专题04 动力学经典问题(Word版,含答案)

合集下载

高中物理:(6)动力学基本问题 Word版含答案

高中物理:(6)动力学基本问题 Word版含答案

动力学基本问题1、某实验小组制作了一个火箭模型,由测力计测得其重力为G 。

通过测量计算可知此火箭发射时可提供大小为F =2G 的恒定推力,且持续时间为t 。

随后小明又对该火箭进行了改进,采用二级推进的方式,即当火箭飞行经过2t 时,火箭丢弃一半的质量,剩余2t 时间,火箭推动剩余的一半继续飞行。

原来的火箭可上升的高度为H ,改进后的火箭最高可上升的高度为(不考虑燃料消耗引起的质量变化及空气阻力)( )A.1.5HB.2HC.2.15HD.3.25H2、如图所示为某加速度计的部分原理示意图。

质量为0.5kg 的小滑块(可视为质点)穿在光滑水平杆上,两边与两根完全相同的轻弹簧a b 、连接,弹簧的劲度系数为2N/cm,静止时a b 、均处于原长状态,小滑块处于O 点。

当装置在水平方向运动时,小滑块移动至O 点左侧1cm 处,则可判断此时小滑块的加速度( )A.大小为28m/s ,方向水平向左B.大小为28m/s ,方向水平向右C.大小为24m/s ,方向水平向左D.大小为24m/s ,方向水平向右3、如图所示,劲度系数为k 的轻弹簧的一端固定在墙上,另一端与置于水平面上质量为m 的物体接触(未连接),弹簧水平且无形变,用水平力F 缓慢推动物体,在弹性限度内弹簧长度被压缩了x,此时物体静止,撤去F 后,物体开始向左运动,物体与水平间的动摩擦因数为μ,重力加速度为g,则下列说法正确的是( )A.刚撤去F 时物体的加速度大小为kx mB.刚撤去F 时物体的加速度大小为kx mg m μ+C.撤去F 后,物体刚脱离弹簧时速度最大D.撤去F 后,物体先加速运动后减速运动4、如图所示,一细线的一端固定于倾角为45°的光滑楔形滑块A 上的顶端0处,细线另一端拴一质量为m=0.2 kg 的小球静止在A 上。

若滑块从静止向左匀加速运动时加速度为a(取210 /g m s =) ( )A. 当25/a m s =时,细线上的拉力为N 223 B.当210/a m s =时,小球受的支持力为N 2C. 当210/a m s =时,细线上的拉力为2ND. 当215/a m s =时,若A 与小球能相对静止的匀加速运动,则地面对A 的支持力一定小于两个物体的重力之和5、如图所示,一轻质弹簧上端固定在天花板上,下端拴接质量为m 的小球,小球放在倾角为30θ=︒的光滑斜面上,整体处于平衡状态时,弹簧与竖直方向成30︒角,重力加速度为g ,则( )A.若弹簧下端与小球断开,则断开瞬间小球的加速度大小为33g B.若弹簧下端与小球断开,则断开瞬间小球的加速度大小为12g C.若将斜面突然移走,则移走瞬间小球的加速度大小为32g D.若将斜面突然移走,则移走瞬间小球的加速度大小为12g 6、如图甲所示,在倾角为37°的粗糙且足够长的斜面底端,一质量2kg m =可视为质点的滑块压缩一轻弹簧并锁定,滑块与弹簧不相连.0t =时解除锁定,计算机通过传感器描绘出滑块的速度—时间图象如图乙所示,其中Ob 段为曲线,bc 段为直线,g 取210m/s ,sin370.6︒=,cos370.8︒=.则下列说法正确的是( )A.0.1s 前加速度一直在减小B.滑块在0.1~0.2s 时间间隔内沿斜面向下运动C.滑块与斜面间的动摩擦因数0.25μ=D.在滑块与弹簧脱离之前,滑块一直在做加速运动7、某科研单位设计了一空间飞行器,飞行器从地面起飞时,发动机提供的动力方向与水平方向夹角60α=︒,使飞行器恰好与水平方向成30θ=角的直线斜向右上方匀加速飞行,经时间t 后,将动力的方向沿逆时针旋转60同时适当调节其大小,使飞行器依然可以沿原方向匀减速飞行,飞行器所受空气阻力不计,下列说法中正确的是( )A.加速时加速度的大小为gB.加速时动力的大小等于mgC.减速时动力的大小等于12mg D.减速飞行时间t 后速度为零8、如图甲所示,一轻质弹簧的下端固定在水平面上,上端放置一物体(物体与弹簧不连接),初始时物体处于静止状态.现用竖直向上的拉力F 作用在物体上,使物体开始向上做匀加速运动,拉力F 与物体位移x 之间的关系如图乙所示.g 取210m/s ,则下列结论正确的是( )A.物体与弹簧分离时,弹簧处于压缩状态B.弹簧的劲度系数为7.5N/cmC.物体的质量为2kgD.物体的加速度大小为25m/s9、如图所示是杂技中的“顶竿”表演,地面上演员B 的肩部顶住一根长直竹竿,另一演员A 爬至竹竿顶端完成各种动作。

理论力学动力学部分试题及答案

理论力学动力学部分试题及答案

1物体自地球表面以速度眄铅直上抛.试求该物体返回地面时的速度巧・假定空气阻力R=mkv2,其中k是比例常量,搜数值它等于单位质量在单位速度时所受的阻力。

m是物体质V 是物体速度,重力加速度认为不变.答:叮解:阻力方向在上升与下降阶段不同(其方向与速度y相反),故分段考虑(1)上升阶段:tn— - -tng一dt通过坐标变换有加V字二-刃护-加£ ,积分得axvdv(2)下落阶段:(1)g2.静止中心0以引力F=k2mr吸弓I质量是m的质点M,其中k是比例常量,r=OM是点M的矢径.运动开始时OMo=b,初速度时呵并与阪成夹角求质点M的运动方程。

x = b cos 处 + —cosasin ktky = —sinasin^k解:取坐标如图,质点M在任意位貳将fna = F 沿x、y轴投彫,得mx = 一F cos<p= -k2fnrcos (p= -Qmxfny = 一Fsin cp= -k2fnr sin (p= -k^my艮卩x+k2x = 0 , y+^2y = 0徽分方程得通解为:x = s coskt+c2 sin kt求导得x = -kc x sin kt + kc2 coskt , y = -kc3 sin kt + kc^ cos kt (2)已知初始条件f=0 z 妒b z /o=0,x0 = v0 sin a ,代入方程(1),(2)得点M的运动方程为v =—cosax = 2?cos Ar/ +—kcos ar sin kt -I sin asin kt y =c3 cos kt + c^ sin kt (1)九=v0 sin a3单摆M 的悬线长/,摆重G 支点B 具有水平向左的均加速度a.如将摆在&=0处静止 释啟,试确定悬线的张力T (表示成&的函数).解:质点的相对徴分方程为 ma r = mg+f +©投影到法线方向由式(2)得T = Gsin3 + —acos0 + — v 2g 0T = G 3 sin + 3 — cos — 2 —\ g S )答・ T - G(3sin3-cos^- 2-) g g投影到切线方向= T-Gsin^-0e cosB g !(2)由式(1)得 妙=gcos^-usin 0分离变量并积分|*V Xiv = \ f geos^10- [ asm Odd v 2 = 2"gsin &+ocos&-a 1(3)将式(3)代入上式代入式(2)得dt dt积分得4.水平面内弯成任意形状的细管以匀角速度G 绕点0转动.光滑小球M 在管內可自由 运动.设初瞬时小球在吆处,OMo=©相对初速^v o =0,求小球相对速度大小冬与极径r的关系。

专题04 动力学瞬态、连接体、超失重、图像问题-(解析版)-备战2025年高考物理真题题源解密

专题04 动力学瞬态、连接体、超失重、图像问题-(解析版)-备战2025年高考物理真题题源解密
块P的加速度为
-T-μmg=map
解得
ap?=-2μg
此刻滑块Q所受 外力不变,加速度仍为零,滑块P做减速运动,故PQ间距离减小,弹簧的伸长量变小,
弹簧弹力变小。根据牛顿第二定律可知P减速的加速度减小,滑块Q的合外力增大,合力向左,做加速度
增大的减速运动。
故P加速度大小的最大值是刚撤去拉力瞬间的加速度为2μg。
代入数据联立解得电梯加速度大小
a≈1.0m/s2
近年真题精选
考向一 单位制
1.(2022年浙江6月卷第1题)下列属于力的单位是( )
A. kg m/s2
B. kg·m/s
C. kg·m2s
【答案】A
【解析】根据牛顿第二定律有 则力的单位为
F= ma
kg·m/s2
D. kg·s/m2
故选A。 考向二 瞬态问题
F与其加速度a的关系图线如图所示。由图可知( )

甲 乙

A. m甲<m? 【答案】BC
a B. m>mz
C. <μz
D. H>Hz
【解析】根据牛顿第二定律有
F-μmg=ma
整理后有
F=ma+μmg
则可知 F—a图像的斜率为m,纵截距为μmg,则由题图可看出
m甲>mz,μ甲m甲g=μzmzg

μ甲<μz
6.(2023年湖南卷第10题)(多选)如图,光滑水平地面上有一质量为2m的小车在水平推力F的作用
下加速运动。车厢内有质量均为m的A、B两小球,两球用轻杆相连,A球靠在光滑左壁上,B球处在车厢 水平底面上,且与底面的动摩擦因数为H,杆与竖直方向的夹角为θ,杆与车厢始终保持相对静止假设最
大静摩擦力等于滑动摩擦力。下列说法正确的是( )

2024-2025高一物理专题04 图像问题-专项练习解析版

2024-2025高一物理专题04 图像问题-专项练习解析版

专题04 图像问题1.如图所示是某质点运动的v t-图像,下列判断正确的是()A.在2s~4s内,质点的加速度大小一直减小B.在第3s末,质点的加速度方向发生改变C.在2s~3s内,质点的平均速度大小大于1.5m/sD.在0~2s内,质点做直线运动,在2s~4s内,质点做曲线运动【答案】A【详解】A.v t-图像的斜率表示质点运动的加速度,在2s~4s内,质点的加速度大小一直减小,故A正确;B.在第3s末,质点的速度方向发生改变,加速度方向不变,故B错误;C.v-t图像与时间轴所围的面积表示物体运动的位移,在2s~3s内,如图图中虚线对应的图像与时间轴围成的面积表示位移大小为31m 1.5m2x⨯==而质点在2s~3s内运动的v-t图像与时间轴围成的面积小于虚线与坐标轴围成的面积,故质点的位移'x小于1.5m,而质点的平均速度为'xvt=,故质点的平均速度大小小于1.5m/s,故C错误;D.v-t图像描述的是质点的速度随时间的变化,不同于质点的轨迹,在v-t图像中只能描述质点做直线运动的速度随时间的变化,在04s内质点一直做直线运动,故D错误。

故选A。

2.某物体做初速度为零的直线运动,其x-t图像为如图所示的抛物线;该物体运动的加速度大小为()A .2m/s 2B .4m/s 2C .6m/s 2D .12m/s 2【答案】B【详解】初速度为零时,根据匀变速运动公式212x at =由图中数据:t =3s 时x =18m 代入解得=a 4m/s 2故选B 。

3.小物块从倾角为37°的固定斜面顶端以初速度v 0滑下,在时间t 内下滑的位移为x ,其xt­-t 图像如图所示,已知重力加速度g =10m/s 2,sin37°=0.6,则( )A .v 0=1m/sB .2s 时的速度是4m/sC .物块的加速度a =1m/s 2D .2s 内物块的位移为8m 【答案】D【详解】AC .根据2012x v t at =+可得012x v at t =+由图像可得v 0=2m/s ,21421m/s 22a -==加速度a =2m/s 2选项AC 错误;B .2s 时的速度是2026m/s v v at =+=选项B 错误; D .2s 内物块的位移为0228m 2v v x t +==选项D 正确。

专题04 弹簧模型(解析版)

专题04 弹簧模型(解析版)

2023年高三物理二轮常见模型与方法强化专训专练专题04 弹簧模型一、高考真题1.(2022年江苏卷)如图所示,轻质弹簧一端固定,另一端与物块A 连接在一起,处于压缩状态,A 由静止释放后沿斜面向上运动到最大位移时,立即将物块B 轻放在A 右侧,A 、B 由静止开始一起沿斜面向下运动,下滑过程中A 、B 始终不分离,当A 回到初始位置时速度为零,A 、B 与斜面间的动摩擦因数相同、弹簧未超过弹性限度,则( )A .当上滑到最大位移的一半时,A 的加速度方向沿斜面向下B .A 上滑时、弹簧的弹力方向不发生变化C .下滑时,B 对A 的压力先减小后增大D .整个过程中A 、B 克服摩擦力所做的总功大于B 的重力势能减小量【答案】B【详解】B .由于A 、B 在下滑过程中不分离,设在最高点的弹力为F ,方向沿斜面向下为正方向,斜面倾角为θ,AB 之间的弹力为F AB ,摩擦因素为μ,刚下滑时根据牛顿第二定律对AB 有()()()A B A B A B sin cos F m m g m m g m m a θμθ++−+=+对B 有B B AB B sin cos m g m g F m a θμθ−−=联立可得AB A B BF F m m m =−+由于A 对B 的弹力F AB 方向沿斜面向上,故可知在最高点F 的方向沿斜面向上;由于在最开始弹簧弹力也是沿斜面向上的,弹簧一直处于压缩状态,所以A 上滑时、弹簧的弹力方向一直沿斜面向上,不发生变化,故B 正确;A .设弹簧原长在O 点,A 刚开始运动时距离O 点为x 1,A 运动到最高点时距离O 点为x 2;下滑过程AB 不分离,则弹簧一直处于压缩状态,上滑过程根据能量守恒定律可得()()22121211sin 22kx kx mg f x x θ=++− 化简得()122sin mg f k x x θ+=+当位移为最大位移的一半时有()121in =s +2F f x x k x mg θ−⎛⎫−− ⎪⎝⎭合带入k 值可知F 合=0,即此时加速度为0,故A 错误;C .根据B 的分析可知AB A B BF F m m m =−+再结合B 选项的结论可知下滑过程中F 向上且逐渐变大,则下滑过程F AB 逐渐变大,根据牛顿第三定律可知B 对A 的压力逐渐变大,故C 错误;D .整个过程中弹力做的功为0,A 重力做的功为0,当A 回到初始位置时速度为零,根据功能关系可知整个过程中A 、B 克服摩擦力所做的总功等于B 的重力势能减小量,故D 错误。

专题4 库伦力作用下的动力学问题(解析版)

专题4 库伦力作用下的动力学问题(解析版)

专题4 库伦力作用下的动力学问题1.一根放在水平面内的绝缘光滑玻璃管,内部有两个完全相同的弹性金属小球A和B,带电荷量分别为+9Q 和-Q.两小球从图示位置由静止释放,那么,两小球再次经过图示位置时,A球的瞬时加速度为释放时的()A. B. C.1 D.【答案】A【解析】设位于图示位置时两小球之间的距离为r,则释放时两小球之间的静电力大小为F=k,由牛顿第二定律可得释放时A球的瞬时加速度a1==.释放后在静电引力作用下,两小球接触后再分开,电量先中和再平分,二者带了等量同种电荷,当再次经过图示位置时,两小球之间的静电力大小为F′=k=k,A球的瞬时加速度为a2==,所以=.A正确.2.如图所示,点电荷+4Q与+Q分别固定在A、B两点,C、D两点将AB连线三等分,现使一个带负电的粒子从C点开始以某一初速度向右运动,不计粒子的重力,则该粒子在CD之间运动的速度大小v与时间t 的关系图象可能是图中的()A. B. C. D.【答案】B【解析】粒子在AB连线上的平衡位置即为所受合力为零的位置,设粒子与B点的距离为x,所以k=,得x=,即在D点,粒子在D点左侧时所受电场力向左,粒子在D点右侧时所受电场力向右.所以粒子的运动情况有以下三种情况:在D点左侧时先向右减速至速度为零然后向左加速运动;粒子能越过D点时,先在D点左侧减速,过D点以后加速运动;或在D点左侧减速,运动到D点速度减为0,以后一直静止,由于C图象不对称,所以粒子在CD之间的运动可以用B图象描述,故B正确.3.不带电的金属球A的正上方有一点B,在B处有带电液滴由静止开始下落,到达A球后电荷全部传给A球,不计其他的影响,则下列叙述正确的是()A.第一滴液滴做自由落体运动,以后的液滴做变加速直线运动,而且都能到达A球B.当液滴下落到重力等于电场力位置时,速度为零C.当液滴下落到重力等于电场力的位置时,开始做匀速运动D.一定有液滴无法到达A球【答案】D【解析】第一滴带电液滴做自由落体运动,随着A球上的电荷量的增大,带电液滴将做先加速后减速运动,选项A错;当液滴下落到重力等于电场力位置时,加速度为零,液滴的速度最大,选项B错;当液滴下落到重力等于电场力的位置时,液滴开始做减速直线运动,选项C错;若电场力做的负功等于液滴重力做的功时液滴未到达A球,则液滴速度减小为零,此后将沿下落直线返回,选项D对.4.类似双星运动那样,两个点电荷的质量分别为m1、m2,且带异种电荷,电荷量分别为Q1、Q2,相距为l,在库仑力作用下(不计万有引力)各自绕它们连线上的某一固定点,在同一水平面内做匀速圆周运动,已知m1的动能为E k,则m2的动能为()A.-E kB.-E kC.-E kD.-E k【答案】B【解析】对于两点电荷,库仑力提供向心力,则==,所以E k1=m1v=r1=E k,E k2=m2v=r2,因为r1+r2=l,所以E k+E k2=(r1+r2)=.解得E k2=-E k.5.(多选)如图所示,光滑绝缘水平桌面上有A、B两个带电小球(可以看成点电荷),A球带电量为+2q,B球带电量为-q,将它们同时由静止开始释放,A球加速度的大小为B球的2倍,现在A、B中点固定一个带电小球C(也可看做点电荷),再同时由静止释放A、B两球,释放瞬间两球加速度大小相等,则C球带电量可能为()A.qB.qC.qD.4q【答案】AB【解析】由静止开始释放,A球加速度的大小为B球的2倍,根据牛顿第二定律可知,A、B两个带电小球的质量之比为1∶2;当在A、B中点固定一个带电小球C,由静止释放A、B两球,释放瞬间两球加速度大小相等,若C球带正电,根据库仑定律与牛顿第二定律,有:对A来说,k-k=ma,对B来说,k+k=2ma,综上解得QC=,若C球带负电,根据库仑定律与牛顿第二定律,有:对A来说,+=ma,对B来说,k-k=2ma,综上解得QC=-,故A、B正确,C、D错误. 6.(多选)三个等质量的带电小球A、B、C依次沿一直线固定在光滑绝缘的水平面上(如图所示),相邻两球间距为r(与r相比,小球半径可忽略不计).若移开C球后释放A,则释放瞬间,A球获得大小为1 m/s2的加速度;若移开A球后释放C,则释放瞬间,C球获得大小为4 m/s2的加速度;若A、C两球都在其固定位置时,释放B球,则释放后,B球的平衡位置可能位于()A.AC连线上,A的左侧与A距2r处B.AC连线上,A的右侧与A距处C.AC连线上,A的右侧与A距3r处D.以上答案都不对【答案】AB【解析】由题意可知,根据库仑定律,则有:对于A来说k=ma A,而a A=1 m/s2;对于C来说k=ma C,而a C=4m/s2.解得,Q A∶Q C=1∶4,当B处于AC连线间时,根据库仑定律与受力平衡,则有x AB =,当B处于AC连线左侧时,根据库仑定律与受力平衡,则有x BA=2r,故A、B正确,C、D错误.7.(多选)如图所示,把一个带电小球A固定在光滑的水平绝缘桌面上,在桌面的另一处有另一带电小球B,现给B一个垂直于AB方向的速度v0,则下列说法中正确的是()A.B球可能做直线运动B.B球的电势能可能增加C.A球对B球的库仑力可能对B球不做功D.B球可能从电势较高处向电势较低处运动【答案】BCD【解析】由题看出,小球B受到的静电力与速度不在同一直线上,则B球不可能做直线运动.故A错误.若小球A、B带异种电荷,而且引力恰好等于m时,B球做匀速圆周运动,A球对B球的库仑力不做功.故C 正确.若小球A、B带异种电荷,而且引力恰好小于m时,B球会远离A球,引力做负功,电势能增加.故B正确.由于两球电性未知,B球可能受斥力会远离A球,也可能受到引力靠近A球,所以B球可能从电势较高处向电势较低处运动.故D正确.8.如图所示,光滑绝缘细杆竖直放置,细杆右侧距杆0.3 m的C处有一固定的电荷量为Q的正电荷,A、B 是细杆上的两点,点A与C、点B与C的连线与杆的夹角均为α=37 ˚.一中间有小孔的带正电小球(电荷量为q)穿在绝缘细杆上滑下,通过A点时加速度为零,速度为3 m/s,取g=10 m/s2,求小球下落到B点时的加速度.【答案】20 m/s2,方向竖直向下【解析】在A处,由题意可知:k cosα―mg=0①在B处,由题意可知:k cosα+mg=ma②由①②得a=2g=20 m/s2,方向竖直向下.9.如图所示,质量为m的小球A放在绝缘斜面上,斜面的倾角为α.小球A带正电,电荷量为q.在斜面上B 点处固定一个电荷量为Q的正电荷,将小球A由距B点竖直高度为H处无初速度释放.小球A下滑过程中电荷量不变.不计A与斜面间的摩擦,整个装置处在真空中.已知静电力常量k和重力加速度g.(1)A球刚释放时的加速度是多大?(2)当A球的动能最大时,求此时A球与B点的距离.【答案】(1)g sinα-(2)【解析】(1)根据牛顿第二定律mg sinα-F=ma根据库仑定律:F=k,r=联立以上各式解得a=g sinα-.(2)当A球受到的合力为零、加速度为零时,速度最大,动能最大.设此时A球与B点间的距离为R,则mg sinα=,解得R=.10.如图所示,竖直平面内有一圆形光滑绝缘细管,细管截面半径远小于半径R,在中心处固定一带电荷量为+Q的点电荷.质量为m、带电荷量为+q的带电小球在圆形绝缘管壁中做圆周运动,当小球运动到最高点时恰好对细管无作用力,求当小球运动到最低点时对管壁的作用力是多大?【答案】6mg【解析】设小球在最高点时的速度为v1,根据牛顿第二定律mg-=m①设当小球在最低点时的速度为v2,管壁对小球的作用力为F,根据牛顿第二定律有F-mg-=m②小球从最高点运动到最低点的过程中只有重力做功,故机械能守恒.则mv+mg・2R=mv③由①②③式得F=6mg由牛顿第三定律得小球对管壁的作用力F′=6mg.11.如图所示,正电荷q1固定于半径为R的半圆光滑轨道的圆心处,将另一带正电、电荷量为q2、质量为m 的小球,从轨道的A处无初速度释放,求:(1)小球运动到B点时的速度大小;(2)小球在B点时对轨道的压力.【答案】(1)(2)3mg+k,方向竖直向下【解析】(1)带电小球q2在半圆光滑轨道上运动时,库仑力不做功,故机械能守恒,则mgR=mv解得v B=.(2)小球到达B点时,受到重力mg、库仑力F和支持力F N,由圆周运动和牛顿第二定律得F N-mg-k=m解得F N=3mg+k根据牛顿第三定律,小球在B点时对轨道的压力为F N′=F N=3mg+k方向竖直向下.12.如图所示,光滑绝缘的水平面上固定着A、B、C三个带电小球,它们的质量都为m,彼此间距离均为r,A、B带正电,电荷量均为q.现对C施加一个水平力F的同时放开三个小球.三个小球在运动过程中保持间距r不变,求:(三个小球均可视为点电荷)(1)C球的电性和电荷量大小.(2)水平力F的大小.【答案】(1)负电2q(2)【解析】(1)A球受到B球沿BA方向的库仑力和C球的库仑力作用后,产生水平向右的加速度,所以C 球对A球的库仑力为引力,C球带负电.对A球,有k=k・sin 30°,所以Q=2q.(2)又根据牛顿第二定律,有k・cos 30°=ma,将A、B、C作为整体,则F=3ma=.13.如图所示,带电小球A和B放在倾角为30°的光滑绝缘斜面上,质量为m1=m2=1 g,所带电荷量q1=q2=10-7C,A带正电,B带负电.沿斜面向上的恒力F作用于A球,可使A、B一起运动,且保持间距d=0.1 m不变,求F.(g取10 m/s2)【答案】1.8×10-2N【解析】两球相互吸引的库仑力:F库==9×10-3N,A球和B球的加速度相同,隔离B球,由牛顿第二定律有:F库-m2g sin 30°=m2a①把A球和B球看成整体,A、B间的库仑力为系统内力,由牛顿第二定律有F-(m1+m2)g sin 30°=(m1+m2)a②代入数据,由①式得a=4 m/s2,由②式得F=1.8×10-2N.14.如图所示,在光滑绝缘的水平面上沿一直线等距离排列三个小球A、B、C.三球质量均为m,相距均为L,若小球均带电,且qA=+10q,qB=+q,为保证三球间距不发生变化,将一水平向右的恒力F作用于C球,使三者一起向右做匀加速运动,求:(1)F的大小;(2)C球的电性和电荷量.【答案】(1)(2)负电q【解析】因A、B两小球带同种电荷,A球受到B球的库仑力向左,要使A球向右匀加速运动,则A球必须受到C球施加的向右的库仑力,设加速度为a,由牛顿第二定律有:对A,B、C三球整体,有F=3ma对A球有k-k=ma对B球有k+k=ma解得:q C=q(负电)F=.。

(完整版)动力学两类基本问题

(完整版)动力学两类基本问题

动力学两类基本问题1.由受力情况判断物体的运动状态,处理这类问题的基本思路是:先求出几个力的合力,由牛顿第二定律(F合=ma)求出加速度,再应用运动学公式求出速度或位移.2.由物体的运动情况判断受力情况,处理这类问题的基本思路是:已知加速度或根据运动规律求出加速度,再由牛顿第二定律求出合力,从而确定未知力,至于牛顿第二定律中合力的求法可用力的合成和分解法(平行四边形定则)或正交分解法.3.求解上述两类问题的思路,可用如图所示的框图来表示:解决两类动力学基本问题应把握的关键(1)做好两个分析——物体的受力分析和物体的运动过程分析;根据物体做各种性质运动的条件即可判定物体的运动情况、加速度变化情况及速度变化情况.(2)抓住一个“桥梁”——物体运动的加速度是联系运动和力的桥梁.【典例1】(2013·江南十校联考,22)如图3-3-2所示,倾角为30°的光滑斜面与粗糙平面的平滑连接.现将一滑块(可视为质点)从斜面上的A点由静止释放,最终停在水平面上的C点.已知A点距水平面的高度h=0.8 m,B点距C点的距离L =2.0 m.(滑块经过B点时没有能量损失,g=10 m/s2),求:(1)滑块在运动过程中的最大速度;(2)滑块与水平面间的动摩擦因数μ;(3)滑块从A点释放后,经过时间t=1.0 s时速度的大小.图3-3-2教你审题关键词获取信息①光滑斜面与粗糙的水平面滑块在斜面上不受摩擦力,水平面受摩擦力②从斜面上的A点由静止释放滑块的初速度v0=0③最终停在水平面上的C点滑块的末速度为零④滑块经过B点时没有能量损失斜面上的末速度和水平面上的初速度大小相等第二步:分析理清思路→抓突破口做好两分析→受力分析、运动分析①滑块在斜面上:滑块做初速度为零的匀加速直线运动.②滑块在水平面上:滑块做匀减速运动.第三步:选择合适的方法及公式→利用正交分解法、牛顿运动定律及运动学公式列式求解.解析(1)滑块先在斜面上做匀加速运动,然后在水平面上做匀减速运动,故滑块运动到B点时速度最大为v m,设滑块在斜面上运动的加速度大小为a1,则有mg sin 30°=ma1,v2m=2a1hsin 30°,解得:v m=4 m/s(2)滑块在水平面上运动的加速度大小为a2,μmg=ma2v2m=2a2L,解得:μ=0.4(3)滑块在斜面上运动的时间为t1,v m=a1t1得t1=0.8 s由于t>t1,滑块已经经过B点,做匀减速运动的时间为t-t1=0.2 s设t=1.0 s时速度大小为v=v m-a2(t-t1)解得:v=3.2 m/s答案(1)4 m/s(2)0.4(3)3.2 m/s1.解决两类动力学基本问题应把握的关键(1)两类分析——物体的受力分析和物体的运动过程分析;(2)一个桥梁——物体运动的加速度是联系运动和力的桥梁.2.解决动力学基本问题时对力的处理方法(1)合成法:在物体受力个数较少(2个或3个)时一般采用“合成法”.(2)正交分解法:若物体的受力个数较多(3个或3个以上),则采用“正交分解法”.3.解答动力学两类问题的基本程序(1)明确题目中给出的物理现象和物理过程的特点.(2)根据问题的要求和计算方法,确定研究对象,进行分析,并画出示意图.(3)应用牛顿运动定律和运动学公式求解.突破训练3如图5所示,在倾角θ=37°的足够长的固定的斜面上,有一质量为m=1 kg的物体,物体与斜面间动摩擦因数μ=0.2,物体受到沿平行于斜面向上的轻细绳的拉力F=9.6 N的作用,从静止开始运动,经2 s绳子突然断了,求绳断后多长时间物体速度大小达到22 m/s?(sin 37°=0.6,g取10 m/s2)图5答案 5.53 s解析此题可以分为三个运动阶段:力F存在的阶段物体沿斜面向上加速,受力分析如图所示,由牛顿第二定律和运动学公式得:F-F f-mg sin θ=ma1F f=μF N=μmg cos θv1=a1t1解得:a1=2 m/s2v1=4 m/s第二阶段为从撤去力F到物体沿斜面向上的速度减为零,受力分析如图所示由牛顿第二定律和运动学公式mg sin θ+μmg cos θ=ma20-v1=-a2t2解得:a2=7.6 m/s2t2=0.53 s第三阶段物体反向匀加速运动(因为mg sin θ>μmg cos θ)mg sin θ-μmg cos θ=ma3v2=a3t3解得:a3=4.4 m/s2t3=5 st=t2+t3=5.53 s题组一动力学两类基本问题1.如图3-2-5所示,水平桌面由粗糙程度不同的AB、BC两部分组成,且AB=BC,小物块P(可视为质点)以某一初速度从A点滑上桌面,最后恰好停在C点,已知物块经过AB与BC两部分的时间之比为1∶4,则物块P与桌面上AB、BC部分之间的动摩擦因数μ1、μ2之比为(P物块在AB、BC上所做的运动均可看作匀变速直线运动)()图3-2-5A.1∶1B.1∶4C.4∶1 D.8∶1解析:选D由牛顿第二定律可知,小物块P在AB段减速的加速度a1=μ1g,在BC段减速的加速度a2=μ2g,设小物块在AB段运动时间为t,则可得:v B=μ2g·4t,v0=μ1gt+μ2g·4t,由x AB=v0+v B2·t,x BC=v B2·4t,x AB=x BC可求得:μ1=8μ2,故D正确。

小专题4.4 动力学中动态分析问题(解析版)

小专题4.4 动力学中动态分析问题(解析版)

第四章 力和运动的关系小专题4 动力学中动态分析问题 【知识清单】 在动力学问题中,当物体所受某个外力、物体的质量、运动的加速度等某个时发生变化时,引起物体所受其它力发生了变化。

要求分析此类问题中外力、加速度等量的变化情况时,一般可通过分析物体受力,在物体受到两个力时采用 法求合力、物体受到三个以上的力作用时,采用 求合力,然后通过牛顿第二定律列方程,并根据情况在必要的情况下列出胡克定律、摩擦定律等方程。

对于多个物体构成的系统,在对象选择时需考虑 法。

【答案】合成;正交分解法;整体与隔离【考点题组】【题组一】单体的动态分析1.质量为m 的木箱在粗糙水平地面上,当用水平推力F 作用于物体上时,物体产生的加速度为α,若作用力变为2F ,而方向不变,则木箱产生的加速度α′A .等于αB .等于2αC .小于2α,大于αD .大于2α【答案】D【解析】 当水平拉力变为2F 时,物体所受的滑动摩擦力大小没有变化,设物体所受的滑动摩擦力大小为Ff ,当拉力变为2F 时物体的加速度为a′.根据牛顿第二定律得: F-Ff=ma ; 2F-Ff=ma′解得:a′=2a+m F f>2a ,故选D2.如图,质量为M 、倾角为 =37°的斜面B 上放置一质量为m 的物块A ,在力F 的作用下使AB 两物块一起向左做匀加速直线运动,当作用在B 上的外力F 增大时,物块A 仍保持与斜面相对静止,下列情况中可能正确的是A .斜面对A 的支持力大小不变、斜面对A 的摩擦力增大B .斜面对A 的支持力增大、斜面对A 的摩擦力减小C .斜面对A 的支持力增大、斜面对A 的摩擦力大小不变D .斜面对A 的支持力减小、斜面对A 的摩擦力大小不变【解析】因AB相对静止,A物体的加速度一定沿水平方向。

当力F增大时,系统运动的加速度a 增大。

分析物体A受到的外力,设斜面对物体的摩擦力力平行于斜面向上,在平行于斜面和垂直于斜面上利用牛顿第二定律可得:θθsin cos ma mg N =-、θθcos sin ma f mg =-,即)34(5)sin cos (a g m a g m N +=+=θθ、)43(5)cos sin (a g m a g m f -=-=θθ,可以看出,当a 增大时,斜面对A的支持力一定增大,AD错误,而摩擦力在a 较小时随a 的增大而减小,但若a 较大时,f 为负值,a 越大,f 的大小越大,可见当力F增大时,斜面对A的摩擦力可能是增大的、也可能是减小的,也有可能是先增大后减小恰好与原来相等,故BC都正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年高三物理寒假攻关---备战一模第一部分考向精练专题04 动力学经典问题1.已知物体的受力情况,求解物体的运动情况解这类题目,一般是应用牛顿第二定律求出物体的加速度,再根据物体的初始条件,应用运动学公式,求出物体的运动情况.2.已知物体的运动情况,求解物体的受力情况解这类题目,一般是应用运动学公式求出物体的加速度,再应用牛顿第二定律求出物体所受的合外力,进而求出物体所受的某个力.可用程序图表示如下:3.解决两类动力学基本问题应把握的关键(1)两类分析——物体的受力分析和物体的运动过程分析;(2)一个“桥梁”——物体运动的加速度是联系运动和力的桥梁。

4.连接体的运动特点轻绳——轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等.轻杆——轻杆平动时,连接体具有相同的平动速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比.轻弹簧——在弹簧发生形变的过程中,两端连接体的速度不一定相等;在弹簧形变量最大时,两端连接体的速率相等.【例1】(2019·四川雅安一模)如图所示,质量为1 kg的物体静止于水平地面上,用大小为6.5 N的水平恒力F作用在物体上,使物体由静止开始运动50 m后撤去拉力F,此时物体的速度为20 m/s,物体继续向前滑行直至停止,g取10 m/s2。

求:(1)物体与地面间的动摩擦因数;(2)物体运动的总位移;(3)物体运动的总时间。

【思路点拨】(1)先做初速度为零的匀加速直线运动,再做匀减速直线运动直到速度为零。

(2)两段运动过程衔接处的速度相同。

【答案】(1)0.25(2)130 m(3)13 s【解析】(1)在拉力F作用下,物体的加速度大小为:a1=v2 2x1对物体,由牛顿第二定律有:F-μmg=ma1,联立解得:μ=0.25。

(2)撤掉拉力F后的加速度大小为:a2=μg=2.5 m/s2撤掉拉力F后的位移为:x2=v22a2=80 m全程总位移为:x =x 1+x 2=50 m +80 m =130 m 。

(3)物体加速运动的时间为:t 1=v a 1=5 s 减速运动的时间为:t 2=v a 2=8 s 物体运动的总时间:t =t 1+t 2=13 s 。

【规律总结】1.解决动力学两类基本问题的思路受力分析F =ma 加速度运动学公式运动状态2.动力学基本问题的解题步骤(1)明确研究对象:根据问题的需要和解题的方便,选择某个物体或某系统作为研究对象。

(2)受力分析:画好受力示意图,选择适当的处理方法求出合力或合力的表达式。

①合成法:合成法适用于受力个数较少(2个)的情况。

②正交分解法:正交分解法适用于各种情况,尤其是物体的受力个数较多(3个或3个以上)时。

(3)运动情况分析:画出运动示意图,明确物体的运动性质和运动过程,求出或设出物体的加速度。

(4)根据牛顿第二定律和运动学规律列式求解。

【例2】(2019·湖南衡阳一模)如图所示,质量分别为m 和2m 的A 、B 两物块,用一轻弹簧相连,将A 用轻绳悬挂于天花板上,用一木板托住物块B 。

调整木板的位置,当系统处于静止状态时,悬挂A 物块的悬绳恰好伸直且没有拉力,此时轻弹簧的形变量为x ,突然撤去木板,重力加速度为g ,物块运动过程中,弹簧始终在弹性限度内,则下列说法正确的是( )A.撤去木板瞬间,B物块的加速度大小为g B.撤去木板瞬间,B物块的加速度大小为0.5gC.撤去木板后,B物块向下运动3x时速度最大D.撤去木板后,B物块向下运动2x时速度最大【答案】C【解析】当系统处于静止状态时,悬挂A物块的悬绳恰好伸直且没拉力,则弹簧处于压缩状态,且弹簧弹力大小T1=mg。

撤去木板瞬间,B物块受到的合力为T1+2mg=3mg,由牛顿第二定律可知:a B=3mg 2m=1.5g,故A、B错误;当B物块受到的合外力为零时,速度最大,此时弹簧弹力向上,且大小为T2=2mg =kx′,又T1=mg=kx,所以弹簧此时的伸长量x′=2x,即B物块向下运动3x时速度最大,故C正确,D 错误。

【规律总结】瞬时加速度的两种模型(1)刚性绳(或接触面):不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间。

(2)弹簧(或橡皮绳):两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小通常可以看做保持不变。

【例3】(2019·湖南怀化一模)(多选)如图甲所示,物块A叠放在木板B上,且均处于静止状态,已知水平地面光滑,A、B间的动摩擦因数μ=0.2,现对A施加一水平向右的拉力F,测得B的加速度a与拉力F的关系如图乙所示,下列说法正确的是(设最大静摩擦力等于滑动摩擦力,取g=10 m/s2)()A.当F<24 N时,A、B都相对地面静止B.当F>24 N时,A相对B发生滑动C.A的质量为4 kg D.B的质量为24 kg【思路点拨】(1)B受到的静摩擦力达到了最大值,之后A和B开始相对滑动。

(2)A和B之间的摩擦力达到最大静摩擦力,此时A和B的加速度仍相等。

(3)先隔离B分析,再对A或整体分析。

【答案】BC【解析】当A与B间的摩擦力达到最大静摩擦力后,A、B会发生相对滑动,由图可知,B的最大加速度为4 m/s2,即拉力F>24 N时,A相对B发生滑动,当F<24 N时,A与B保持相对静止,一起相对地面做加速直线运动,故A错误,B正确;F=24 N时,B达到最大加速度,此时A与B的加速度大小相等,对B,根据牛顿第二定律得,a B=μm A gm B=4 m/s2,对A,根据牛顿第二定律得,aA=F-μm A gm A=4 m/s2,解得m A=4 kg,m B=2 kg,故C正确,D错误。

【规律总结】解决连接体问题应注意的问题(1)整体法与隔离法的使用条件①当连接体中各物体具有共同的加速度时,一般采用整体法;当系统内各物体的加速度不同时,一般采用隔离法。

②求连接体内各物体间的相互作用力时必须用隔离法。

(2)两物体分离或相对滑动的条件①叠加体类连接体:两物体间刚要发生相对滑动时物体间的静摩擦力达到最大值。

②靠在一起的连接体:分离时相互作用力为零,但此时两物体的加速度仍相同。

(3)用滑轮连接的连接体的处理方法通过滑轮连接的两个物体:加速度大小相同。

加速度不为零时,轻绳的拉力不等于所悬挂物体的重力。

1.(2019·黑龙江哈尔滨三中二模)水平路面上质量为30 kg 的小车,在60 N 水平推力作用下由静止开始以1.5 m/s 2的加速度做匀加速直线运动。

2 s 后撤去该推力,则( )A .小车2 s 末的速度是4 m/sB .小车受到的阻力大小是15 NC .撤去推力后小车的加速度大小是1 m/s 2D .小车运动的总时间为6 s2.(2019·四川教考联盟三诊)(多选)如图,在水平面上固定一倾角为30°的光滑斜面,斜面底部有一垂直于斜面的固定挡板,A 和B 用轻弹簧相连,A 靠在挡板上,C 靠在B 上,A 、B 、C 三者质量均为m ,力F 作用在C 上使弹簧处于压缩状态。

现撤去F ,弹簧弹开,最后使A 和挡板恰无弹力,重力加速度为g ,在这个过程中以下说法正确的是( )A .当B 速度最大时,B 、C 间弹力为0B .当B 和C 分离时,A 对挡板的压力为12mg C .当B 和C 分离时,它们的速度相等且达到最大D .当B 的速度最大时,A 对挡板的压力为32mg 3.(2019·河北衡水中学三模)(多选)如图甲所示,足够长的木板B 静置于光滑水平面上,其上放置小滑块A 。

木板B 受到随时间t 变化的水平拉力F 作用时,用传感器测出木板B 的加速度a ,得到如图乙所示的a -F 图象,已知g 取10 m/s 2,则( )A .滑块A 与木板B 间动摩擦因数为0.1 B .当F =10 N 时木板B 的加速度为4 m/s 2C .木板B 的质量为1 kgD .滑块A 的质量为4 kg4.(2019·重庆三诊)如图所示,在倾角为30°的光滑斜面上,质量相等的甲、乙物体通过弹簧连接,乙物体通过轻绳与斜面顶端相连。

已知轻弹簧、轻绳均与斜面平行,重力加速度大小为g 。

剪断轻绳的瞬间,下列说法正确的是( )A .甲、乙的加速度大小均为g 2B .甲的加速度为零,乙的加速度大小为g 2C .甲的加速度为g ,乙的加速度大小为零D .甲的加速度为零,乙的加速度大小为g5. (2019·广东惠州二模)如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验。

若砝码和纸板的质量分别为2m 和m ,各接触面间的动摩擦因数均为μ,重力加速度为g 。

要使纸板相对砝码运动,所需拉力的大小至少应为( )A .3μmgB .4μmgC .5μmgD .6μmg6.(2019·山东省日照市模拟)如图所示,一辆有驱动力的小车上有一水平放置的弹簧,其左端固定在小车上,右端与一质量为1 kg 的物块相连。

物块和小车一起向右匀速运动时,弹簧处于压缩状态,弹簧弹力大小为2 N 。

若小车开始向右加速运动,则( )A.随着小车的加速度增大,物块受到的摩擦力逐渐减小B.随着小车的加速度增大,物块受到的弹簧弹力逐渐增大C.当小车的加速度大小为5 m/s2时,物块一定与小车相对滑动D.当小车的加速度大小为4 m/s2时,物块一定与小车相对静止7.(2019·河北省衡水中学下学期二调模拟)如图所示,宽为L的竖直障碍物上沿有间距d=0.6 m的矩形孔,其下沿离地高h=1.2 m,离地高H=2 m可视为质点的小球与障碍物相距x,在障碍物以v0=4 m/s的速度匀速向左运动的同时,小球自由下落,忽略空气阻力,g=10 m/s2,则下列说法正确的是(BC)A.L=1 m、x=1 m时小球可以穿过矩形孔B.L=0.8 m、x=0.8 m时小球可以穿过矩形孔C.L=0.6 m、x=1 m时小球可以穿过矩形孔D.L=0.6 m、x=1.2 m时小球可以穿过矩形孔8.(多选)(2019·杭州二中模拟)如图所示,总质量为460 kg的热气球,从地面刚开始竖直上升时的加速度为0.5 m/s2,当热气球上升到180 m时,以5 m/s的速度向上匀速运动,若离开地面后热气球所受浮力保持不变,上升过程中热气球总质量不变,重力加速度g=10 m/s2.关于热气球,下列说法正确的是()A.所受浮力大小为4 830 N B.加速上升过程中所受空气阻力保持不变C.从地面开始上升10 s后的速度大小为5 m/s D.以5 m/s匀速上升时所受空气阻力大小为230 N 9.(2019·江苏省宿迁市模拟)如图,光滑固定斜面上有一楔形物体A。

相关文档
最新文档