初二上册数学代数式练习题及答案
代数式练习题及答案

代数式练习题及答案代数式练习题及答案代数是数学中的一个重要分支,它研究数和运算的关系。
代数式是代数中的基本概念之一,它由数、字母和运算符号组成。
通过解答代数式练习题,我们可以提高我们的代数运算能力,培养我们的逻辑思维和解决问题的能力。
下面我将给大家提供一些代数式练习题及答案,希望能对大家的学习有所帮助。
一、简单代数式练习题1. 计算下列代数式的值:(1) 2x + 3y,当x = 4,y = 5时;(2) 3a - 2b,当a = 7,b = 2时;(3) 5m^2 + 2mn,当m = 3,n = 2时。
答案:(1) 2x + 3y = 2 * 4 + 3 * 5 = 8 + 15 = 23;(2) 3a - 2b = 3 * 7 - 2 * 2 = 21 - 4 = 17;(3) 5m^2 + 2mn = 5 * 3^2 + 2 * 3 * 2 = 5 * 9 + 12 = 45 + 12 = 57。
2. 化简下列代数式:(1) 2x + 3x;(2) 4y - 2y;(3) 5a^2 - 3a^2。
答案:(1) 2x + 3x = 5x;(2) 4y - 2y = 2y;(3) 5a^2 - 3a^2 = 2a^2。
二、复杂代数式练习题1. 计算下列代数式的值:(1) 3(x + 2) - 2(3x - 4),当x = 2时;(2) 2(3a + 4b) - 5(2a - 3b),当a = 1,b = 2时;(3) 4(2m^2 + 3mn) - 3(4m^2 - 5mn),当m = 2,n = 1时。
答案:(1) 3(x + 2) - 2(3x - 4) = 3(2 + 2) - 2(3 * 2 - 4) = 3 * 4 - 2(6 - 4) = 12 - 2(2) = 12 - 4 = 8;(2) 2(3a + 4b) - 5(2a - 3b) = 2(3 * 1 + 4 * 2) - 5(2 * 1 - 3 * 2) = 2(3 + 8) - 5(2 - 6) = 2 * 11 - 5(-4) = 22 + 20 = 42;(3) 4(2m^2 + 3mn) - 3(4m^2 - 5mn) = 4(2 * 2^2 + 3 * 2 * 1) - 3(4 * 2^2 - 5 * 2 * 1) = 4(2 * 4 + 6) - 3(4 * 4 - 10) = 4(8 + 6) - 3(16 - 10) = 4 * 14 - 3 * 6 = 56 - 18 = 38。
代数式典型例题专项练习30题(有答案)

代数式专项练习30题(有答案)一.选择题(共5小题)1.在1,a,a+b,,x2y+xy2,3>2,3+2=5中,代数式有()A .3个B.4个C.5个D.6个2.下列各式:﹣x+1,π+3,9>2,,,其中代数式的个数是()A .5 B.4 C.3 D.23.下列各式:①1x;②2•3;③20%x;④a﹣b÷c;⑤;⑥x﹣5;其中,不符合代数式书写要求的有()A .5个B.4个C.3个D.2个4.在下列的代数式的写法中,表示正确的一个是()A.“负x的平方”记作﹣x2B.“a除以2b的商”记作C.“x的3倍”记作x3 D.“y与的积”记作5.下列说法正确的是()A.x是代数式,0不是代数式B.表示a与b的积的代数式为a+bC.a、b两数和的平方与a、b两数积的2倍的和为(a+b)2+2abD.意义是:a与b的积除y的商二.填空题(共13小题)6.代数式“5x”,可解释为:“小明以5千米/时的速度走了x小时,他一共走了5x千米”.请你对“5x”再给出一个身边生活中的解释:_________ .7.叙述下列代数式的意义.(1)(x+2)2可以解释为_________ .(2)某商品的价格为n元.则80%n可以解释为_________ .8.一个三位数的百位数字是2,十位数字与个位数字组成的两位数为x,用代数式表示这个三位数为_________ .9.x表示一个两位数,y表示一个三位数,把x放在y的右边组成一个五位数,则这个五位数可以表示为_________ .11.一本书共n页,小华第一天读了全书的,第二天读了剩下的,则未读完的页数是_________ .(用含n的式子表示)12.(1)已知a﹣b=3,则3a﹣3b= _________ ,5﹣4a+4b= _________ .(2)已知x+5y﹣2=0,则2x+3+10y= _________ .(3)已知3x2﹣6x+8=0,则x2﹣2x+8= _________ .13.若a,b互为倒数,c,d互为相反数,则3c+3d﹣9ab= _________ .14.已知代数式ax3+bx,当x=﹣1时,代数式的值为5;则当x=1时,ax3+bx的值是_________ .15.任意写出x3y的3个同类项:_________ ,_________ ,_________ .16.已知7x m y3和﹣是同类项,则(﹣n)m= _________ .17.若单项式3x4y n与﹣2x2m+3y3的和仍是单项式,则(4m﹣n)n= _________ .18.已知x5y n与﹣3x2m+1y3n﹣2是同类项,则m+n= _________ .三.解答题(共12小题)19.如图,池塘边有一块长为18米,宽为10米的长方形土地,现在将其余三面留出宽都是x米的小路,中间余下的长方形部分做菜地,用代数式表示:(1)菜地的长a= _________ 米,宽b= _________ 米;(2)菜地的面积S= _________ 平方米;(3)求当x=1米时,菜地的面积.20.已知﹣3x4+m y与x4y3n是同类项,求代数式m100+(﹣3n)99﹣mn的值.21.已知关于多项式mx2+4xy﹣x﹣2x2+2nxy﹣3y合并后不含有二次项,求n m的值.22.若关于x、y的方程6x+5y﹣2﹣3Rx﹣2Ry+4R=0合并同类项后不含y项,求R的值.23.k为何值时,多项式x2﹣2kxy﹣3y2+6xy﹣x﹣y中,不含x,y的乘积项.24.去括号,合并同类项(1)﹣3(2s﹣5)+6s;(2)3x﹣[5x﹣(x﹣4)];(3)6a2﹣4ab﹣4(2a2+ab);(4)﹣3(2x2﹣xy)+4(x2+xy﹣6)25.先去括号,后合并同类项:(1)x+[﹣x﹣2(x﹣2y)];(2);(3)2a﹣(5a﹣3b)+3(2a﹣b);(4)﹣3{﹣3[﹣3(2x+x2)﹣3(x﹣x2)﹣3]}.26.观察下列各等式,并回答问题:;;;;…(1)填空:= _________ (n是正整数);(2)计算:….27.观察下面一列数,探求其规律:(1)请问第7个,第8个,第9个数分别是什么数?(2)第2004个数是什么如果这列数无限排列下去,与哪个数越来越接近?28.如图,每个正方形点阵均被一直线分成两个三角形点阵,根据图中提供的信息,用含n的等式表示第n个正方形点阵中的规律_________ .29.下列是幼儿园小朋友用火柴棒拼出的一列图形.仔细观察,找出规律,解答下列各题:(1)第4个图中共有_________ 根火柴,第6个图中有_________ 根火柴;(2)第n个图形中共有_________ 根火柴(用含n的式子表示);(3)请计算第2008个图形中共有多少根火柴.30.如图,用同样规格的黑白两色正方形瓷砖铺设矩形地面,请观察下列图形,探究并解答下列问题.(1)在第1个图中,共有白色瓷砖_________ 块.(2)在第2个图中,共有白色瓷砖_________ 块.(3)在第3个图中,共有白色瓷砖_________ 块.代数式典型例题30题参考答案:1.解:在1,a,a+b,,x2y+xy2,3>2,3+2=5中,代数式有1,a,a+b,,x2y+xy2,共5个.故选C2.解:题中的代数式有:﹣x+1,π+3,共3个.故选C.3.解:①1x分数不能为假分数;②2•3数与数相乘不能用“•”;③20%x,书写正确;④a﹣b÷c不能出现除号;⑤,书写正确;⑥x﹣5,书写正确,不符合代数式书写要求的有①②④共3个.故选:C4.解:“负x的平方”记作(﹣x)2;“x的3倍”记作3x;“y与的积”记作y.故选B5.解:A、x是代数式,0也是代数式,故选项错误;B、表示a与b的积的代数式为ab,故选项错误;C、正确;D、意义是:a与b的和除y的商,故选项错误.故选C6.解:答案不唯一,如买一支钢笔5元,买x支钢笔共5x元7.解:(1)(x+2)2可以解释为正方形的边长为x+2,则它的面积为(x+2)2;(2)某商品的价格为n元.则80%n可以解释为这件商品打八折后的价格.故答案为:(1)正方形的边长为x+2,则它的面积为(x+2)2;(2)这件商品打八折后的价格8.解:根据题意得此三位数=2×100+x=200+x9.解:两位数x放在一个三位数y的右边相当于y扩大了100倍,那么这个五位数为(100y+x)10.解:这m+n个数的平均数=.故答案为:.11.解:小华第一天读了全书的,还剩下(1﹣)n=n;第二天读了剩下的,即(1﹣)n×=n.则∴3a﹣3b=3,5﹣4a+4b=5﹣4(a﹣b)=5﹣4=1;(2)∵x+5y﹣2=0,∴x+5y=2,∴2x+3+10y=2(x+5y)+3=2×2+3=7;(3)∵3x2﹣6x+8=0,∴x2﹣2x=﹣,∴x2﹣2x+8=﹣+8=.故答案为:(1)3,1;(2)7;(3)13.解:因为a,b互为倒数,c,d互为相反数,所以ab=1,c+d=0,所以3c+3d﹣9ab=3(c+d)﹣9ab=0﹣9=﹣9,故答案为:﹣914.解:由题意知:﹣a﹣b=5所以a+b=﹣5;则当x=1时,ax3+bx=a+b=﹣515.解:开放题,答案无数个,只要所写同类项,所含字母相同且相同字母的指数也相同即可,同类项与字母的顺序无关.如5x3y,12x3y,20x3y.故答案为:5x3y,12x3y,20x3y16.解:由同类项的定义可知m=2,n=3,代入(﹣n)m,结果为9.答:(﹣n)m值是917.解:两个单项式的和是单项式,则它们是同类项,则2m+3=4,m=;n=3.则(4m﹣n)n=(4×﹣3)3=﹣1.答:(4m﹣n)n=﹣118.解:x5y n与﹣3x2m+1y3n﹣2是同类项,2m+1=5,n=3n﹣2,m=2,n=1,m+n=2+1=3,故答案为:3(2)由(1)知:菜地的长为18﹣2x米,宽为10﹣x米,所以菜地的面积为S=(18﹣2x)•(10﹣x);(3)由(2)得菜地的面积为:S=(18﹣2x)•(10﹣x),当x=1时,S=(18﹣2)(10﹣1)=144m2.故答案分别为:(1)18﹣2x,10﹣x;(2)(18﹣2x)(10﹣x);(3)144m220.解:∵﹣3x4+m y与x4y3n是同类项,∴4+m=4,3n=1,∴m=0,n=,∴m100+(﹣3n)99﹣mn=0+(﹣1)﹣0=﹣121.解:∵多项式mx2+4xy﹣x﹣2x2+2nxy﹣3y合并后不含有二次项,即二次项系数为0,即m﹣2=0,∴m=2;∴2n+4=0,∴n=﹣2,把m、n的值代入n m中,得原式=422.解:∵6x+5y﹣2﹣3Rx﹣2Ry+4R=0合并同类项后不含y项,∴5﹣2R=0,解得R=2.523.解:原式=x2+(﹣2k+6)xy﹣3y2﹣y,∵不含x,y的乘积项,∴x,y的乘积项的系数为0,∴﹣2k+6=0,∴2k=6,∴k=3.∴当k=3时,已知多项式不含x,y的乘积项24.(1)﹣3(2s﹣5)+6s=﹣6s+15+6s=15;(2)3x﹣[5x﹣(x﹣4)]=3x﹣[5x﹣x+4]=3x﹣5x+x﹣4=﹣x+4;=6a2﹣4ab﹣8a2﹣2ab=﹣2a2﹣6ab;(4)﹣3(2x2﹣xy)+4(x2+xy﹣6)=﹣6x2+3xy+4x2+4xy﹣24=﹣2x2+7xy﹣2425.(1)x+[﹣x﹣2(x﹣2y)]=x﹣x﹣2x+4y=﹣2x+4y;(2)原式=a﹣a﹣﹣+b2=;(3)2a﹣(5a﹣3b)+3(2a﹣b)=2a﹣5a+3b+6a﹣3b=3a;(4)﹣3{﹣3[﹣3(2x+x2)﹣3(x﹣x2)﹣3]},=﹣3{9(2x+x2)+9(x﹣x2)+9},=﹣27(2x+x2)﹣27(x﹣x2)﹣27,=﹣54x﹣27x2﹣27x+27x2﹣27,=﹣81x﹣2726.解:(1)﹣;(2)原式=1﹣+﹣++…+﹣=1﹣= 27.解:(1)∵第n个数是(﹣1)n,∴第7个,第8个,第9个数分别是﹣,,﹣.(2),最后与0越来越接近28.解:通过图案观察可知,当n=1时,点的个数是12=1;当n=2时,点的个数是22=4;当n=3时,点的个数是32=9;当n=4时,点的个数是42=16,…∴第n个正方形点阵中有n2个点,2(1)第4个图案火柴有3×4+1=13;第6个图案中火柴有3×6+1=19;(2)当n=1时,火柴的根数是3×1+1=4;当n=2时,火柴的根数是3×2+1=7;当n=3时,火柴的根数是3×3+1=10;所以第n个图形中火柴有3n+1.(3)当n=2008时,3n+1=3×2008+1=602530.解:(1)在第1个图中,共有白色瓷砖1×(1+1)=2块,(2)在第2个图中,共有白色瓷砖2×(2+1)=6块,(3)在第3个图中,共有白色瓷砖3×(3+1)=12块,(4)在第10个图中,共有白色瓷砖10×(10+1)=110块,(5)在第n个图中,共有白色瓷砖n(n+1)块。
代数式 苏科版数学八年级上册课时练习(含答案)

3.2 代数式一、选择题1.用式子表示“x的2倍与y的和的平方”是()A.(2x+y)2B.2x+y2C.2x2+y2D.x(2+y)22.买单价为a元/支的体温计n支,付费b元,则应找回的钱数是( )A.(b-a)元B.(b-n)元C.(na-b)元D.(b-na)元3.某校组织若干师生到恩施大峡谷进行社会实践活动.若学校租用45座的客车x辆,则余下20人无座位;若租用60座的客车,则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是( )A.200-60xB.140-15xC.200-15xD.140-60x4.下图中表示阴影部分面积的代数式是)A.ab+bcB.c(b-d)+d(a-c)C.ad+c(b-d)D.ab-cd5.我国启动“家电下乡”工程,国家对购买家电补贴13%.若某种品牌彩电每台售价a 元,则购买时国家需要补贴( )A.a元B.13%a元C.(1-13%)a元D.(1+13%)a元6.某超市销售一批商品,若零售价为每件a元,获利25%,则每件商品的进价应为()A.25%a元B.(1 - 25%)a元C.(1+25%)a元D.a1+25%元7.两列火车都从A地驶向B地.已知甲车的速度是x千米/时,乙车的速度是y千米/时,经过3小时,乙车距离B地5千米,此刻甲车距离B地( )A.[3( - x+y) - 5]千米B.[3(x+y) - 5]千米C.[3( - x+y)+5]千米D.[3(x+y)+5]千米8.已知一个三位数,百位上的数字为a,十位上的数字为b,个位上的数字为c,则这个三位数可表示成()A.abcB.a+b+cC.100a+10b+cD.100c+10b+a9.下列语句正确的是()A.1+a不是一个代数式B.0是代数式C.S=πr2是一个代数式D.单独一个字母a不是代数式10.下列代数式的意义表示错误的是()A.2x+3y表示2x与3y的和B.表示5x除以2y所得的商C.9﹣y表示9减去y的所得的差D.a2+b2表示a与b和的平方11.有一两位数,其十位数字为a,个位数字为b,将两个数颠倒,得到一个新的两位数,那么这个新两位数十位上的数字与个位数字的和与这个新两位数的积用代数式表示( )A.ba(a+b)B.(a+b)(b+a)C.(a+b)(10a+b)D.(a+b)(10b+a)12.一根绳子弯曲成如图3-2的形状,当用剪刀沿图中的虚线a把绳子剪断时,绳子被剪为5段;当用剪刀沿图中的虚线b(b∥a)把绳子再剪一次时,绳子就被剪成9段.若用剪刀在虚线a,b之间把绳子再剪(n-2)次(剪刀的方向与a平行),这样一共剪n 次时绳子的段数是( )A.4n+1B.4n+2C.4n+3D.4n+5二、填空题13.“数a的2倍与10的和”用代数式表示为________.14.原价为a元的书包,现按8折出售,则售价为元.15.铅笔每支m元,小明用10元钱买了n支铅笔后,还剩下元.16.一件羊毛衫标价a元,如果按标价的8折出售,那么这件羊毛衫的售价为______元.如果按8折的售价是a元,那么这件羊毛衫的原价是_________元.17.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,..….按此规律,那么请你推测第n组应该有种子数是________粒.18.下图为手的示意图,在各个手指间标记字母A、B、C、D.请你按图中箭头所指方向(即A→B→C→D→C→B→A→B→C→…的方式)从A开始数连续的正整数1、2、3、4、…,当数到12时,对应的字母是________;当字母C第201次出现时,恰好数到的数是________;当字母C第2n+1次出现时(n为正整数),恰好数到的数是________(用含n的代数式表示).三、解答题19.下列各式哪些是代数式?哪些不是代数式?(1)3>2;(2)a+b=5;(3)a;(4)3;(5)5+4﹣1;(6)m米;(7)5x﹣3y20.某超市今年第一季度的营业额为m万元,预计本年度每季度比上一季度的营业额增长p%.请你完成下列问题:(1)用代数式分别表示第二季度、第三季度、第四季度的预计营业额;(2)当m=10,p=15时,求出本年度预计营业总额(结果精确到0.1万元).21.一种蔬菜x千克,不加工直接出售每千克可卖y元;如果经过加工重量减少了20%,价格增加了40%,问:(1)x千克这种蔬菜加工后可卖多少钱?(2)如果这种蔬菜1000千克,不加工直接出售每千克可卖1.50元,问加工后原1000千克这种蔬菜可卖多少钱?比加工前多卖多少钱?22.如图,四边形ABCD与四边形CEFG是两个边长分别为a、b的正方形.(1)用a、b的代数式表示三角形BGF的面积;(2)当a=4cm,b=6cm时,求阴影部分的面积.23.一个花坛的形状如图所示,它的两端是半径相等的半圆,求:(1)花坛的周长l;(2)花坛的面积S;(3)若a=8m,r=5m,求此时花坛的周长及面积(π取3.14).参考答案1.A2.D3.C4.C5.B6.D7.C8.C9.B10.D11.D12.A13.答案为:2a+1014.答案为:a.15.答案为:(10-mn) ;16.答案为:0.8a,5a417.答案为:2n+118.答案为:B,603,6n+319.解:(1)、(2)中的“>”、“=”它们不是运算符号,因此(1)、(2)不是代数式.(3)、(4)中a、3是代数式,因为单个数字和字母是代数式.(5)中是加减运算符号把5、4、1连接起来,因此是代数式.(6)m米含有单位名称,故不是代数式.(7)5x﹣3y中由乘、减两种运算联起5、x、3、y,因此是代数式. 答:代数式有(3)(4)(5)(7);(1)(2)(6)不是代数式.20.解:(1)第二季度预计营业额:m(1+p%)万元;第三季度预计营业额:m(1+p%)2万元;第四季度预计营业额:m(1+p%)3万元.(2)49.9万元.21.解:(1)x千克这种蔬菜加工后重量为x(1﹣20%)千克,价格为y(1+40%)元.x千克这种蔬菜加工后可卖x(1﹣20%)•y(1+40%)=1.12xy元.(2)加工后可卖1.12×1000×1.5=1680元,1.12×1000×1.5﹣1000×1.5=180(元)比加工前多卖180元.22.解:23.解:(1)l=2πr+2a.(2)S=πr2+2ar.(3)当a=8m,r=5m时,l=2π×5+2×8=10π+16≈47.4(m),S=π×52+2×8×5=25π+80≈158.5(m2).。
代数式练习题及答案

代数式练习题及答案代数式练习题及答案代数是数学中的一个重要分支,它研究的是数的运算和代数式的性质。
代数式是由数、字母和运算符号组成的表达式,它可以用来表示数的关系和运算。
在学习代数的过程中,练习题是必不可少的一环,通过解答练习题,可以帮助我们巩固知识,提高解题能力。
本文将介绍一些常见的代数式练习题及其答案。
一、简单的代数式求值题1. 求代数式a + b + c,其中a = 2,b = 3,c = 4。
答案:a + b + c = 2 + 3 + 4 = 9。
2. 求代数式3a - 2b,其中a = 5,b = 7。
答案:3a - 2b = 3 × 5 - 2 × 7 = 15 - 14 = 1。
3. 求代数式(a + b) × c,其中a = 2,b = 3,c = 4。
答案:(a + b) × c = (2 + 3) × 4 = 5 × 4 = 20。
二、代数式的展开和化简题1. 展开代数式(x + y)^2。
答案:(x + y)^2 = x^2 + 2xy + y^2。
2. 化简代数式2x + 3x - 4x。
答案:2x + 3x - 4x = x。
3. 展开代数式(a - b)^2。
答案:(a - b)^2 = a^2 - 2ab + b^2。
三、代数式的因式分解题1. 将代数式x^2 - 4x + 4分解因式。
答案:x^2 - 4x + 4 = (x - 2)^2。
2. 将代数式x^2 - 9分解因式。
答案:x^2 - 9 = (x - 3)(x + 3)。
3. 将代数式x^2 + 4x + 4分解因式。
答案:x^2 + 4x + 4 = (x + 2)^2。
四、代数式的方程求解题1. 解方程2x + 3 = 7。
答案:2x + 3 = 7,化简得2x = 4,再除以2得x = 2。
2. 解方程3(x - 4) = 15。
答案:3(x - 4) = 15,化简得3x - 12 = 15,再加上12得3x = 27,最后除以3得x = 9。
八年级数学上册期末复习:代数式及代数方程练习题

八年级数学上册期末复习:代数式及代数方程练习题题目一:代数式简化1. 将下列代数式简化至最简形式:a) $ 2x - 3y + 5x - 2y $b) $ 3(a + 2b) - 4(5a - 3b) $c) $ 4x(x + 2y) - 3y(2x - 3y) $d) $ 2(x + y) + 3(x - y) - 2x $题目二:代数方程求解1. 解下列代数方程:a) $ 2x + 3 = 7x - 1 $b) $ 4(x + 5) = 3(x + 2) + 2x $c) $ 5(x - 1) = 3x - 2 - 2x $d) $ 2(3x - 4) + 5x = 4(6 - x) + 3 $2. 检验以下方程的解是否正确:a) 将 $ x = 4 $ 代入 $ 2x - 5 = 3 $ 中b) 将 $ x = 2 $ 代入 $ \frac{1}{2}x - 3 = -2 $ 中c) 将 $ x = -1 $ 代入 $ 3(x + 2) - 2x = 7 $ 中d) 将 $ x = 0 $ 代入 $ 4x + 3 = 10 $ 中题目三:应用题1. 某商场促销活动中,一种商品的原价为 $ x $ 元,现在打九折出售。
请列出一个代数式表示折后价格。
2. 马克购买了一些书本,每本原价为 $ y $ 元,并使用了一张满 $ z $ 元减 $ 10 $ 元的优惠券。
请写出一个代数式表示马克实际支付的金额。
3. 现在假设小明的年龄是 $ x $ 岁,三年前他的年龄是多少?4. 今天是星期五,请写出 $ x $ 天后是星期几的代数式。
以上是八年级数学上册期末复习中关于代数式及代数方程的练习题。
希望通过这些练习,加深对于代数求解的理解和掌握。
初中数学代数式求值精选练习题及答案

初中数学代数式求值精选练习题及答案1、已知3a-b+2c=7,5a+4b-3c=6,求代数式a+11b-12c的值;2、已知2m6+ m4= 3,求m的值;3、已知x2 −3x−27=0,求代数式1(x+4)2+(x+4)2的值;4、已知x,y,z为正数,且xy=28,yz=48,xz=84,求代数式x+2y+3z值;5、已知a= 2b−3,求代数式6ab+3a(2-3b)+3a+7的值;6、已知m a=2,m a+b=14,求代数式√m a + m b的值;7、已知x,y,z为整数,若x+y+z=3,x2+ y2+z2=5,求代数式x3+y3+ z3-10的值;8、已知m2-n2=12,(m+n)2= 16,求代数式8mn+9的值;9、已知x=√2+√3,求代数式x2−2√3x-4的值;10、已知m +n =-5,求代数式m2- 10n- n2的值。
参考答案1、已知3a-b+2c=7,5a+4b-3c=6,求代数式a+11b-12c的值;解:已知3a-b+2c=7将上式变换一下,得b=3a+2c-7---------------①将①代入5a+4b-3c=6,得5a+4(3a+2c-7)-3c =6整理,得17a+5c=34---------------②代数式a+11b-12c将①代入=a+11(3a+2c-7)-12c=34a+10c-77=2(17a+5c)-77将②代入=2×34-77=-92、已知2m6+ m4= 3,求m的值;解:2m6+ m4= 32(m2)3+ (m2)2= 3令m2=t,原式则为2t3 + t2 =32t3 + t2 -3 =02t3 + t2 -2-1 =0(2t3 - 2)+(t2 -1)=02(t3 -1)+(t2 -1)=02(t-1)(t2 +t+1)+(t+1)(t-1)=0 (t-1)〔2(t2 +t+1)+(t+1)〕=0(t-1)(2t2 +3t+3)=0因为2t2 +3t+3 =2(t+34)2+ 158>0所以2t2 +3t+3≠0故:只有t-1=0即t=1又m2=t所以m2=1,得m=±1故:m的值为±13、已知x2 −3x−27=0,求代数式1(x+4)2+(x+4)2解:x2 −3x−27=0x2 −3x−27−1= -1x2 −3x−28= -1(x+4)(x-7)= -1等号两边同时除以(x+4),得X -7= −1x+4等号两边同时乘以-1,得7-x = 1x+4-----------------①代数式1(x+4)2+(x+4)2=(1x+4)2+2×1x+4×(x+4)+(x+4)2-2=〔1x+4+(x+4)〕2-2将①带入,用7-x替换1x+4=〔(7−x)+(x+4)〕2-2 =(11)2-2=1094、已知x,y,z为正数,且xy=28,yz=48,xz=84,求代数式x+2y+3z值;解:xy=28-------------------①yz=48-------------------②xz=84-------------------③三个等式相乘,得(xyz)2= 28*48*84=(4*7)*(4*12)*(7*12)(xyz)2=(4∗7∗12)2因为x,y,z为正数所以xyz =4∗7∗12 -----④④÷①,得:z=12④÷②,得:x=7④÷③,得:y=4代数式x+2y+3z将x=7,y=4,z=12代入=7+2*4+3*12=515、已知a= 2b−3,求代数式6ab+3a(2-3b)+3a+7的值;解:a= 2b−3等式两边同时乘以b-3,得ab-3a=2上式变换一下,得ab=3a+2--------------①代数式6ab+3a(2-3b)+3a+7=6ab+6a-9ab+3a+7=-3ab+9a+7将①代入=-3(3a+2)+9a+7=-9a-6+9a+7=16、已知m a=2,m a+b=14,求代数式√m a + m b的值;解:m a+b=14m a×m b=14已知m a=2--------------①即:2 ×m b=14m b= 7-------------②代数式√m a + m b将①②代入=√2+7=37、已知x,y,z为整数,若x+y+z=3,x2+ y2+z2=5,求代数式x3+y3+ z3-10的值;解:因为x,y,z为整数且x2+ y2+z2=5若其中一个数为±3,它的平方为9,显然大于5所以:x,y,z只能取±2,±1, 0 -------------------①(A)设x= -2,因为x+y+z=3,所以y+z=5,这时y或z必定有一个取±3或±4或±5,不符合①,所以舍去;(B)设x= 2因为x+y+z=3,所以y+z=1即:y=1-z--------------------------②又x2+ y2+z2=5,所以y2+z2=1-------③将②代入③(1−z)2+z2=12z2-2z=0解得:z=0,或z=1对应的y=1或0整理得:{x=2y=0x=1或{x=2y=1z=0求代数式(x3+y3+ z3)-10=(23+03+ 13)-10=-1(C)设x= -1因为x+y+z=3,所以y+z=4,因为x,y,z只能取±2,±1, 0所以,这时只能是:y=z=2整理得:{x=−1 y=2 x=2求代数式(x3+y3+ z3)-10=(−13+23+ 23)-10=5(D)设x= 1因为x+y+z=3,所以y+z=2,即y=2- z又x2+ y2+z2=5,所以y2+z2=4将y=2- z代入(2−z)2+z2=4化简,得2z2-4z=0解得:z=0,或z=2对应y=2或y=0整理得:{x=1y=0x=2或{x=1y=2z=0求代数式(x3+y3+ z3)-10=(13+23+ 03)-10= -1(E)设x= 0因为x+y+z=3,所以y+z=3,即y=3- z又x2+ y2+z2=5,所以y2+z2=5将y=3- z代入(3−z)2+z2=5化简,得2z2-6z+4=0,即z2-3z+2=0即(z-2)(z-1)=0解得:z=2或z=1对应:y=1或y=2整理得:{x=0y=2x=1或{x=0y=1z=2求代数式(x3+y3+ z3)-10=(03+23+ 13)-10= -18、已知m2-n2=12,(m+n)2= 16,求代数式8mn+9的值;解:m2-n2=12(m +n)(m -n)=12两边同时平方,得(m + n)2(m−n)2=144将(m+n)2= 16代入16*(m−n)2=144(m−n)2=9等号左边展开:m2-2mn + n2=9------------①又(m+n)2= 16等号左边展开:m2+2mn + n2=16-----------②②-①,得4mn=7代数式8mn+9=2*4mn+9=2*7+9=239、已知x=√2+√3,求代数式x2−2√3x-4的值;解:x=√2+√3x= √2−√3(√2+√3)(√2−√3)= √2−√32−3=√2−√3−1=√3-√2--------------①x2 = (√3 − √2)2 =3+2-2√6=5-2√6---------------------②代数式x2−2√3x−4将①②代入=(5-2√6)-2√3(√3-√2)+4=5-2√6-6+2√6+4=310、已知m +n =-5,求代数式m2- 10n- n2的值。
初中数学《代数式求值》练习及答案

初中《代数式求值》精选练习题及答案根据已知,求代数式的值:,求代数式(x+1)(x-1)的值;1、已知:x=3+2、已知2+1=x,求代数式1001-1000的值;3、已知m=349+356+364,求代数式m-12的值;4、已知2=21+2-1,求代数式2024+−2024的值;5、已知t≠0,且1-t=1,求代数式3+22+3003的值;6、已知92+30x+23=0,求代数式(3x+4)2+1(3x+4)2的值;7、已知2-13m=n,2-13n=m,求代数式2+2+1的值;8、已知2t+2=3,求代数式6-24的值;9、已知32+5m-11=0,求代数式(4m+7)(2m-5)+m(m+21)+3的值;10、已知x+3=2,求代数式42-〔6x-(5x-8)-2〕+3x-〔5x-2(2x-1)〕的值。
参考答案1、已知:x=3+,求代数式(x+1)(x-1)的值;解:已知x=3+=3+那么2=2=163----------①代数式(x+1)(x-1)=2-1将①代入=163-1=1332、已知2+1=x,求代数式1001-1000的值;解:已知2+1=x变换一下,得2-x=-1----------①再变换,得2=x-1------------②又3=2·x将②代入3=(x-1)·x=2-x将①代入故:3=-1------------③代数式1001-1000=999+2-999+1=999·2-999·x=999(2-x)将①代入=999·(-1)=-999=-(3)333将③代入=-(−1)333=-(-1)=13、已知m =349+356+364,求代数式m -12的值;解:m =349+356+364m=(37)2+3738+(38)2-------------------①将①等号两边同时取分母为1,得1等号右边分子分母同时乘以3837,得11=)3(33837=8−738−37=138−37等号两边同时取倒数1=38-37故:12=(37)2-23738+(38)2-----------②由①-②,得m -12=33738=337·2=6374、已知2=21+2-1,求代数式2024+−2024的值;解:已知2=21+2-1变换一下,得2+1=21+2等号两边同时平方,得4+22+1=2(1+2)4+22+1=2+22化简,得4=1代数式2024+−2024=4×506+4×(−506)=(a4)506+(a4)−506将4=1代入=1506+1−506=1+1=25、已知t≠0,且1-t=1,求代数式3+22+3003的值;解:已知t≠01-t=1等号两边同时乘以t,得1-2=t变换一下,得2=1-t---------------------①代数式3+22+3003=2·t+22+3003将①待入=(1-t)·t+2(1-t)+3003=t-2+2-2t+3003再将①待入=t-(1-t)+2-2t+3003=t-1+t+2-2t+3003=(t+t-2t)+(-1+2+3003)=30046、已知92+30x+23=0,求代数式(3x+4)2+1(3x+4)2的值;解:设3x+4=t则x=13(t-4)---------------①已知92+30x+23=0将①代入9−4)2+30×13(t−4)+23=0(t−4)2+10(t-4)+23=02-8t+16+10t-40+23=02+2t-1=0等号两边同时除以t,得t+2-1=0变化一下,得1-t=2等号两边同时平方,得12-2+2=4整理,得12+2=6因为3x+4=t故:(3x+4)2+1(3x+4)2=67、已知2-13m=n,2-13n=m,求代数式2+2+1的值;解:2-13m=n,2-13n=m则变换一下,得2=13m+n----------------①2=m+13n----------------②①-②,得2-2=12(m-n)(m+n)(m-n)=12(m-n)(m+n)(m-n)-12(m-n)=0(m-n)〔(m+n)-12〕=0则有:m-n=0,或(m+n)-12=0即:m=n或m+n=12(1)当m=n时已知2=13m+n2=13m+m=14m解得m=0,或m=14第一种情况:m=n=0代数式2+2+1将m=n=0代入=1=1第二种情况:m=n=14代数式2+2+1将m=n=0代入=142+142+1=393(2)当m+n=12时①+②,得2+2=14(m+n)=14×12代数式2+2+1=14×12+1=(13+1)(13−1)+1=132−1+1=138、已知2t+2=3,求代数式6-24的值;解:2t+2=3t=3−22所以:2=5−264----------------①①两边同时平方,得4=49−20616------------------------②代数式6-24=4(2-2)将①,②代入=49−206(-2)=−3×49+(−206)×(−26)+(606−986)64=93−386649、已知32+5m-11=0,求代数式(4m+7)(2m-5)+m(m+21)+3的值;解:32+5m-11=0变换一下,得32+5m=11------------①代数式(4m+7)(2m-5)+m(m+21)+3=82-20m+14m-35+2+21m+3=92+15m-32=3(32+5m)-32将①代入=3×11-32=110、已知x+3=2,求代数式42-〔6x-(5x-8)-2〕+3x-〔5x-2(2x-1)〕的值。
八年级数学代数式的运算练习题及答案

八年级数学代数式的运算练习题及答案一、简答题1. 请列举并解释三种基本的数学运算。
答:三种基本的数学运算是加法、减法和乘法。
加法是将两个或多个数合并在一起,得到它们的总和;减法是从一个数中减去另一个数,得到它们的差;乘法是将两个或多个数相乘,得到它们的积。
2. 什么是代数式?请举一个例子说明。
答:代数式是由数、字母和运算符号组成的符号表达式,可以用来表示数学关系和进行各种计算。
例如,2x + 3y 是一个代数式,其中的字母 x 和 y 代表未知数,常数 2 和 3 分别与字母相乘,并通过加号进行连接。
二、选择题从以下选项中选择正确答案:1. 下列哪个是完全展开的代数式?A. (x + y)²B. x² + 2xy + y²C. (x + y)³D. x³ + y³答:B. x² + 2xy + y²2. 下列哪个代数式与 3(x + 4) 等价?A. 3x + 4B. 3x - 4C. 3x + 12D. 3x - 12答:C. 3x + 12三、计算题请计算以下代数式的值:1. 如果 x = 3,y = 4,求解 2x² - 3y的值。
答:代入 x = 3 和 y = 4 到代数式中:2(3)² - 3(4)= 2(9) - 12= 18 - 12= 6所以,2x² - 3y 的值为 6。
2. 已知 a = 5,b = 2,求解 a² + 3ab + b²的值。
答:代入 a = 5 和 b = 2 到代数式中:5² + 3(5)(2) + 2²= 25 + 30 + 4= 59所以,a² + 3ab + b²的值为 59。
四、解答题请写出以下代数式的展开式:1. (x + 2)^2 的展开式为?答:(x + 2)^2 = x^2 + 2x + 2x + 4= x^2 + 4x + 42. (2x + 3y)^2 的展开式为?答:(2x + 3y)^2 = (2x)^2 + 2(2x)(3y) + (3y)^2 = 4x^2 + 12xy + 9y^2五、解答题请将下列代数式简化到最简形式:1. 2x + 3x - 5x + 4x答:2x + 3x - 5x + 4x = (2 + 3 - 5 + 4)x= 4x所以,2x + 3x - 5x + 4x 的最简形式为 4x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二上册数学代数式练习题及答案
一、填空题
1. 已知a = 3 ,b = 5 ,求(a + b)²的值。
解:(a + b)² = (3 + 5)² = 64。
2. 如果x = -4 ,求2x² + (x - 2)² + 3x的值。
解:2x² + (x - 2)² + 3x = 2(-4)² + (-4 - 2)² + 3(-4) = 16 + 36 - 12 - 12 - 12 = 16。
3. 若3(x + 4) - 2(x - 1) = 2x + 9 ,求x 的值。
解:3(x + 4) - 2(x - 1) = 2x + 9
化简得:3x + 12 - 2x + 2 = 2x + 9
合并同类项得:1x + 14 = 2x + 9
移项得:14 - 9 = 2x - 1x
化简得:5 = x
所以 x = 5。
二、选择题
1. 已知 x = 2 ,则 2x的值是()
A. 4
B. 2
D. -2
答案:A
2. 若 3x - 4 = 2 ,则 x 的值是()
A. 1
B. 2
C. 3
D. 4
答案:B
三、解方程
1. 方程2x - 3 = 7的解为多少?
解:
2x - 3 = 7
2x = 7 + 3
2x = 10
x = 5
所以,方程2x - 3 = 7的解为 x = 5。
2. 方程3(x - 2) + 4 = 16的解为多少?
3(x - 2) + 4 = 16
3x - 6 + 4 = 16
3x - 2 = 16
3x = 16 + 2
3x = 18
x = 6
所以,方程3(x - 2) + 4 = 16的解为 x = 6。
四、应用题
1. 小明现在的年龄是x岁,5年前的年龄是(x - 5)岁。
如果小明的年龄是18岁,那么5年前小明几岁?
解:
设小明5年前的年龄为a岁,则由题意可得:
x - 5 = 18 - 5
x - 5 = 13
x = 13 + 5
x = 18
所以,小明5年前的年龄是 18 - 5 = 13岁。
2. 现在有一根绳子长12米,小明需要将绳子等分成4段。
第一段
比第二段多2米,第三段比第二段多3米,第四段比第三段多4米。
请问每段绳子各有多长?
解:
设第二段的长度为x米,则根据题意可得:
第一段 = 第二段 + 2
第三段 = 第二段 + 3
第四段 = 第三段 + 4
根据等式可得:第一段 + 第二段 + 第三段 + 第四段 = 12
将等式代入,得:
(第二段 + 2)+ 第二段 + (第二段 + 3) + (第二段 + 3 + 4) = 12化简,得:
4 * 第二段 + 12 = 12
4 * 第二段 = 0
第二段 = 0
所以,第二段的长度为0米。
根据题意,第一段比第二段多2米,
第三段比第二段多3米,第四段比第三段多4米,得到各段的长度为:第一段 = 0 + 2 = 2米
第二段 = 0米
第三段 = 0 + 3 = 3米
第四段 = 3 + 4 = 7米
所以,每段绳子的长度分别为2米、0米、3米、7米。
以上是初二上册数学代数式练习题及答案的内容。
通过解答填空题、选择题、解方程题和应用题,我们可以加深对代数式的理解和应用。
希望本文对您的学习有所帮助。