高一数学必修一第二章第二课基本不等式
高一数学必修一第二章第二课基本不等式

高一数学必修一第二章第二课基本不等式摘要:一、基本不等式的概念与性质1.基本不等式的定义2.基本不等式的性质二、基本不等式的证明方法1.作差法2.替换法3.柯西-施瓦茨不等式三、基本不等式的应用1.求最值问题2.证明其他不等式四、练习与解答1.例题解析2.巩固练习正文:一、基本不等式的概念与性质在高中数学必修一第二章第二课中,我们学习了一个非常基础且重要的不等式——基本不等式。
基本不等式是指对于任意的实数a和b,都有a^2 + b^2 >= 2ab。
这个不等式在很多数学问题中都有广泛的应用,因此我们需要熟练掌握它的性质和证明方法。
二、基本不等式的证明方法1.作差法作差法是证明基本不等式最常用的方法。
具体操作如下:我们将a^2 + b^2 - 2ab分解因式,得到(a - b)^2。
因为一个数的平方一定大于等于0,所以(a - b)^2 >= 0,即a^2 + b^2 >= 2ab。
2.替换法替换法是将基本不等式中的a和b替换成其他表达式,从而简化证明过程。
常用的替换方法有柯西-施瓦茨替换和排序替换。
3.柯西-施瓦茨不等式柯西-施瓦茨不等式是基本不等式的一个推广,它是指对于任意的实数a1, a2, ..., an和b1, b2, ..., bn,都有(a1^2 + a2^2 + ...+ an^2)(b1^2 + b2^2 + ...+ bn^2) >= (a1b1 + a2b2 + ...+ anbn)^2。
这个不等式在求解某些问题时,可以提供更强的工具。
三、基本不等式的应用1.求最值问题基本不等式可以用来求解一些最值问题,如求函数的最值、求解不等式的最值等。
2.证明其他不等式基本不等式是许多其他不等式的基础,如柯西不等式、排序不等式等。
通过基本不等式,我们可以证明这些不等式,从而进一步解决实际问题。
四、练习与解答1.例题解析我们来看一道例题:已知a + b = 2,求a^2 + b^2的最小值。
2020新版教材人教A版高中数学必修第一册第二章2.2.1基本不等式

b 2
ab
(a 0, b 0)
一、复习引入
重要不等式:如果a,b∈R,那么a2+b2≥2ab
(当且仅当a=b 时,取“=”)
注意:1.指出定理适用范围: a,b R
2.强调取“=”的条件: a b
如果a > 0,b > 0,我们用 a ,b 分别 代替上式中的 a,b, 可得:
a b 2 ab
x
因此f(x)≤ 1 2 6
当且仅当 2x 3 ,即 x2 3 时,式中等
x
2
号成立。
由于x>0,所以 x
6 2
,式中等号成立,
因此 f (x)max 1 2 6
,此时 x 6 。
2
重要不等式 a2 b2 2ab
基本不等式a b 2 ab (a、b∈R+) 结(1)两个正数积为定值,和有最小值。 论(2)两个正数和为定值,积有最大值。
当且仅当x 4 ,即x 2时,等号成立. x
2.求以下问题中的最值 :
(1)若a 0,则当a (2)x, y都为正数,
且 _232_x__y时,42a, xy的9a 有最最大小值值是__11__2____;.
2
3.已知x>0, y>0, xy=24, 求4x+6y的最小值,并说 明此时x,y的值.
AC=a,BC=b.过C点作垂直于AB的弦DE, 连
接AD,BD.你能利用这个图形,得出基本不等
式的几何解释吗?
D
A
a Cb B
E
证明:连接OD,OD a b .又 △ ACD ∽ △ DCB ,
则 CD ab
2
当a≠b时,OD>CD,即 当a=b时,OD=CD,即
【课件】基本不等式(第二课时)2023-2024学年高一数学(人教A版2019必修第一册)

出发使用基本不等式,求得最值.
练一练
2+1
已知a>1,b>0,则
+2a的最小值为
(−1)
提示:
目标式局部:b2+1≥2b,
所以
2+1
2
+2a≥
(−1)
−1
+2(a-1)+2≥…
.
用基本不等式求最值
( )
例3. 已知 x>0, y>0 ,x+y+2=xy,则xy的
条
件
最
值
之
最小值为
.
2
+2
+
2 (−2)2 (−1)2
=
+
+1
4 1
=(m+n)+( + )-6(以下逆代)
用基本不等式求最值
( )
七
条
件
最
值
之
等
价
变
形
1
例6.已知x>0,y>0,且
+2
+
1 1
= ,求xy的最小值.
+2 3
1
解:由等式
+2
1
3
变形得xy=x+y+8
+
1
+2
=
所以xy≥2 +8 解得xy最小值为16
( )
一
直
接
求
最
值
例1. 已知 x>0,
则y= 2
的最大值
+2+4
1
高中数学必修第一册(人教A版)第二章2.2基本不等式

《基本不等式》教学设计一、教学对象高一三班,班级学生基础稍微薄弱,通过本节课学生能掌握基本不等式的基本应用及其变形,锻炼学生数形结合不同角度的理解能力.二、教材分析本节选自《普通高中教科书·数学必修第一册(人教A版)》的第二章2.2基本不等式,本节课主要是先利用初中学过的完全平方得到基本不等式;并通过在学习算术平均数与几何平均数的定义基础上,引导学生给出基本不等式的代数证明和几何解释;与此同时让学生学会简单应用.算术平均数与几何平均数是不等式这一章的核心,对于不等式的证明及利用基本不等式求最值等应用问题都起到工具性作用.通过本章的学习有利于学生对后面不等式的证明及函数最值、值域的进一步研究,起到铺垫的作用,因此决定了它的重要地位.三、教学目标本节课本着新高考评价体系的“立德树人、服务选才、引导教学”这一高考核心立场,提出如下教学目标:必备知识:1.知道基本不等式的几何背景,能结合具体实例解释基本不等式成立的条件,会运用所学知识证明基本不等式,并能在证明过程中分析不等式成立的条件.2.结合具体实例,能用基本不等式解决简单的求最大值或最小值的问题,从中领会不等式成立时的三个限制条件(一正、二定、三相等)在求解实际问题的最值中的作用.关键能力:1.用基本不等式数学模型解决实际问题的能力.2.通过适当引导,进一步提高学生独立思考、分析问题、解决问题的能力.学科素养:1.从几何和代数两角度论证基本不等式,培养学生数形结合的思想、直观想象的学科素养.2.结合具体实例,培养学生逻辑推理的数学素养.3.通过解决实际问题,培养学生数学建模和数学抽象的数学素养.核心价值:通过适当引导,加强学生社会主义核心价值体系教育,增强学生社会责任感,形成正确核心价值观.四、教学重点、难点重点:基本不等式的定义、证明方法和几何解释,用基本不等式解决简单的最值问题.难点:基本不等式的几何解释,用基本不等式解决简单的最值问题.五、教学方法与手段教学方法:诱思探究教学法.学习方法:自主探究、观察发现、合作交流、归纳总结.教学手段:多媒体辅助教学.六、教学过程(一)基本不等式的定义导入以线段a ,b的和为直径作圆,过点C作垂直于直径AB的弦DE,依次连接AD、BD.问题1:你能用a ,b表示我的们的半弦CD吗?如果我们连接OD,用a ,b表示半径呢?师生活动:(思考片刻)一块回答CD=ab,2ba.问题2:显然半径大于半弦,点C在直径上运动时是否始终半径大于半弦?能否相等?(几何画板展示点C运动状态下的半径与半弦)师生活动:始终半径大于等于半弦(点C与圆心重合时相等)师生一块完善基本不等式,并指出算术平均数和几何平均数,及其基本不等式的文字表述.设计意图:不等式的几何解释是教学的重、难点,直接通过几何图形,将半径和半弦放到直角三角形中,并结合几何画板动态展示,使学生通过直观感知就得到了半径是不小于半弦,从而突破难点的同时引入了我们的基本不等式.(二)基本不等式的证明问题3:我们已经从几何图形直观感知得到了基本不等式,你能从其他角度证明我们的基本不等式吗?结合我们上节课学过的比较两个代数式大小的方法.师生活动:根据提示能迅速想到作差法,并书写证明过程,师生一块补充完善.设计意图:根据不等式的性质,用作差法证明基本不等式,让学生从数形两个角度分别论证基本不等式,培养学生的数形结合思想.(三)基本不等式的应用例1 已知x , y 都是正数,求证:(1)如果和x + y 等于定值S,那么当x=y 时,x y 有最大值214S(2)如果积x y 等于定值P ,那么当x=y 时,x + y 有最小值 师生活动:师生一起分析后,由学生思考并让学生在黑板上书写证明过程,师生一块补充完善.问题4:通过本题,你能说说用基本不等式能解决什么样的问题吗? 师生活动:学生思考后回答,教师总结:满足“两个正数的和为定值,积有最大值”“积为定值和有最小值”并且总结应用基本不等式求最值时应满足的三个条件.设计意图:用本例示范基本不等式可以用来求最值,并且应用时要满足的条件,为后面的应用作铺垫.12x x x 例:(1)已知>0,求+的最小值.111x x x >-+(2)已知,求+的最小值.2--x x ≤≤(3)已知11,求1的最大值. 问题5:代数式是和式形式,结合例1,是否可以利用基本不等式求它的最小值?师生活动:学生思考后回答。
2_2 基本不等式-高中数学人教A版(2019)必修第一册

第二章一元二次函数、方程和不等式2.2 基本不等式(第1课时)2002年在北京召开的第24届国际数学家大会会标思考1:这图案中含有怎样的几何图形?思考2:你能发现图案中的相等关系或不等关系吗?三国时期吴国的数学家赵爽,用来证明勾股定理。
22222222)2(2)()214c b a c a ab b ab c a b ab =+∴=+−+∴=−+⋅ (证明:a b (1)大正方形边长为___________,面积S 为______________(2)四个直角三角形________,面积和S’为_______________(3)S 与S’的大小关系是_________,故有_______(4)S 与S’可能相等吗?满足什么条件时相等?22b a +22b a +全等ab2'S S >ab b a 222>+a b 上述结论可描述为:ab b a b a 20,022≥+>>时,当成立吗?如何证明?为任意实数时,上式还、)当(b a 5时取等)。
当且仅当 证明:b a ab b a b ab a b a =≥+∴≥+−∴≥−(2020)(22222 此不等式称为重要不等式1、基本不等式0,0,,,,a b a b a b >>如果我们用分别代替可得到什么结论?22()()2a b a b+⋅≥2a b ab +≥替换后得到:即:),0,0(时取等当且仅当b a b a =>>2a b ab +≥即:基本不等式ab b a ≥+2注意:0,01>>b a 、时取等、取等条件:当且仅当b a =2叫几何平均数叫算术平均数,、ab ba 23+基本不等式的几何解释A B C D E a b O 如图, AB 是圆的直径, O 为圆心,点C 是AB 上一点, AC=a , BC=b . 过点C 作垂直于AB 的弦DE,连接AD 、BD 、OD.②如何用a , b 表示CD? CD=______①如何用a , b 表示OD? OD=______2+a bab③OD 与CD 的大小关系怎样? OD_____CD ≥几何意义:半径不小于半弦长定理当点C 在什么位置时OD=CD ?此时a 与b 的关系是?基本不等式的证明2a b ab +≥证明:要证只要证_______a b +≥只要证_____0a b +−≥只要证2(______)0−≥显然, 上式是成立的.当且仅当a =b 时取等。
人教A版必修第一册高中数学2.2基本不等式精品课件

知识梳理
a+b
思考 1:不等式 a +b ≥2ab 与 ab≤ 2 成立的条件相同吗?
2
2
如果不同各是什么?
a+b
不同,a +b ≥2ab 成立的条件是 a,b∈R; ab≤
成立的条件
2
2
2
是 a,b 均为正实数。
1
思考 2: a+ ≥2(a≠0)是否恒成立?
a
1
1
只有 a>0 时,a+ ≥2,当 a<0 时,a+ ≤-2。
四周墙壁建造单价为每米 500 元,中间一条隔壁(为圆的直径)建造单价为每米 100 元,池底建造单价为每平
方米 60 元(池壁厚忽略不计).(注:π≈3.14)
(1)如采用方案一,游泳池的长设计为多少米时,可使总造价最低?
(2)若方案一以最低总造价计算,试比较两种方案哪种方案的总造价更低?
例题解析
= 2,∴a≥ 2.
max
x+y
例题解析
例 15 某校拟建一座游泳池,池的深度一定,现有两个方案,方案一:游泳池底面为矩形且面积为 200 平方
米,池的四周墙壁建造单价为每米 400 元,中间一条隔壁(与矩形的一边所在直线平行)建造单价为每米 100
元,池底建造单价每平方米 60 元(池壁厚忽略不计);方案二:游泳池底面为圆且面积为 64π平方米,池的
40
900x·
=36 000,当且仅当 900x=
,即 x= 时取等号;
x
x
3
200
200
或者总造价为 200×60+x+
×2×400+ x ×100,
x
200
200
第二章-2.2-基本不等式高中数学必修第一册人教A版

≥
1
(13
5
+2
12
⋅
3
)
=
3 + 4
12
5,当且仅当
1
+ = 5,(变形确定常数)则3
1
12
= (9 + 4 +
+
5
=
3
,
+ 3 = 5,即 = 1, =
+ 4 =
1
时取等号.
2
故3 + 4的最小值为5.
(方法二思路清晰,过程简单易上手,对思维有较高要求,适合变形后等式一边为
1
1
4
≥ ,故A,B错误;
1
1
+
≥ 1,故C恒成立;
+ 2
1
1
2
≥
= 8,∴ 2 2 ≤ ,故D恒成立.
2
+
8
∵ ≤ 4 = + ,∴ + =
∵
+ 2
2
≤
2 +2
,∴
2
2 +
方法帮丨关键能力构建
题型1 利用基本不等式求最值的常见题型及求解技巧
例5(1) 函数 = 5 − 2 0 < < 2 的最大值是
常数的情况)
【学会了吗|变式题】
4.(2024·浙江省杭州二中期末)已知 > 0, >
值为( A
2
0,且
1
+
= 1,则2 +
)
A.5 + 4 2
2024-2025学年高一数学必修第一册(配湘教版)教学课件2.1.2基本不等式

(+1)
所以 -1 的最小值为
2 2+3.
学以致用·随堂检测促达标
1 2 3 4 5
1.下列说法正确的个数是( B )
①a2+b2≥2ab成立的条件是a≥0,b≥0;
②a2+b2≥2ab成立的条件是a,b∈R;
③a+b≥2 成立的条件是 a≥0,b≥0;
④a+b≥2 成立的条件是 ab>0.
.
(x>0,a>0),
时等号成立,此时
2
时,4x+ 的最小值为
a=36.
36
4 ,
4x+ 取得最小值
4 .
+
2
≥a+b
2
a≥2b- ,
2
b≥2a- ,
3
2.已知x>0,求y=x+ 的最小值,并说明x为何值时y取得最小值.
解 因为 x>0,所以
当且仅当
3
x= 且
3
y=x+ ≥2
3
· =2
3,
x>0,即 x= 3时等号成立,即当 x= 3时,y 取得最小值 2 3.
重难探究·能力素养速提升
大(小)值,则可将要求的式子看成一个函数,利用函数求最大(小)值.
变式训练2
设
(+1)
x≥2,求 -1 的最小值.
解 由题意,设 t=x-1(t≥1),则 x=t+1,
(+1)
则 -1
=
当且仅当
(+1)(+2)
2
t= ,即
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节从简到繁:基本不等式的核心概念
基本不等式在高一数学必修一中是一个非常基础且重要的概念,它为我们理解和解决各类不等式问题奠定了基础。
在本节中,我们将从简到繁,逐步深入探讨基本不等式的定义、特点和应用。
1.1 基本不等式的定义
基本不等式是指形如a≥b或a≤b的不等式,其中a和b是两个数。
当a≥b时,我们称a大于等于b;当a≤b时,我们称a小于等于b。
在这里,我们需要深入理解等号的含义:等号在不等式中表示两个数相等或等价。
基本不等式并不仅仅局限于大于或小于的关系,更包括了等于的情况。
1.2 基本不等式的特点
基本不等式有许多特点,其中最重要的是传递性和对称性。
传递性指的是如果a≥b且b≥c,则a≥c;如果a≤b且b≤c,则a≤c。
对称性则表示如果a≥b,则-b≥-a;如果a≤b,则-b≤-a。
这些特点使得基本不等式在推导和转化过程中能够起到重要作用,也为后续的应用奠定了基础。
1.3 基本不等式的应用
基本不等式在实际问题中有着广泛的应用,例如在代数、几何和概率等领域。
特别是在二元一次不等式的求解中,基本不等式的运用尤为
重要。
通过将不等式转化为标准形式,我们可以利用基本不等式的特
点进行简化和求解,从而解决各类实际问题。
第二节深入探讨:基本不等式的转化和应用
2.1 基本不等式的转化
在实际问题中,我们经常会遇到需要将不等式进行转化或简化的情况。
在这里,我们可以运用基本不等式的传递性和对称性进行变形,并通
过加减乘除等运算来实现不等式的转化。
通过加减同一个数或式子,
我们可以将不等式的左右两边进行平移或合并;通过乘除正数或负数,我们可以改变不等式的方向或大小。
这些转化方法为我们解决实际问
题提供了有力的工具。
2.2 基本不等式在二元一次不等式中的应用
二元一次不等式是指形如ax+by≤c的不等式,其中a、b和c为已知数,x和y为未知数。
在实际问题中,通过运用基本不等式的转化和特点,我们可以将二元一次不等式转化为标准形式,并利用基本不等式
进行求解。
通过将不等式左右两边进行同一个数的加减或乘除,我们
可以化简不等式并找到最优解;通过利用基本不等式的对称性,我们
可以将不等式进行对称变形,从而简化计算和分析。
第三节总结回顾:深刻理解基本不等式
在本文中,我们围绕着高一数学必修一第二章第二课中的基本不等式
展开了深入探讨。
我们从简到繁,逐步解析了基本不等式的核心概念、特点和应用,并通过具体例子进行了详细讲解。
我们强调了基本不等
式在实际问题中的广泛应用,并介绍了基本不等式在二元一次不等式
中的实际应用情景。
对于高一数学学习者来说,深刻理解基本不等式具有重要意义。
基本
不等式为我们理解不等式问题奠定了基础,同时也为后续学习和应用
提供了重要工具。
在未来的学习和实践中,我们应该持续加强对基本
不等式的理解和运用,不断拓展其在各个领域的应用范围,从而更好
地解决实际问题并提升数学素养。
通过本文的阐述,相信读者们能够对基本不等式有着更全面、深刻和
灵活的理解。
希望本文能够对你的学习和工作有所帮助,并期待你在
实际问题中充分发挥基本不等式的作用。
对于我个人而言,编写本文
也带来了许多启发和思考,让我对基本不等式有了更加清晰的认识和
理解。
在今后的学习和工作中,我们都应该不断学习和实践,不断提升自己
的知识和能力,以更好地应对未来的挑战和机遇。
让我们共同努力,
为建设一个更加美好的世界而努力奋斗!基本不等式是代数和数学中
重要的概念,在不同的数学领域都有着广泛的应用。
在代数中,基本
不等式可以用来解决各种不等式问题,例如求解多项式不等式、根号
不等式等。
在几何中,基本不等式可以帮助我们证明各种几何定理和
不等式,例如三角形和四边形的性质。
在概率中,基本不等式能够帮
助我们分析随机变量的性质和概率分布。
深刻理解和灵活运用基本不
等式对于数学学习者来说至关重要。
在学习基本不等式的过程中,我们还需要注意基本不等式与其他重要
数学概念的联系。
在数列和级数中,基本不等式的传递性和对称性也
被广泛应用,帮助我们证明数列和级数的收敛性和发散性。
在微积分中,基本不等式也经常用于证明不等式极限和误差估计。
基本不等式
与其他数学概念密切相关,互相支撑,需要我们将它们进行有机结合,才能更好地理解和应用。
基本不等式还有着丰富的推广和拓展。
柯西-施瓦茨不等式、霍尔德不等式、均值不等式等都是基本不等式在不同领域的推广应用,它们在
代数、几何、概率等领域都有着重要的作用。
基本不等式不仅仅局限
于简单的a≥b或a≤b的形式,还涉及到更加复杂和丰富的数学理论
和技巧,需要我们有更深入的学习和探索。
基本不等式作为数学中的基础概念,其重要性不言而喻。
通过对基本
不等式的深入理解和灵活应用,我们能够更好地解决各种数学问题,
并且为未来的学习和应用打下良好的基础。
我们应该不断学习和探索
基本不等式的相关知识,不断提升自己的数学素养和能力,以更好地
应对数学和实际问题的挑战。
希望每一位数学学习者都能够在基本不等式的世界中茁壮成长,收获属于自己的数学成就和成功!。