 已广泛应用于发达国家的武器系统中,并已作为军 事领域中首要的高技术被列为战略竞争的基本要 素。优良的吸波材料应具备强吸收、轻质、宽频 和结构简单的特点,而目前的吸波剂还很难达到上 述要求。所以我们要加强对新型吸波材料的研究 ,特别是碳系吸波剂,对于轻质的要求可能会取 得突破。
进入材料内部的电磁波能迅速地几乎全部衰减掉, 即衰减特性。
雷达吸波材料分类
根据吸波涂层的结构可分 为 : 吸收型涂层结构(单层 型结构和多层划结构)、干 涉型涂层结构、谐振型涂 层结构等。
射波与反射波形成干涉抵消
层雷达隐身涂层结构示意图
谐振单元为矩形的谐振型涂层构
雷达吸波材料分类
根据雷达波吸波材料 中的损耗介质可以分 为 : 电损耗型 、 介电 损耗型和磁损耗型。