2019-2020学年度最新高中数学人教A版选修4-1创新应用教学案:第一讲三相似三角形的判定-含答案

合集下载

高中数学人教A版选修4-1学案创新应用第一讲 知识归纳与达标验收 Word版含解析

高中数学人教A版选修4-1学案创新应用第一讲 知识归纳与达标验收 Word版含解析

[对应学生用书]近两年高考中,由于各地的要求不同,所以试题的呈现形式也不同.但都主要考查相似三角形的判定与性质,射影定理,平行线分线段成比例定理;一般试题难度不大,解题中要注意观察图形特点,巧添辅助线对解题可起到事半功倍的效果.在使用平行线分线段成比例定理及其推论时,一定要搞清有关线段或边的对应关系,切忌搞错比例关系..如图,在梯形中,∥,=,=,,分别为,上的点,且=,∥,则梯形与梯形的面积比为.解析:由=,=,=,得=(+),∴是梯形的中位线,则梯形与梯形有相同的高,设为,于是两梯形的面积比为(+)∶(+)=∶.答案:∶.如图,圆上一点在直径上的射影为,点在半径上的射影为.若=,则的值为.解析:连接,,则∠=°.设=,则=,于是=,=.如图,由射影定理得=·=,则=.在△中,===.则===,=-=-=.因此==.答案:[对应学生用书]交的直线上截得的线段所呈现的规律,主要用来证明比例式成立、证明直线平行、计算线段的长度,也可以作为计算某些图形的周长或面积的重要方法,其中,平行线等分线段定理是线段的比为的特例.[例]如图,在△中,∥,∥.求证:∥.[证明]∵∥,∴=.∵∥,∴=.∴·=·=·.∴=.∴∥.[例] 如图,直线分别交△的边,,于点,,,且=,=,试求.[解]作∥交于点,并作∥交于点,由平行截割定理,知=,=,两式相乘,得·=·,即=·.又由=,得=,由=,得=,所以=×=.角关系.其应用非常广泛,涉及到多种题型,可用来计算线段、角的大小,也可用来证明线段、角之间的关系,还可以证明直线之间的位置关系.其中,三角形全等是三角形相似的特殊情况.[例]如图所示,、是△的两条高线,在上取一点,使=,再从点引的平行线与交于点.求证:=.[证明]∵、是△的两条高线,∴∠=∠=°.又∠=∠,∴△∽△.∴=.。

2019-2020学年度高中数学人教A版选修1-2创新应用教学案:第一章章末小结与测评-含答案

2019-2020学年度高中数学人教A版选修1-2创新应用教学案:第一章章末小结与测评-含答案

——教学资料参考参考范本——2019-2020学年度高中数学人教A版选修1-2创新应用教学案:第一章章末小结与测评-含答案______年______月______日____________________部门20xx最新高中数学人教A版选修1-2创新应用教学案:第一章章末小结与测评-含答案[典例1] 以下是某地收集到的新房屋的销售价格y和房屋的面积x的数据:房屋面积x/m211511080135105销售价格y/万元24.821.618.429.222(1)画出数据对应的散点图;(2)若线性相关,求线性回归方程;(3)根据(2)的结果估计当房屋面积为150 m2时的销售价格.解:(1)数据对应的散点图如图所示.(2)由散点图知y与x具有线性相关关系.由表中数据知=i=109,y=i=23.2,=60 975,iyi=12 952.设所求回归直线方程为=x+,则=≈0.196 2,=-≈1.814 2,故所求回归直线方程为=0.196 2x+1.814 2.(3)根据(2),当x=150时,销售价格的估计值为=0.1962×150+1.814 2=31.244 2(万元).[对点训练]1.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份20xx20xx20xx20xx20xx时间代号t 1234 5储蓄存款y(千亿元)567810(1)求y关于t的回归方程=t+;(2)用所求回归方程预测该地区20xx年(t=6)的人民币储蓄存款.附:回归方程=t+中,=,=- .解:(1)列表计算如下:i t i y i t2i t i y i1151 5226412337921448163255102550∑153655120这里n=5,=i==3,=i==7.2,又ltt=-n2=55-5×32=10,lty=iyi-n =120-5×3×7.2=12,从而===1.2,=-=7.2-1.2×3=3.6,故所求回归方程为=1.2t+3.6.(2)将t=6代入回归方程可预测该地区20xx年的人民币储蓄存款为=1.2×6+3.6=10.8(千亿元).对于建立的回归模型,我们必须对模型的拟合效果进行分析,也就是对利用回归模型解决实际问题的效果进行评价.一方面可以对比残差或残差平方和的大小,同时观察残差图,进行残差分析;另一方面也可以研究数据的R2(相关系数r).对模型拟合效果的分析能够帮助我们利用最优化的模型来解决实际问题.[典例2] 在研究弹簧伸长长度y(cm)与拉力x(N)的关系时,对不同拉力的6根弹簧进行测量,测得如下表中的数据:x/N51015202530y/cm7.258.128.959.9010.911.8若依据散点图及最小二乘法求出的回归直线方程为=0.18x+6.34,求R2,并结合残差说明拟合效果.解:列表求值如下:x i51015202530y i7.258.128.959.9010.911.8x i y i36.2581.2134.25198272.5354x2i25100225400625900y i-y^i0.01-0.02-0.09-0.040.060.06y i-y-2.24-1.37-0.540.41 1.41 2.31 x=17.5,≈9.49,iyi=1 076.2,=2 275,(yi-i)2=0.017 4,(yi-)2=14.678 4.∴R2=1-≈0.998 81,回归模型拟合效果较好.由表中数据可以看出残差比较均匀地落在宽度不超过0.15的狭窄的水平带状区域中,说明选用的线性回归模型的精度较高.[对点训练]2.从某大学中随机选取5名女大学生,其身高和体重数据如下表所示:编号1234 5身高x/cm165165157170175体重y/kg4857505464甲、乙两位同学在计算根据女大学生的身高预报体重的回归方程时,分别得到以下回归模型:甲:=0.75x -70;乙:=0.76x -71.试依据R2判定哪一个模型的拟合效果较好?解:对甲模型,yi -i 与yi -的值如下表:y i -y ^i -5.75 3.25 2.25 -3.5 2.75 y i -y-6.62.4-4.6-0.69.4所以(yi -i)2=(-5.75)2+3.252+2.252+(-3.5)2+2.752=68.5,∑i =15(yi -)2=(-6.6)2+2.42+(-4.6)2+(-0.6)2+9.42=159.2.此时R2=1-≈0.57.对乙模型,yi -i 与yi -的值如下表:y i -y ^i -6.4 2.6 1.68 -4.2 2 y i -y-6.62.4-4.6-0.69.4所以(yi -i)2=(-6.4)2+2.62+1.682+(-4.2)2+22≈72.2,∑i =15(yi -)2=(-6.6)2+2.42+(-4.6)2+(-0.6)2+9.42=159.2.此时R2=1-≈0.55.因为0.57>0.55,所以甲模型的拟合效果较好.独立性检验就是根据采集的样本数据,利用公式求出随机变量K2的观测值k ,通过比较k 与临界值k0的大小来确定两个分类变量是否有关系的方法.[典例3] 户外运动已经成为一种时尚运动,某单位为了了解员工喜欢户外运动是否与性别有关,决定从本单位全体650人中采用分层抽样的办法抽取50人进行问卷调查,得到了如下列联表:喜欢户外运动不喜欢户外运动总计男性5女性10总计50已知在这50人中随机抽取1人抽到喜欢户外运动的员工的概率是.(1)请将上面的列联表补充完整;(2)求该公司男、女员工各多少人;(3)在犯错误的概率不超过0.005的前提下能否认为喜欢户外运动与性别有关?并说明你的理由.下面的临界值表仅供参考:P(K2≥k0)0.150.100.050.0250.0100.0050.001 k0 2.072 2.706 3.841 5.024 6.6357.87910.828 参考公式:K2=,其中n=a+b+c+d解:(1)因为在全部50人中随机抽取1人抽到喜欢户外运动的员工的概率是,所以喜欢户外运动的男女员工共30人,其中男员工20人,列联表补充如下:喜欢户外运动不喜欢户外运动总计男性20525 女性101525 总计302050(2)该公司男员工人数为25÷50×650=325(人),则女员工有325人.(3)K2的观测值k=≈8.333>7.879,所以在犯错误的概率不超过0.005的前提下认为喜欢户外运动与性别有关.[对点训练]3.吃零食是中学生中普遍存在的现象,吃零食对学生身体发育有诸多不利影响,影响学生的健康成长.下表是性别与吃零食的列联表:男女总计喜欢吃零食51217不喜欢吃零食402868总计454085请问喜欢吃零食与性别是否有关?解:k=,把相关数据代入公式,得k=错误!≈4.722>3.841.因此,在犯错误的概率不超过0.05的前提下,可以认为“喜欢吃零食与性别有关”.(时间:120分钟,满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.有下列关系:①人的年龄与他拥有的财富之间的关系;②曲线上的点与该点的坐标之间的关系;③苹果的产量与气候之间的关系;④森林中的同一种树木,其横断面直径与高度之间的关系,其中有相关关系的是( )A.①②③ B.①②C.②③ D.①③④解析:选D 曲线上的点与该点的坐标之间是确定关系——函数关系,故②不正确.其余均为相关关系.2.对于回归分析,下列说法中错误的是( ) A.在回归分析中,若变量间的关系是非确定性关系,则因变量不能由自变量唯一确定B.相关系数可以是正的也可以是负的C.回归分析中,如果R2=1,说明变量x与y之间是完全线性相关D.样本相关系数r∈(-∞,+∞)解析:选D 在回归分析中,样本相关系数r的范围是|r|≤1,故选D. 3.在一次调查后,根据所得数据绘制成如图所示的等高条形图,则( )A.两个分类变量关系较弱B.两个分类变量无关系C.两个分类变量关系较强D.无法判断解析:选C 从条形图中可以看出,在x1中y1比重明显大于x2中y1的比重,所以两个分类变量的关系较强.4.设两个变量x和y之间具有线性相关关系,它们的相关系数是r,y关于x的回归直线的斜率是b,纵轴上的截距是a,那么必有( )A.b与r的符号相同 B.a与r的符号相同C.b与r的符号相反 D.a与r的符号相反解析:选A 因为b>0时,两变量正相关,此时r>0;b<0时,两变量负相关,此时r<0. 5.下表显示出样本中变量y随变量x变化的一组数据,由此判断它最可能是( ) x45678910y14181920232528A.线性函数模型 B.二次函数模型C.指数函数模型 D.对数函数模型解析:选A 画出散点图(图略)可以得到这些样本点在某一条直线上或该直线附近,故最可能是线性函数模型.6.下表是某厂1~4月份用水量(单位:百吨)的一组数据:月份x1234用水量y 4.543 2.5由散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归方程是=-0.7x+,则=( )A.10.5 B.5.15 C.5.2 D.5.25解析:选 D 样本点的中心为(2.5,3.5),将其代入线性回归方程可解得=5.25.7.在研究吸烟与患肺癌的关系中,通过收集数据并整理、分析,得到“吸烟与患肺癌有关”的结论,并且有99%的把握认为这个结论成立.下列说法正确的个数是( )①在100个吸烟者中至少有99个人患肺癌;②如果一个人吸烟,那么这个人有99%的概率患肺癌;③在100个吸烟者中一定有患肺癌的人;④在100个吸烟者中可能一个患肺癌的人也没有.A.4 B.3 C.2 D.1解析:选 D 有99%的把握认为“吸烟与患肺癌有关”,指的是“吸烟与患肺癌有关”这个结论成立的可能性或者可信程度有99%,并不表明在100个吸烟者中至少有99个人患肺癌,也不能说如果一个人吸烟,那么这个人就有99%的概率患肺癌;更不能说在100个吸烟者中一定有患肺癌的人,反而有可能在100个吸烟者中,一个患肺癌的人也没有.故正确的说法仅有④,选D.8.下表是某小卖部一周卖出热茶的杯数与当天气温的对比表:气温(℃)1813104-1杯数2434395163若热茶杯数y与气温x近似地满足线性关系,则其关系式最接近的是( )A.=x+6B.=x+42C.=-2x+60D.=-3x+78解析:选C 由表格可知,气温与杯数呈负相关关系.把x=4代入y=-2x+60得y=52,=52-51=1.把x=4代入y=-3x+78得y=66,=66-51=15.故应选C.9.如图,5个(x,y)数据,去掉D(3,10)后,下列说法错误的是( )A.相关系数r变大B.残差平方和变大C.相关指数R2变大D.解释变量x与预报变量y的相关性变强解析:选B 由散点图知,去掉D后,x与y的相关性变强,且为正相关,所以r变大,R2变大,残差平方和变小.10.根据一位母亲记录儿子3~9岁的身高数据,建立儿子身高(单位:cm)对年龄(单位:岁)的线性回归方程为=7.19x+73.93,若用此方程预测儿子10岁时的身高,有关叙述正确的是( )A.身高一定为145.83 cmB.身高大于145.83 cmC.身高小于145.83 cmD.身高在145.83 cm左右解析:选D 用线性回归方程预测的不是精确值,而是估计值.当x=10时,y=145.83,只能说身高在145.83 cm左右.11.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:作文成绩优秀作文成绩一般总计课外阅读量较221032大课外阅读量一82028般总计303060由以上数据,计算得到K2的观测值k≈9.643,根据临界值表,以下说法正确的是( ) A.没有充足的理由认为课外阅读量大与作文成绩优秀有关B.有0.5%的把握认为课外阅读量大与作文成绩优秀有关C.有99.9%的把握认为课外阅读量大与作文成绩优秀有关D.有99.5%的把握认为课外阅读量大与作文成绩优秀有关解析:选 D 根据临界值表,9.643>7.879,在犯错误的概率不超过0.005的前提下,认为课外阅读量大与作文成绩优秀有关,即有99.5%的把握认为课外阅读量大与作文成绩优秀有关.12.两个分类变量X和Y,值域分别为{x1,x2}和{y1,y2},其样本频数分别是a=10,b=21,c+d=35.若X与Y有关系的可信程度不小于97.5%,则c等于( )A.3 B.4 C.5 D.6附:P(K2≥k0)0.050.025k0 3.841 5.024解析:选A 列2×2列联表如下:x1x2总计y1102131y2 c d 35总计10+c 21+d 66故K2的观测值k=≥5.024.把选项A,B,C,D代入验证可知选A.二、填空题(本大题共14小题,每小题5分,共20分,把答案填在题中横线上)13.下面是一个2×2列联表:y1y2总计x1 a 2173x282533总计 b 46则表中b-a=________.解析:b-a=8.答案:814.已知样本容量为11,计算得i=510,i=214,回归方程为=0.3x+,则≈________,≈________.(精确到0.01)解析:由题意得=i=≈46.36,=i=,因为=0.3+,所以=0.3×+,可得≈5.55.答案:46.36 5.5515.某单位为了了解用电量y(度)与气温x(℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表,由表中数据得线性回归方程=x+,其中=-2.现预测当气温为-4℃时,用电量的度数约为________.气温x(℃)181310-1用电量y(度)24343864解析:由题意可知=(18+13+10-1)=10,y=(24+34+38+64)=40,=-2.又回归直线=-2x+过点(10,40),故=60,所以当x=-4时,=-2×(-4)+60=68.答案:6816.某部门通过随机调查89名工作人员的休闲方式是读书还是健身,得到的数据如下表:读书健身总计女243155男82634总计325789在犯错误的概率不超过________的前提下性别与休闲方式有关系.解析:由列联表中的数据,得K2的观测值为k=≈3.689>2.706,因此,在犯错误的概率不超过0.10的前提下认为性别与休闲方式有关系.答案:0.10三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题10分)x与y有如下五组数据,x 123510y 10542 2试分析x与y之间是否具有线性相关关系.若有,求出回归直线方程;若没有,说明理由.解:作出散点图,如图所示:由散点图可以看出,x与y不具有线性相关关系.18.(本小题12分)有两个分类变量x与y,其一组观测值如下面的2×2列联表所示:y1y2x1 a 20-ax215-a 30+a其中a,15-a均为大于5的整数,则a取何值时,在犯错误的概率不超过0.1的前提下认为x与y之间有关系?解:查表可知,要使在犯错误的概率不超过0.1的前提下认为x 与y之间有关系,则k≥2.706,而k=错误!==.由k≥2.706得a≥7.19或a≤2.04.又a>5且15-a>5,a∈Z,解得a=8或9,故a为8或9时,在犯错误的概率不超过0.1的前提下认为x与y 之间有关系.19.(本小题 12分)某学校高三年级有学生1000名,经调查,其中750名同学经常参加体育锻炼(称为A类同学),另外250名同学不经常参加体育锻炼(称为B类同学),现用分层抽样方法(按A类、B类分两层)从该年级的学生中共抽取100名同学,如果以身高达165 cm 作为达标的标准,对抽取的100名学生,得到以下列联表:身高达标身高不达标总计经常参加体育锻炼40不经常参加体育锻炼15总计100(1)完成上表;(2)能否在犯错误的概率不超过0.05的前提下认为经常参加体育锻炼与身高达标有关系(K2的观测值精确到0.001)?解:(1)填写列联表如下:身高达标身高不达标总计经常参加体育锻炼403575不经常参加体育锻101525炼总计5050100(2)由列联表中的数据,得K2的观测值为k=≈1.333<3.841.所以不能在犯错误的概率不超过0.05的前提下认为经常参加体育锻炼与身高达标有关系.20.(本小题12分)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了4次试验,得到数据如下:。

人教A版2019高中数学选修4-1教学案:第一讲 一 平行线等分线段定理_含答案

人教A版2019高中数学选修4-1教学案:第一讲 一 平行线等分线段定理_含答案

一平行线等分线段定理[对应学生用书P1]1.平行线等分线段定理(1)如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.(2)用符号语言表述:已知a ∥b ∥c ,直线m 、n 分别与a 、b 、c 交于点A 、B 、C 和A ′、B ′、C ′(如图),如果AB =BC ,那么A ′B ′=B ′C ′.[说明](1)定理中的平行线组是指每相邻的两条距离都相等的一组特殊的平行线;它是由三条或三条以上的平行线组成的.(2)“相等线段”是指在“同一条直线”上截得的线段相等. 2.平行线等分线段定理的推论[对应学生用书P1][例1] 已知如图,直线l 1∥l 2∥l 3∥l 4,l ,l ′分别交l 1,l 2,l 3,l 4于A ,B ,C ,D ,A 1,B 1,C 1,D 1,AB =BC =CD .求证:A 1B 1=B 1C 1=C 1D 1.[思路点拨] 直接利用平行线等分线段定理即可. [证明] ∵直线l 1∥l 2∥l 3,且AB =BC , ∴A 1B 1=B 1C 1.∵直线l 2∥l 3∥l 4且BC =CD , ∴B 1C 1=C 1D 1, ∴A 1B 1=B 1C 1=C 1D 1.平行线等分线段定理的应用非常广泛,在运用的过程中要注意其所截线段的确定与对应,分析存在相等关系的线段,并会运用相等线段来进行相关的计算与证明.1.已知:如图,l1∥l 2∥l 3,那么下列结论中错误的是( ) A .由AB =BC 可得FG =GH B .由AB =BC 可得OB =OG C .由CE =2CD 可得CA =2BC D .由GH =12FH 可得CD =DE解析:OB 、OG 不是一条直线被平行线组截得的线段. 答案:B2.如图,已知线段AB ,求作线段AB 的五等分点.作法:如图,(1)作射线AC ;(2)在射线AC 上依任意长顺次截取AD =DE =EF =FG =GH ;(3)连接HB ;(4)过点G ,F ,E ,D 分别作HB 的平行线GA 1,F A 2,EA 3,DA 4,分别交AB 于点A 1,A 2,A 3,A 4.则A 1,A 2,A 3,A 4就是所求的五等分点. 证明:过点A 作MN ∥HB , 则MN ∥DA 4∥EA 3∥F A 2∥GA 1∥HB . 又AD =DE =EF =FG =GH ,∴AA 4=A 4A 3=A 3A 2=A 2A 1=A 1B (平行线等分线段定理).[例2] 交AD 的延长线于E .求证:AG =2DE .[思路点拨] AF =FC ,GF ∥EC →AG =GE →△BDG ≌△CDE →AG =2DE [证明] 在△AEC 中, ∵AF =FC ,GF ∥EC , ∴AG =GE . ∵CE ∥FB ,∴∠GBD =∠ECD ,∠BGD =∠E . 又BD =DC , ∴△BDG ≌△CDE .故DG =DE ,即GE =2DE , 因此AG =2DE .此类问题往往涉及平行线等分线段定理的推论1的运用,寻找便于证明三角形中线段相等或平行的条件,再结合三角形全等或相似的知识,达到求解的结果.3.如图,在▱ABCD 中,对角线AC 、BD 相交于O ,OE 平行于AB 交BC 于E ,AD =6,求BE 的长.解:因为四边形ABCD 是平行四边形, 所以OA =OC ,BC =AD . 又因为AB ∥DC ,OE ∥AB , 所以DC ∥OE ∥AB . 又因为AD =6,所以BE =EC =12BC =12AD =3.4.已知:AD 是BC 边上的中线,E 是AD 的中点,BE 的延长线交AC 于点F . 求证:AF =13AC .证明:如图,过D 作DG ∥BF 交AC 于G .在△BCF 中,D 是BC 的中点, DG ∥BF ,∴G 为CF 的中点.即CG =GF .在△ADG 中,E 是AD 的中点,EF ∥DG , ∴F 是AG 的中点.即AF =FG . ∴AF =13AC .[例3] 已知,如图,梯形ABCD 中,AD ∥BC ,∠ABC =90°,M 是CD的中点,求证: AM =BM .[思路点拨] 解答本题应先通过作辅助线构造推论2的应用条件. [证明] 过点M 作ME ∥BC 交AB 于点E , ∵AD ∥BC , ∴AD ∥EM ∥BC .又∵M 是CD 的中点, ∴E 是AB 的中点. ∵∠ABC =90°, ∴ME 垂直平分AB . ∴AM =BM .有梯形且存在线段中点时,常过该点作平行线,构造平行线等分线段定理的推论2的基本图形,进而进行几何证明或计算.5.若将本例中“M 是CD 的中点”与“AM =BM ”互换,那么结论是否成立?若成立,请给予证明.解:结论成立.证明如下: 过点M 作ME ⊥AB 于点E , ∵AD ∥BC ,∠ABC =90°, ∴AD ⊥AB ,BC ⊥AB . ∵ME ⊥AB ,∴ME ∥BC ∥AD . ∵AM =BM ,且ME ⊥AB ,∴E 为AB 的中点,∴M 为CD 的中点.6.已知:如图,▱ABCD 的对角线AC 、BD 交于点O ,过点A ,B ,C ,D ,O 分别作直线a 的垂线,垂足分别为A ′,B ′,C ′,D ′,O ′;求证:A ′D ′=B ′C ′.证明:∵▱ABCD 的对角线AC ,BD 交于O 点, ∴OA =OC ,OB =OD .∵AA ′⊥a ,OO ′⊥a ,CC ′⊥a , ∴AA ′∥OO ′∥CC ′.∴O ′A ′=O ′C ′. 同理:O ′D ′=O ′B ′.∴A ′D ′=B ′C ′.[对应学生用书P3]一、选择题1.梯形ABCD 中,AB ∥CD ,E ,F 分别是AD ,BC 的中点,且EF =2 cm ,则AB +CD 等于( )A .1 cmB .2 cmC .3 cmD .4 cm解析:由梯形中位线定理知EF =12(AB +CD ),∴AB +CD =4 cm. 答案:D2.如图,AD 是△ABC 的高,E 为AB 的中点,EF ⊥BC 于F ,如果DC =13BD ,那么FC 是BF 的( )A.53倍 B.43倍 C.32倍 D.23倍 解析:∵EF ⊥BC ,AD ⊥BC ,∴EF ∥AD . 又E 为AB 的中点,由推论1知F 为BD 的中点, 即BF =FD .又DC =13BD ,∴DC =23BF .∴FC =FD +DC =BF +DC =53BF .答案:A3.梯形的中位线长为15 cm ,一条对角线把中位线分成3∶2两段,那么梯形的两底长分别为( )A .12 cm 18 cmB .20 cm 10 cmC .14 cm 16 cmD .6 cm 9 cm解析:如图,设MP ∶PN =2∶3,则MP =6 cm ,PN =9 cm.∵MN 为梯形ABCD 的中位线,在△BAD 中,MP 为其中位线, ∴AD =2MP =12 cm. 同理可得BC =2PN =18 cm. 答案:A4.梯形的一腰长10 cm ,该腰和底边所形成的角为30°,中位线长为12 cm ,则此梯形的面积为( )A .30 cm 2B .40 cm 2C .50 cm 2D .60 cm 2解析:如图,过A 作AE ⊥BC ,在Rt △ABE 中,AE =AB sin 30°=5 cm.又已知梯形的中位线长为12 cm ,∴AD +BC =2×12=24(cm). ∴梯形的面积S =12(AD +BC )·AE=12×5×24=60 (cm 2). 答案:D 二、填空题5.如图所示,已知a ∥b ∥c ,直线m 、n 分别与a 、b 、c 交于点A 、B 、C 和A ′、B ′、C ′,如果AB =BC =1,A ′B ′=32,则B ′C ′=________.解析:直接利用平行线等分线段定理. 答案:326.如图,在△ABC 中,E 是AB 的中点,EF ∥BD ,EG ∥AC 交BD 于G ,CD =12AD ,若EG =2 cm ,则AC =______;若BD =10 cm ,则EF =________.解析:由E 是AB 的中点,EF ∥BD ,得EG =12AD =FD =2 cm ,结合CD =12AD ,可以得到F 、D 是AC 的三等分点, 则AC =3EG =6(cm).由EF ∥BD ,得EF =12BD =5(cm).答案:6 cm 5 cm7.如图,梯形ABCD 中,AD ∥BC ,E 为AB 的中点,EF ∥BC ,G 是BC 边上任一点,如果S △GEF =2 2 cm 2,那么梯形ABCD 的面积是________cm 2.解析:因为E 为AB 的中点,EF ∥BC , 所以EF 为梯形ABCD 的中位线, 所以EF =12(AD +BC ),且△EGF 的高是梯形ABCD 高的一半, 所以S 梯形ABCD =4S △EGF =4×2 2 =82(cm 2). 答案:8 2 三、解答题8.已知△ABC 中,D 是AB 的中点,E 是BC 的三等分点(BE >CE ),AE 、CD 交于点F . 求证:F 是CD 的中点.证明:如图,过D 作DG ∥AE 交BC 于G ,在△ABE 中,∵AD =BD ,DG ∥AE , ∴BG =GE .∵E 是BC 的三等分点, ∴BG =GE =EC .在△CDG 中,∵GE =CE ,DG ∥EF , ∴DF =CF .即F 是CD 的中点.9.如图,先把矩形纸片ABCD 对折后展开,并设折痕为MN ;再把点B 叠在折痕线上,得到Rt △AB 1E .沿着EB 1线折叠,得到△EAF .求证:△EAF 是等边三角形.证明:因为AD∥MN∥BC,AM=BM,所以B1E=B1F.又因为∠AB1E=∠B=90°,所以AE=AF,所以∠B1AE=∠B1AF.根据折叠,得∠BAE=∠B1AE,所以∠BAE=∠B1AE=∠B1AF=30°,所以∠EAF=60°,所以△EAF是等边三角形.10.已知:梯形ABCD中,AD∥BC,四边形ABDE是平行四边形,AD的延长线交EC于F.求证:EF=FC.证明:法一:如图,连接BE交AF于O,∵四边形ABDE是平行四边形,∴BO=OE.又∵AF∥BC,∴EF=FC.法二:如图,延长ED交BC于点H,∵四边形ABDE是平行四边形,∴AB∥ED,AB∥DH,AB=ED.又∵AF∥BC,∴四边形ABHD是平行四边形.∴AB=DH.∴ED=DH.∴EF=FC.法三:如图,延长EA交CB的延长线于M,∵四边形ABDE是平行四边形,∴BD∥EA,AE=BD.又AD∥BC.∴四边形AMBD是平行四边形.∴AM=BD.∴AM=AE. ∴EF=FC.。

2019-2020学年度最新高中数学人教A版选修4-5教学案:第一讲本讲知识归纳与达标验收

2019-2020学年度最新高中数学人教A版选修4-5教学案:第一讲本讲知识归纳与达标验收

2019-2020学年度最新高中数学人教A 版选修4-5教学案:第一讲本讲知识归纳与达标验收 对应学生用书P16考情分析从近两年的高考试题来看,绝对值不等式主要考查解法及简单的应用,题目难度中档偏下,着重考查学生的分类讨论思想及应用能力.解绝对值不等式的关键是去掉绝对值符号,化成不含绝对值的不等式,其一是依据绝对值的意义;其二是先令每一个绝对值等于零,找到分界点,通过讨论每一区间内的代数式的符号去掉绝对值.真题体验1.(江西高考)对任意x ,y ∈R ,|x -1|+|x |+|y -1|+|y +1|的最小值为( ) A .1 B .2 C .3D .4解析:|x -1|+|x |+|y -1|+|y +1|≥|x -1-x |+|y -1-(y +1)|=1+2=3. 答案:C2.(湖南高考)不等式|2x +1|-2|x -1|>0的解集为________. 解析:原不等式即|2x +1|>2|x -1|,两端平方后解得12x >3,即x >14.答案:⎩⎨⎧⎭⎬⎫x ⎪⎪x >143.(陕西高考)已知a ,b ,m ,n 均为正数,且a +b =1,mn =2,则(am +bn )(bm +an )的最小值为________.解析:(am +bn )(bm +an )=ab (m 2+n 2)+mn (a 2+b 2)≥2mnab +mn (a 2+b 2)=mn (a +b )2=mn =2,当且仅当m =n =2时等号成立. 答案:24.(福建高考)设不等式|x -2|<a (a ∈N +)的解集为A ,且32∈A ,12∉A .(1)求a 的值;(2)求函数f (x )=|x +a |+|x -2|的最小值.解:(1)因为32∈A ,且12∉A ,所以⎪⎪⎪⎪32-2<a ,且⎪⎪⎪⎪12-2≥a ,解得12<a ≤32.又因为a ∈N +,所以a =1.(2)因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3,当且仅当(x +1)(x -2)≤0,即-1≤x ≤2时取到等号,所以f (x )的最小值为3. 5.(江苏高考)已知实数x ,y 满足:|x +y |<13,|2x -y |<16,求证:|y |<518.解:因为3|y |=|3y |=|2(x +y )-(2x -y )|≤2|x +y |+|2x -y |,由题设知|x +y |<13,|2x -y |<16, 从而3|y |<23+16=56,所以|y |<518.对应学生用书P16利用不等式的性质判断不等式或有关结论是否成立,再就是利用不等式性质,进行数值或代数式大小的比较,常用到分类讨论的思想.[例1] “a +c >b +d ”是“a >b 且c >d ”的( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件D .既不充分也不必要条件[解析] 易得a >b 且c >d 时必有a +c >b +d .若a +c >b +d 时,则可能有a >b 且c >d . [答案] A利用基本不等式求最值问题一般有两种类型:①和为定值时, 积有最大值;②积为定值时,和有最小值,在具体应用基本不等式解题时, 一定要注意适用的范围和条件:“一正、二定、三相等”.[例2] x ,y ,z ∈R +,x -2y +3z =0,y 2xz 的最小值为________.[解析] 由x -2y +3z =0得y =x +3z2,则y 2xz =x 2+9z 2+6xz 4xz ≥6xz +6xz 4xz=3, 当且仅当x =3z 时取“=”. [答案] 3[例3] (新课标全国卷Ⅱ)设a ,b ,c 均为正数,且a +b +c =1,证明: (1)ab +bc +ca ≤13;(2)a 2b +b 2c +c 2a≥1. [证明] (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca 得a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1. 所以3(ab +bc +ca )≤1, 即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c . 所以a 2b +b 2c +c 2a ≥1.1.公式法|f (x )|>g (x )⇔f (x )>g (x )或f (x )<-g (x ); |f (x )|<g (x )⇔-g (x )<f (x )<g (x ). 2.平方法|f (x )|>|g (x )|⇔[f (x )]2>[g (x )]2. 3.零点分段法含有两个以上绝对值符号的不等式,可先求出使每个含绝对值符号的代数式值等于零的未知数的值,将这些值依次在数轴上标注出来,它们把数轴分成若干个区间,讨论每一个绝对值符号内的代数式在每一个区间上的符号,转化为不含绝对值的不等式去解.[例4] 解下列关于x 的不等式: (1)|x +1|>|x -3|; (2)|x -2|-|2x +5|>2x ; [解] (1)法一:|x +1|>|x -3|,两边平方得(x +1)2>(x -3)2,∴8x >8.∴x >1. ∴ 原不等式的解集为{x |x >1}. 法二:分段讨论:当x ≤-1时,有-x -1>-x +3,此时x ∈∅; 当-1<x ≤3时,有x +1>-x +3, 即x >1,.∴此时1<x ≤3;当x >3时,有x +1>x -3成立,∴x >3. ∴原不等式解集为{x |x >1}.(2)分段讨论:①当x <-52时,原不等式变形为2-x +2x +5>2x ,解得x <7,∴解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-52. ②当-52≤x ≤2时,原不等式变形为2-x -2x -5>2x ,解得x <-35.∴解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-52≤x <-35. ③当x >2时,原不等式变形为x -2-2x -5>2x , 解得x <-73,∴原不等式无解.综上可得,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-35.对于不等式恒成立求参数范围问题,常见类型及其解法如下: (1)分离参数法:运用“f (x )≤a ⇔f (x )max ≤a ,f (x )≥a ⇔f (x )min ≥a ”可解决恒成立中的参数范围问题. (2)更换主元法:不少含参不等式恒成立问题,若直接从主元入手非常困难或不可能时,可转换思维角度,将主元与参数互换,常可得到简捷的解法.(3)数形结合法:在研究曲线交点的恒成立问题时,若能数形结合,揭示问题所蕴含的几何背景,发挥形象思维与抽象思维各自的优势,可直观地解决问题.[例5] 设函数f (x )=|x +1|+|x -4|-a . (1)当a =1时,求函数f (x )的最小值;(2)若f (x )≥4a +1对任意的实数x 恒成立,求实数a 的取值范围.[解] (1)当a =1时,f (x )=|x +1|+|x -4|-1≥|x +1+4-x |-1≥4, ∴f (x )min =4.(2)f (x )≥4a+1对任意的实数x 恒成立⇔|x +1|+|x -4|-1≥a +4a 对任意的实数x 恒成立⇔a +4a≤4.当a <0时,上式成立; 当a >0时,a +4a≥2a ·4a=4, 当且仅当a =4a ,即a =2时上式取等号,此时a +4a ≤4成立.综上,实数a 的取值范围为(-∞,0)∪{2}.对应学生用书P47(时间:90分钟,总分120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x |x 2-5x +6≤0},集合B ={x ||2x -1|>3},则集合A ∩B 等于( ) A .{x |2≤x ≤3} B .{x |2≤x <3} C .{x |2<x ≤3}D .{x |-1<x <3}解析:A ={x |2≤x ≤3},B ={x |x >2或x <-1}. ∴A ∩B ={x |2<x ≤3|}. 答案:C2.(陕西高考)小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( )A .a <v <abB .v =ab C.ab <v <a +b 2D .v =a +b2解析:设甲、乙两地的距离为S ,则从甲地到乙地所需时间为Sa ,从乙地到甲地所需时间为S b ,又因为a <b ,所以全程的平均速度为v =2S S a +S b =2ab a +b <2ab 2ab =ab ,2ab a +b >2ab 2b =a ,即a <v <ab .答案:A3.已知|x -a |<b 的解集为{x |2<x <4},则实数a 等于( ) A .1 B .2 C .3D .4解析:由|x -a |<b 得,a -b <x <a +b ,由已知得⎩⎪⎨⎪⎧ a -b =2,a +b =4.解得⎩⎪⎨⎪⎧a =3,b =1.答案:C4.若1a <1b <0,则下列结论不.正确的是( ) A .a 2<b 2 B .ab <b 2 C.b a +a b>2 D .|a |-|b |=|a -b |解析:法一(特殊值法):令a =-1,b =-2,代入A ,B ,C ,D ,知D 不正确.法二:由1a <1b <0,得b <a <0,所以b 2>ab ,ab >a 2,故A ,B 正确.又由b a >1,a b >0,且b a ≠a b ,即b a +ab >2正确.从而A ,B ,C 均正确,对于D ,由b <a <0⇔|a |<|b |. 即|a |-|b |<0,而|a -b |≥0,故D 错. 答案:D5.函数y =|x -4|+|x -6|的最小值为( ) A .2 B. 2 C .4D .6解析:y =|x -4|+|x -6|≥|x -4+6-x |=2. 答案:A6.若a >b >c ,且a +b +c =0,则( ) A .ab >bc B .ac >bc C .ab >acD .a |b |>c |b |解析:∵a +b +c =0,a >b >c . ∴a >0,又b >c .∴ab >ac . 答案:C7.已知x +2y +3z =6,则2x +4y +8z 的最小值为( ) A .336 B .2 2 C .12D .1235 解析:∵2x >0,4y >0,8z >0,∴2x +4y +8z =2x +22y +23z ≥332x ·22y ·23z =332x +2y +3z =3×4=12. 当且仅当2x =22y =23z ,即x =2,y =1,z =23时,等号成立.答案:C8.已知x >1,y >1,且lg x +lg y =4,则lg x lg y 的最大值是( ) A .4 B .2 C .1D.14解析:由x >1,y >1,故lg x >0,lg y >0.∴4=lg x +lg y ≥2lg x lg y .∴lg x lg y ≤4,当且仅当x =y 时取等号. 答案:A9.不等式|sin x +tan x |<a 的解集为N ;不等式|sin x |+|tan x |<a 的解集为M ;则解集M 与N 的关系是( )A .N ⊆MB .M ⊆NC .M =ND .M N解析:|sin x +tan x |≤|sin x |+|tan x |,则M ⊆N (当a ≤0时,M =N =∅). 答案:B10.(安徽高考)若函数f (x )=|x +1|+|2x +a |的最小值为3,则实数a 的值为( ) A .5或8 B .-1或5 C .-1或-4D .-4或8解析:当a ≥2时,f (x )=⎩⎨⎧3x +a +1,x >-1,x +a -1,-a 2≤x ≤-1,-3x -a -1,x <-a2,如图1可知,当x =-a2时,f (x )min =f ⎝⎛⎭⎫-a 2=a 2-1 =3,可得a =8;当a <2时,f (x )=⎩⎨⎧3x +a +1,x >-a2,-x -a +1,-1≤x ≤-a 2,-3x -a -1,x <-1,如图2可知,当x =-a 2时,f (x )min =f ⎝⎛⎭⎫-a 2=-a2+1=3,可得a =-4.综上可知,答案为D.答案:D二、填空题(本大题共4个小题,每小题5分,满分20分.把正确答案填在题中横线上) 11.函数f (x )=3x +12x2(x >0)的最小值为________.解析:f (x )=3x +12x 2=3x 2+3x 2+12x 2≥333x 2·3x 2·12x 2=9,当且仅当3x 2=12x 2即x =2时取等号.答案:912.定义运算x ·y =⎩⎪⎨⎪⎧x ,x ≤y ,y ,x >y ,若|m -1|·m =|m -1|,则m 的取值范围是________.解析:依题意,有|m -1|≤m ,所以-m ≤m -1≤m ,所以m ≥12.答案:⎣⎡⎭⎫12,+∞ 13.以下三个命题: (1)若|a -b |<1,则|a |<|b |+1;(2)若a ,b ∈R ,则|a +b |-2|a |≤|a -b |; (3)若|x |<2,|y |>3,则|x y |<23.其中正确的有__________个.解析:(1)∵|a |-|b |≤|a -b |<1,∴|a |<|b |+1. ∴(1)正确.(2)∵|a +b |-2|a |=|a +b |-|2a |≤|a +b -2a |=|b -a |=|a -b |,∴(2)正确. (3)∵|x |<2,|y |>3,∴|x y |=|x ||y |<23.∴(3)正确.答案:314.设函数f (x )=|2x -1|+x +3,则f (-2)=________,若f (x )≤5,则x 的取值范围是________.解析:f (-2)=|2×(-2)-1|+(-2)+3=6. ∵|2x -1|+x +3≤5 ⇔|2x -1|≤2-x ⇔x -2≤2x -1≤2-x⇔⎩⎪⎨⎪⎧2x -1≥x -22x -1≤2-x∴-1≤x ≤1.答案:6 [-1,1]三、解答题(本大题共4小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)解不等式: |2x -1-x |<2;解:原不等式⇔⎩⎪⎨⎪⎧2x -1-x <2,2x -1-x >-2.因为2x -1-x <2⇔2x -1<x +2⇔⎩⎪⎨⎪⎧2x -1≥0,x +2≥0,2x -1<(x +2)2⇔⎩⎪⎨⎪⎧x ≥12,x 2+2x +5>0⇔x ≥12.又2x -1-x >-2⇔⎩⎪⎨⎪⎧2x -1≥0,x -2≥0,2x -1>(x -2)2.或⎩⎪⎨⎪⎧ 2x -1≥0,x -2<0. ⇔⎩⎪⎨⎪⎧x ≥2,x 2-6x +5<0或12≤x <2,⇔⎩⎨⎧x ≥2,1<x <5或12≤x <2⇔2≤x <5或12≤x <2⇔12≤x <5. 所以,原不等式组等价于⎩⎨⎧x ≥12,12≤x <5⇔12≤x <5. 因此,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪12≤x <5. 16.(本小题满分12分)(新课标全国卷Ⅰ)若a >0,b >0,且1a +1b =ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由.解:(1)由ab =1a +1b ≥2ab, 得ab ≥2,且当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,且当a =b =2时等号成立.所以a 3+b 3的最小值为4 2.(2)由(1)知,2a +3b ≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使得2a +3b =6.17.(本小题满分12分)已知|2x -3|≤1的解集为[m ,n ].(1)求m +n 的值;(2)若|x -a |<m ,求证:|x |<|a |+1.解:(1)由不等式|2x -3|≤1可化为-1≤2x -3≤1,得1≤x ≤2,∴m =1,n =2,m +n =3.(2)证明:若|x -a |<1,则|x |=|x -a +a |≤|x -a |+|a |<|a |+1.18.(本小题满分14分)已知函数f (x )=|x -2|,g (x )=-|x +3|+m .(1)解关于x 的不等式f (x )+a -1>0(a ∈R );(2)若函数f (x )的图像恒在函数g (x )图像的上方,求m 的取值范围. 解:(1)不等式f (x )+a -1>0,即|x -2|+a -1>0,当a =1时,解集为x ≠2,即(-∞,2)∪(2,+∞);当a >1时,解集为全体实数R ;当a <1时,∵|x -2|>1-a ,∴x -2>1-a 或x -2<a -1,∴x >3-a 或x <a +1,故解集为(-∞,a+1)∪(3-a,+∞).(2)f(x)的图像恒在函数g(x)图像的上方,即为|x-2|>-|x+3|+m对任意实数x恒成立,即|x-2|+|x+3|>m恒成立.又对任意实数x恒有|x-2|+|x+3|≥|(x-2)-(x+3)|=5,于是得m<5,即m的取值范围是(-∞,5).。

高中数学选修41教案

高中数学选修41教案

高中数学选修41教案高中数学选修41教案1上个学期,依据需要,学校安排我上高二数学文科,在这一学期里我从各方面严格要求自己,在教学上虚心向老老师请教,结合本校和班级同学的实际状况,针对性的开展教学工作,使工作有计划,有组织,有步骤。

经过了一学期,我对教学工作有了如下感想:一、仔细备课,做到既备同学又备教材与备教法。

上学期我依据教材资料及同学的实际状况设计课程教学,拟定教学方法,并对教学过程中遇到的问题尽可能的预先思索到,仔细写好教案。

每一课都做到“有备而去”,每堂课都在课前做好充分的预备,课后实时对该课作出小结,并仔细整理每一章节的知识要点,帮忙同学进行归纳总结。

二、加强上课技能,提高教学质量。

加强上课技能,提高教学质量是我们每一名新老师不断努力的目标。

由于应对的是文科生,基础普遍比较差,所以我主要是立足于基础,让同学学得简约,学得开心。

留意精讲精练,在课堂上讲得尽量少些,而让同学自己动口动手动脑尽量多些;同时在每一堂课上都充分思索每一个层次的同学学习需求和理解潜力,让各个层次的同学都得到提高。

三、虚心向其他老师学习,在教学上做到有疑必问。

在每个章节的学习上都上心征求其他有阅历老师的看法,学习他们的方法。

同时多听老老师的课,做到边听边学,给自己不断充电,弥补自己在教学上的不足,征求他们的看法,改善教学工作。

四、仔细批改作业、布置作业有针对性,有层次性。

作业是同学对所学知识巩固的过程。

为了做到布置作业有针对性,有层次性,我经常多方面的搜集资料,对各种辅导资料进行筛选,力求每一次练习都能让同学起到的效果。

同时对同学的作业批改实时、仔细,并分析同学的作业状况,将他们在作业过程涌现的问题实时评讲,并针对反映出的状况实时改善自己的教学方法,做到有的放矢。

然而,在确定成果、总结阅历的同时,我清晰地认识到我所获得的教学阅历还是肤浅的,在教学中存在的问题也不容忽视,也有一些困惑有待解决今后我将努力工作,上心向老老师学习以提高自己的教学水平。

人教A版2019高中数学选修4-1教学案:第一讲 四 直角三角形的射影定理_含答案

人教A版2019高中数学选修4-1教学案:第一讲 四 直角三角形的射影定理_含答案

四直角三角形的射影定理[对应学生用书P14]1.射影(1)点在直线上的正射影:从一点向一直线所引垂线的垂足,叫做这个点在这条直线上的正射影.(2)线段在直线上的正射影:线段的两个端点在这条直线上的正射影间的线段.(3)射影:点和线段的正射影简称为射影.2.射影定理(1)文字语言:直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它们在斜边上射影与斜边的比例中项.(2)图形语言:如图,在Rt△ABC中,CD为斜边AB上的高,则有CD2=AD·BD,AC2=AD·AB,BC2=BD·AB.[对应学生用书P14][例1]如图,在Rt△ABC中,CD为斜边AB上的高,若AD=2 cm,DB=6 cm,求CD,AC,BC的长.[思路点拨]在直角三角形内求线段的长度,可考虑使用勾股定理和射影定理.[解]∵CD2=AD·DB=2×6=12,∴CD=12=23(cm).∵AC2=AD·AB=2×(2+6)=16,∴AC=16=4(cm).∵BC2=BD·AB=6×(2+6)=48,∴BC=48=43(cm).故CD、AC、BC的长分别为2 3 cm,4 cm,4 3 cm.(1)在Rt△ABC中,共有AC、BC、CD、AD、BD和AB六条线段,已知其中任意两条,便可求出其余四条.(2)射影定理中每个等积式中含三条线段,若已知两条可求出第三条.1.如图,在Rt△ABC中,∠C=90°,CD是AB上的高.已知BD=4,AB=29,试求出图中其他未知线段的长.解:由射影定理,得BC2=BD·AB,∴BC=BD·AB=4×29=229.又∵AD=AB-BD=29-4=25.且AC2=AB2-BC2,∴AC=AB2-BC2=292-4×29=529.∵CD2=AD·BD,∴CD=AD·BD=25×4=10.2.已知:CD是直角三角形ABC斜边AB上的高,如果两直角边AC,BC的长度比为AC∶BC=3∶4.求:(1)AD∶BD的值;(2)若AB=25 cm,求CD的长.解:(1)∵AC2=AD·AB,BC2=BD·AB,∴AD·AB BD·AB=AC2BC2.∴ADBD=(ACBC)2=(34)2=916.(2)∵AB=25 cm,AD∶BD=9∶16,∴AD=99+16×25=9(cm),BD=169+16×25=16(cm).∴CD=AD·BD=9×16=12(cm).[例2]DG⊥BE,F、G分别为垂足.求证:AF·AC=BG·BE.[思路点拨]先将图分解成两个基本图形(1)(2),再在简单的图形中利用射影定理证明所要的结论.[证明]∵CD垂直平分AB,∴△ACD和△BDE均为直角三角形,且AD=BD.又∵DF⊥AC,DG⊥BE,∴AF·AC=AD2,BG·BE=DB2.∵AD2=DB2,∴AF·AC=BG·BE.将原图分成两部分来看,就可以分别在两个三角形中运用射影定理,实现了沟通两个比例式的目的.在求解此类问题时,关键就是把握基本图形,从所给图形中分离出基本图形进行求解或证明.3.如图所示,设CD是Rt△ABC的斜边AB上的高.求证:CA·CD=BC·AD.证明:由射影定理知:CD2=AD·BD,CA2=AD·AB,BC2=BD·AB.∴CA·CD=AD2·BD·AB=AD·BD·AB,BC·AD=AD·AB·BD.即CA·CD=BC·AD.4.Rt△ABC中有正方形DEFG,点D、G分别在AB、AC上,E、F在斜边BC上.求证:EF2=BE·FC.证明:过点A作AH⊥BC于H.则DE∥AH∥GF.∴DE AH =BE BH ,GF AH =FC CH . ∴DE ·GF AH 2=BE ·FCBH ·CH. 又∵AH 2=BH ·CH , ∴DE ·GF =BE ·FC . 而DE =GF =EF , ∴EF 2=BE ·FC .[对应学生用书P15]一、选择题1.已知Rt △ABC 中,斜边AB =5 cm ,BC =2 cm ,D 为AC 上一点,DE ⊥AB 交AB 于E ,且AD =3.2 cm ,则DE =( )A .1.24 cmB .1.26 cmC .1.28 cmD .1.3 cm解析:如图,∵∠A =∠A ,∴Rt △ADE ∽Rt △ABC , ∴AD AB =DEBC, DE =AD ·BC AB =3.2×25=1.28.答案:C2.已知直角三角形中两直角边的比为1∶2,则它们在斜边上的射影比为( ) A .1∶2 B .2∶1 C .1∶4D .4∶1解析:设直角三角形两直角边长分别为1和2,则斜边长为5,∴两直角边在斜边上的射影分别为15和45. 答案:C3.一个直角三角形的一条直角边为3 cm ,斜边上的高为2.4 cm ,则这个直角三角形的面积为( )A .7.2 cm 2B .6 cm 2C .12 cm 2D .24 cm 2解析:长为3 cm 的直角边在斜边上的射影为32-2.42=1.8(cm),由射影定理知斜边长为321.8=5(cm), ∴三角形面积为12×5×2.4=6(cm 2).答案:B4.如图所示,在△ABC 中,∠ACB =90°,CD ⊥AB ,D 为垂足,若CD =6 cm ,AD ∶DB =1∶2,则AD 的值是( )A .6 cmB .3 2 cmC .18 cmD .3 6 cm解析:∵AD ∶DB =1∶2, ∴可设AD =t ,DB =2t . 又∵CD 2=AD ·DB ,∴36=t ·2t ,∴2t 2=36,∴t =32(cm),即AD =3 2 cm. 答案:B 二、填空题5.若等腰直角三角形的一条直角边长为1,则该三角形在直线l 上的射影的最大值为________.解析:射影的最大值即为等腰直角三角形的斜边长. 答案: 26.如图所示,四边形ABCD 是矩形,∠BEF =90°,①②③④这四个三角形能相似的是________.解析:因为四边形ABCD 为矩形, 所以∠A =∠D =90°.因为∠BEF =90°,所以∠1+∠2=90°. 因为∠2+∠3=90°,所以∠1=∠3. 所以△ABE ∽△DEF . 答案:①③7.在△ABC 中,∠A =90°,AD ⊥BC 于点D ,AD =6,BD =12,则CD =__________,AC =__________,AB 2∶AC 2=__________.解析:如图,AB 2=AD 2+BD 2,又AD =6,BD =12, ∴AB =6 5.由射影定理可得,AB 2=BD ·BC , ∴BC =AB 2BD=15.∴CD =BC -BD =15-12=3. 由射影定理可得,AC 2=CD ·BC , ∴AC =3×15=3 5. ∴AB 2AC 2=BD ·BC CD ·BC =BD CD =123=4. 答案:3 35 4∶1 三、解答题8.如图:在Rt △ABC 中,CD 是斜边AB 上的高,DE 是Rt △BCD 斜边BC 上的高,若BE =6,CE =2.求AD 的长是多少.解:因为在Rt △BCD 中,DE ⊥BC ,所以由射影定理可得:CD 2=CE ·BC , 所以CD 2=16, 因为BD 2=BE ·BC , 所以BD =6×8=4 3.因为在Rt △ABC 中,∠ACB =90°, CD ⊥AB ,所以由射影定理可得: CD 2=AD ·BD ,所以AD =CD 2BD =1643=433.9.如图,在△ABC 中,CD ⊥AB 于D ,且CD 2=AD ·BD ,求证:∠ACB=90°.证明:∵CD ⊥AB , ∴∠CDA =∠BDC =90°. 又∵CD 2=AD ·BD , 即AD ∶CD =CD ∶BD ,∴△ACD ∽△CBD .∴∠CAD =∠BCD . 又∵∠ACD +∠CAD =90°, ∴∠ACB =∠ACD +∠BCD =∠ACD +∠CAD =90°.10.已知直角三角形周长为48 cm ,一锐角平分线分对边为3∶5两部分. (1)求直角三角形的三边长;(2)求两直角边在斜边上的射影的长. 解:(1)如图,设CD =3x ,BD =5x ,则BC =8x , 过D 作DE ⊥AB , 由题意可得, DE =3x ,BE =4x , ∴AE +AC +12x =48. 又AE =AC ,∴AC =24-6x ,AB =24-2x . ∴(24-6x )2+(8x )2=(24-2x )2, 解得:x 1=0(舍去),x 2=2. ∴AB =20,AC =12,BC =16, ∴三边长分别为:20 cm,12 cm,16 cm. (2)作CF ⊥AB 于F 点, ∴AC 2=AF ·AB .∴AF =AC 2AB =12220=365(cm);同理:BF =BC 2AB =16220=645(cm).∴两直角边在斜边上的射影长分别为365 cm ,645cm.[对应学生用书P16]近两年高考中,由于各地的要求不同,所以试题的呈现形式也不同.但都主要考查相似三角形的判定与性质,射影定理,平行线分线段成比例定理;一般试题难度不大,解题中要注意观察图形特点,巧添辅助线对解题可起到事半功倍的效果.在使用平行线分线段成比例定理及其推论时,一定要搞清有关线段或边的对应关系,切忌搞错比例关系.1.如图,在梯形ABCD 中,AB ∥CD ,AB =4,CD =2,E ,F 分别为AD ,BC 上的点,且EF =3,EF ∥AB ,则梯形ABFE 与梯形EFCD 的面积比为________.解析:由CD =2,AB =4,EF =3, 得EF =12(CD +AB ),∴EF 是梯形ABCD 的中位线,则梯形ABFE 与梯形EFCD 有相同的高,设为h , 于是两梯形的面积比为 12(3+4)h ∶12(2+3)h =7∶5. 答案:7∶52.如图,圆O 上一点C 在直径AB 上的射影为D ,点D 在半径OC 上的射影为E .若AB =3AD ,则CEEO的值为________.解析:连接AC ,BC ,则∠ACB =90°. 设AD =2,则AB =6, 于是BD =4,OD =1.如图,由射影定理得CD 2=AD ·BD =8,则CD =2 2. 在Rt △OCD 中,DE =OD ·CD OC =1×223=223.则CE =DC 2-DE 2= 8-89=83, EO =OC -CE =3-83=13.因此CE EO =8313=8.答案:8[对应学生用书P16]的直线上截得的线段所呈现的规律,主要用来证明比例式成立、证明直线平行、计算线段的长度,也可以作为计算某些图形的周长或面积的重要方法,其中,平行线等分线段定理是线段的比为1的特例.[例1] 如图,在△ABC 中,DE ∥BC ,DH ∥GC . 求证:EG ∥BH . [证明] ∵DE ∥BC ,AC AB∵DH ∥GC ,∴AH AC =ADAG .∴AE ·AB =AC ·AD =AH ·AG . ∴AE AH =AGAB.∴EG ∥BH . [例2] 如图,直线l 分别交△ABC 的边BC ,CA ,AB 于点D ,E ,F ,且AF =13AB ,BD =52BC ,试求EC AE.[解] 作CN ∥AB 交DF 于点N ,并作EG ∥AB 交BC 于点G ,由平行截割定理,知BF CN =DB DC ,CN AF =EC AE,两式相乘,得BF CN ·CN AF =DB DC ·ECAE ,即EC AE =BF AF ·DC DB. 又由AF =13AB ,得BFAF =2,由BD =52BC ,得DC DB =35,所以EC AE =2×35=65.角关系.其应用非常广泛,涉及到多种题型,可用来计算线段、角的大小,也可用来证明线段、角之间的关系,还可以证明直线之间的位置关系.其中,三角形全等是三角形相似的特殊情况.[例3] 如图所示,AD 、CF 是△ABC 的两条高线,在AB 上取一点P ,使AP =AD ,再从P 点引BC 的平行线与AC 交于点Q .求证:PQ =CF .[证明] ∵AD 、CF 是△ABC 的两条高线, ∴∠ADB =∠BFC =90°. 又∠B =∠B ,∴△ABD ∽△CBF .CF CB又∵PQ ∥BC ,∴△APQ ∽△ABC . ∴PQ BC =AP AB .∴AP PQ =AB BC .∴AD CF =AP PQ. 又∵AP =AD ,∴CF =PQ .[例4] 四边形ABCD 中,AB ∥CD ,CE 平分∠BCD ,CE ⊥AD 于点E ,DE =2AE ,若△CED 的面积为1,求四边形ABCE 的面积.[解] 如图,延长CB 、DA 交于点F ,又CE 平分∠BCD ,CE ⊥AD .∴△FCD 为等腰三角形,E 为FD 的中点. ∴S △FCD =12FD ·CE=12×2ED ·CE =2S △CED =2, EF =ED =2AE . ∴F A =AE =14FD .又∵AB ∥CD , ∴△FBA ∽△FCD . ∴S △FBA S △FCD =(F A FD)2=(14)2=116.∴S △FBA =116×S △FCD =18. ∴S 四边形ABCE =S △FCD -S △CED -S △FBA =2-1-18=78.系,此定理常作为计算与证明的依据,在运用射影定理时,要特别注意弄清射影与直角边的对应关系,分清比例中项,否则在做题中极易出错.[例5] 如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于D ,DE ⊥AC于E ,EF ⊥AB 于F .求证:CE 2=BD ·DF .[证明] ∵∠ACB =90°,DE ⊥AC ,∴DE ∥BC .∴BD CE =ABAC .同理:CD ∥EF ,∴CE DF =ACAD .∵∠ACB =90°,CD ⊥AB , ∴AC 2=AD ·AB . ∴AC AD =ABAC . ∴CE DF =BD CE. ∴CE 2=BD ·DF .[对应学生用书P41] (时间:90分钟,满分:120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,已知AA ′∥BB ′∥CC ′,AB ∶BC =1∶3,那么下列等式成立的是( )A .AB =2A ′B ′ B .3A ′B ′=B ′C ′ C .BC =B ′C ′D .AB =A ′B ′解析:∵AA ′∥BB ′∥CC ′,∴AB BC =A ′B ′B ′C ′=13.∴3A ′B ′=B ′C ′. 答案:B2.如图,∠ACB =90°.CD ⊥AB 于D ,AD =3、CD =2,则AC ∶BC 的值是( )A .3∶2B .9∶4 C.3∶ 2D.2∶ 3解析:Rt △ACD ∽Rt △CBD ,∴AC BC =AD CD =32.答案:A3.在Rt △ABC 中,CD 为斜边AB 上的高,若BD =3 cm ,AC =2 cm ,则CD 和BC 的长分别为( )A. 3 cm 和3 2 cm B .1 cm 和 3 cm C .1 cm 和3 2 cm D. 3 cm 和2 3 cm 解析:设AD =x ,则由射影定理得x (x +3)=4, 即x =1(负值舍去), 则CD =AD ·BD =3(cm), BC =BD ·AB =3(3+1)=23(cm). 答案:D4.如图,在△ABC 中,∠BAC =90°,AD 是斜边BC 上的高,DE 是△ACD 的高,且AC =5,CD =2,则DE 的值为( )A.2215B.215C.3215D.2125解析:AC 2=CD ·BC , 即52=2×BC , ∴BC =252.∴AB =BC 2-AC 2= 2524-52=5212. ∵DE AB =DC BC ,∴DE =2215. 答案:A5.如图所示,给出下列条件:①∠B =∠ACD ;②∠ADC =∠ACB ;③AC CD =ABBC ;④AC 2=AD ·AB .其中单独能够判定△ABC ∽△ACD 的个数为( )A .1B .2C .3D .4解析:①由∠B =∠ACD ,再加上公共角∠A =∠A ,可得两个三角形相似;②由∠ADC =∠ACB ,再加上公共角∠A =∠A ,可得两个三角形相似;③AC CD =ABBC,而夹角不一定相等,所以两个三角形不一定相似;④AC 2=AD ·AB 可得AC AD =ABAC ,再加上公共角∠A =∠A ,可得两个三角形相似.答案:C6.如图,DE ∥BC ,S △ADE ∶S 四边形DBCE =1∶8,则AD ∶DB 的值为( )A .1∶4B .1∶3C .1∶2D .1∶5解析:由S △ADE ∶S 四边形DBCE =1∶8 得S △ADE ∶S △ABC =1∶9. ∵DE ∥BC , ∴△ADE ∽△ABC . ∴(ADAB )2=S △ADE S △ABC =19. ∴AD AB =13,AD DB =12. 答案:C7.△ABC 和△DEF 满足下列条件,其中不一定使△ABC 与△DEF 相似的是( ) A .∠A =∠D =45°38′,∠C =26°22′,∠E =108° B .AB =1,AC =1.5,BC =2,DE =12,EF =8,DF =16 C .BC =a ,AC =b ,AB =c ,DE =a ,EF =b ,DF =c D .AB =AC ,DE =DF ,∠A =∠D =40° 解析:A 中∠A =∠D ,∠B =∠E =108°, ∴△ABC ∽△DEF ;B 中AB ∶AC ∶BC =EF ∶DE ∶DF =2∶3∶4; ∴△ABC ∽△EFD ; D 中AB AC =DEDF,∠A =∠D , ∴△ABC ∽△DEF ;而C 中不能保证三边对应成比例. 答案:C8.在Rt △ACB 中,∠C =90°.CD ⊥AB 于D .若BD ∶AD =1∶4,则tan ∠BCD 的值是( ) A.14 B.13 C.12D .2解析:由射影定理得CD 2=AD ·BD ,又BD ∶AD =1∶4. 令BD =x ,则AD =4x (x >0), ∴CD 2=4x 2,∴CD =2x ,tan ∠BCD =BD CD =x 2x =12. 答案:C9.在▱ABCD 中,E 为CD 上一点,DE ∶CE =2∶3,连接AE 、BE 、BD 且AE 、BD 交于点F ,则S △DEF ∶S △EBF ∶S △ABF =( )A .4∶10∶25B .4∶9∶25C .2∶3∶5D .2∶5∶25解析:∵AB ∥CD , ∴△ABF ∽△EDF . ∴DE AB =DF FB =25. ∴S △DEF S △ABF =(25)2=425.又△DEF 和△BEF 等高. ∴S △DEF S △EBF =DF FB =25=410. 答案:A10.如图,已知a ∥b ,AF BF =35,BCCD =3.则AE ∶EC =( )A.125 B.512 C.75D.57解析:∵a ∥b ,∴AE EC =AG CD ,AF BF =AGBD .∵BCCD =3,∴BC =3CD ,∴BD =4CD . 又AF BF =35, ∴AG BD =AF BF =35.∴AG 4CD =35.∴AG CD =125. ∴AE EC =AG CD =125. 答案:A二、填空题(本大题共4个小题,每小题5分,满分20分.把答案填写在题中的横线上) 11.如图,D ,E 分别是△ABC 边AB ,AC 上的点,且DE ∥BC ,BD =2AD ,那么△ADE的周长∶△ABC 的周长等于________.解析:∵DE ∥BC ,∴△ADE ∽△ABC . ∵BD =2AD ,∴AB =3AD .∴AD AB =13. ∴△ADE 的周长△ABC 的周长=AD AB =13.答案:1312.如图,在△ABC 中,DE ∥BC ,DF ∥AC ,AE ∶AC =3∶5, DE =6,则BF =________.解析:∵DE ∥BC , ∴DE BC =AE AC ,∴BC =DE ·AC AE =6×53=10, 又DF ∥AC ,∴DE =FC =6. ∴BF =BC -FC =4. 答案:413.如图,在△ABC 中,DE ∥BC ,BE 与CD 相交于点O ,直线AO 与DE 、BC 分别交于N 、M ,若DN ∶MC =1∶4,则NE ∶BM =________,AE ∶EC =________.解析:OD OC =DN MC =14,∴OE OB =OD OC =14. ∴NE BM =OE OB =14. 又DE BC =OD OC =14, ∴AE AC =DE BC =14. ∴AE ∶EC =1∶3. 答案:1∶4 1∶314.阳光通过窗口照到室内,在地面上留下2.7 m 宽的亮区(如图所示),已知亮区一边到窗下的墙角距离CE =8.7 m ,窗口高AB =1.8 m ,那么窗口底边离地面的高BC 等于________m.解析:∵BD ∥AE ,∴BCAB =CDDE .∴BC =AB ·CDDE.∵AB =1.8 m ,DE =2.7 m ,CE =8.7 m , ∴CD =CE -DE =8.7-2.7=6(m). ∴BC =1.8×62.7=4(m).答案:4三、解答题(本大题共4个小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)如图,△ABC 中,BC 的中点为D ,∠ADB和∠ADC 的平分线分别交AB 、AC 于点M 、N .求证:MN ∥BC .证明:∵MD 平分∠ADB , ∴AD BD =AM MB. ∵ND 平分∠ADC ,∴AD DC =ANNC .∵BD =DC , ∴AM MB =AD BD =AD DC =AN NC. ∴MN ∥BC .16.(本小题满分12分)如图,已知:△ABC 中,AB =AC ,AD 是中线,P 是AD 上一点,过C 作CF ∥AB ,延长BP 交AC 于E ,交CF 于F ,求证:BP 2=PE ·PF .证明:连接PC , ∵AB =AC ,AD 是中线,∴AD 是△ABC 的对称轴,故PC =PB , ∠PCE =∠ABP . ∵CF ∥AB , ∴∠PFC =∠ABP , 故∠PCE =∠PFC , ∵∠CPE =∠FPC , ∴△EPC ∽△CPF , 故PC PF =PE PC, 即PC 2=PE ·PF , ∴BP 2=PE ·PF .17.(本小题满分12分)如图,四边形ABCD 是平行四边形,P 是BD 上任意一点,过P 点的直线分别交AB 、DC 于E 、F ,交DA 、BC 的延长线于G 、H .(1)求证:PE ·PG =PF ·PH ;(2)当过P 点的直线绕点P 旋转到F 、H 、C 重合时,请判断PE 、PC 、PG 的关系,并给出证明.解:(1)证明:∵AB ∥CD ,∴PE PF =PB PD .∵AD ∥BC ,∴PH PG =PBPD ,∴PE PF =PHPG.∴PE ·PG =PH ·PF . (2)关系式为PC 2=PE ·PG .证明:由题意可得到右图, ∵AB ∥CD , ∴PE PC =PBPD. ∵AD ∥BC ,∴PC PG =PBPD .∴PE PC =PCPG,即PC 2=PE ·PG . 18.(本小题满分14分)某生活小区的居民筹集资金1 600元,计划在一块上、下两底分别为10 m 、20 m 的梯形空地上种植花木(如图).(1)他们在△AMD 和△BMC 地带上种植太阳花,单位为8元/m 2,当△AMD 地带种满花后(图中阴影部分)共花了160元,请计算种满△BMC 地带所需的费用;(2)若其余地带要种的有玫瑰和茉莉花两种花木可供选择,单价分别为12元/m 2和10元/m 2,应选择种哪种花木,刚好用完所筹集的资金?解:(1)∵四边形ABCD 为梯形,∴AD ∥BC . ∴△AMD ∽△CMB ,∴S △AMD S △CMB =(AD BC )2=14.∵种植△AMD 地带花费160元, ∴S △AMD =1608=20(m 2).∴S △CMB =80(m 2).∴△CMB 地带的花费为80×8=640元. (2)S △ABM S △AMD =BM DM =BC AD =2, ∴S △ABM =2S △AMD =40(m 2). 同理:S △DMC =40(m 2).所剩资金为:1600-160-640=800元, 而800÷(S △ABM +S △DMC )=10(元/m 2). 故种植茉莉花刚好用完所筹集的资金.。

2019-2020学年度最新高中数学人教A版选修1-2创新应用教学案:第四章4-1流程图-含答案

2019-2020学年度最新高中数学人教A版选修1-2创新应用教学案:第四章4-1流程图-含答案

2019-2020学年度最新高中数学人教A版选修1-2创新应用教学案:第四章4-1流程图-含答案1.预习教材,问题导入根据以下提纲,预习教材P66~P72的内容,回答下列问题.如何把用自然语言描述的算法转化为程序框图?提示:一般需要将每一个算法步骤分解为若干输入、输出、条件结构、循环结构等基本算法单元,然后根据各单元的逻辑关系,用流程线将这些基本单元连结起来.2.归纳总结,核心必记(1)流程图的定义流程图是由一些图形符号和文字说明构成的图示.(2)流程图的分类①常见的流程图有程序框图和工序流程图.②在工序流程图中,每一个基本单元代表一个工序.(3)流程图的特点①流程图通常会有一个“起点”,一个或多个“终点”.②流程图一般要按照从左到右,从上到下的顺序来画.③在流程图中,活动的每一个明确的步骤构成流程图的一个基本单元,它们之间通过流程线产生联系.[问题思考](1)解决某一问题的流程图的画法是唯一的吗?提示:不是.(2)流程图只能用带箭头的流程线来表示各单元的先后关系,对吗?提示:对.(3)小明的爸爸为了家庭生计,到一家豆腐房学做豆腐,他看到的制作流程为:第一步泡豆,第二步磨豆,第三步去渣,第四步煮豆汁,第五步点卤,第六步挤压.如何用工序流程图表示以上工序?提示:泡豆→磨豆→去渣→煮豆汁→点卤→挤压[课前反思]1.流程图的定义是什么?;2.常见的流程图有哪几类?;3.流程图有什么特点?.讲一讲1.设计一个计算10个数的平均数的算法,画出程序框图.[尝试解答]可以逐个输入10个数,再用变量存放数的累加和,求出总和后,除以10,即得平均数,程序框图如图所示.画程序框图的规则:使用标准的框图符号;框图一般按从上到下,从左到右的方向画;除判断框外,大多数程序框图的符号只有一个进入点和一个退出点,而判断框是具有超过一个进入点和一个退出点的唯一符号.练一练1.执行如图所示的程序框图,输出的k 值为( )A .3B .4C .5D .6解析:选B 第一次进入循环体:a =32,k =1;第二次进入循环体:a =34,k =2;第三次进入循环体:a =38,k =3;第四次进入循环体:a =316,k =4;此时a <14,结束循环,输出k 的值为4.讲一讲2.(链接教材P 68-例2)我们生活中用的纸杯从原料(纸张)到商品(纸杯)主要经过四道工序:淋膜、切割、印刷、成型.首先用淋膜机给原纸淋膜PE(聚乙烯),然后用分切机把已经淋膜好的纸分切成矩形纸张(印刷后做纸杯壁用)和卷筒纸(做纸杯底部用),再将矩形纸印刷并切成杯壁,最后成型,请用流程图表示纸杯的加工过程.[尝试解答] 这是一道工序流程图题目,描述纸杯制作的整个过程.由题意得流程图如图所示.画工序流程图时,应先理清工序大体分几个阶段,再对每一阶段细分.每一步应注意先后顺序,否则会产生错误.在实际生产中,对于图中的流程,还会再细分并添加必要的条件进行处理.练一练2.某地残次木材系列资源开发利用的具体过程是:建立木材加工厂,利用残次木材加工各种小件木制用具(如打气筒手柄),再把加工后的下脚料粉碎,用于培养袋栽食用菌.试画出此资源开发利用的工序流程图.解:确定工序及各工序之间的关系为:(1)建立木材加工厂;(2)加工各种小件木制用具;(3)粉碎加工后的下脚料;(3)培养袋栽食用菌.由此画出工序流程图如图所示.建立木材加工厂→加工各种小件木制用具→粉碎加工后的下脚料→培养袋栽食用菌讲一讲3.按如图所示的程序框图操作:(1)写出输出的数所组成的数集.若将输出的数按照输出的顺序从前往后依次排列,则得到数列{a n},请写出数列{a n}的通项公式.(2)如何变更A框内的赋值语句,使得根据这个程序框图所输出的数恰好是数列{3n}的前8项?(3)如何变更B框内的赋值语句,使得根据这个程序框图所输出的数恰好是数列{4n-3}的前8项?[思路点拨]解答本题关键是认真审题,明白程序执行后输出8个数,后一个比前一个大3.[尝试解答](1)输出的数组成的集合为{1,4,7,10,13,16,19,22};数列{a n}的通项公式为a n=3n-2,n∈N*,且n≤8.(2)将A框内的语句改为“a=3”即可.(3)将B框内的语句改为“a=a+4”即可.流程图具有简洁、明了、高效的优点,日常生活中应用非常广泛,正确解读流程图是应用的前提:(1)明确所给流程图是程序框图,还是工序流程图.(2)若是程序框图,明确程序执行后输出什么结果,条件结构的判断条件是什么,循环结构中,控制循环的条件是什么.(3)若是工序流程图,明确有几道工序,各工序之间的关系.练一练3.如图是2016年山东各类成人高考学校招生网上报名流程图.试叙述一名考生报名时所要做的工作.解:要完成报名,需依次做好以下工作:(1)网上登记,阅读报名须知.(2)填写考生报名身份证号码,并查看该身份证号码是否已登记(若未登记,则不允许报名,需重新填写身份证号码).(3)填写《2016年各类成人高考学校招生网上报名登记表》,并检查信息是否有效(若无效需重新填写登记表).(4)确定报名成功.——————————————[课堂归纳·感悟提升]—————————————1.本节课的重点是流程图的读图问题,难点是画工序流程图.2.本节课要重点掌握的规律方法(1)程序框图问题的求法,见讲1;(2)工序流程图的画法,见讲2;(3)流程图的读图,见讲3.3.应用流程图应把握的三个关键点(1)首先找到所需要的基本单元,理解每一个基本单元的意义.(2)明确该单元的流向.(3)若该单元的流向有多个,应选择最佳路线.课下能力提升(十一) [学业水平达标练]题组1 程序框图1.如图所示程序框图运行后输出的结果为( )A .36B .45C .55D .56解析:选B 其实质是求1+2+3+…+9=9(1+9)2=45.2.执行如图所示的程序框图,如果输入的t =0.01,则输出的n 等于( )A .5B .6C .7D .8解析:选C 第一次循环:S =1-12=12,m =14,n =1,S >t ;第二次循环:S =12-14=14,m =18,n =2,S >t ;第三次循环:S =14-18=18,m =116,n =3,S >t ;第四次循环:S =18-116=116,m =132,n =4,S >t ;第五次循环:S =116-132=132,m =164,n =5,S >t ;第六次循环:S =132-164=164,m =1128,n =6,S >t ;第七次循环:S =164-1128=1128,m =1256,n =7,此时不满足S >t ,结束循环,输出n =7.3.执行如图所示的算法流程图,若输入x =10,则输出y 的值为________.解析:x =10,y =12x -1=4,∵|y -x |=|4-10|>1, ∴x =4,∴y =1.∵|y -x |=|1-4|>1, ∴x =1,∴y =-12.∵|y -x |=⎪⎪⎪⎪-12-1>1, ∴x =-12,∴y =-54,此时|y -x |=⎪⎪⎪⎪-54+12<1, 故y =-54.答案:-54题组2 工序流程图4.下列框图中,属于流程图的是( )A.整数指数幂→有理数指数幂→实数指数幂B.随机事件→频率→概率C.平面向量→空间向量→几何向量D.插电源→放脏衣服→放水→洗衣→脱水解析:选D 根据流程图的定义分析知只有D 选项中的框图为流程图. 5.画流程图的一般要求为( ) A .从左到右,从上到下 B .从右到左,从上到下 C .从左到右,自下而上 D .从右到左,自下而上解析:选A 画流程图时一般要从左到右,从上到下.6.某商家准备投产某种产品,需要先进行市场调研,调研结束后才可投入生产.下面各流程图中,最合适的是( )A.立项→南京调研→深圳调研→欧盟调研→投产B.立项调研南京调研深圳调研投产欧盟调研C.立项欧盟调研南京调研调研投产深圳调研D.立项南京调研调研深圳调研欧盟调研投产解析:选D 商场如战场,调研是该项目的关键,需抓紧时间搞好调研,因此应多增派人手,齐头并进,尽快完成调研,早日安排投产,使产品占领市场.7.某省公安消防局对消防产品的监督程序步骤为:首先受理产品请求,如果是由公安部发证的产品,则审核考察,领导复核,不同意,则由窗口将信息反馈出去,同意,则报公安部审批,再经本省公安消防局把反馈信息由窗口反馈出去.如果不是由公安部发证的产品,则由窗口将信息反馈出去,试画出此监督程序的流程图.解:某省公安消防局消防产品监督程序的流程图如图所示:题组3流程图的读图问题8.如图所示是用函数拟合解决实际问题的流程图,则矩形框图中应填入()A.整理数据、求函数表达式B.画散点图、进行模型修改C.画散点图、求函数表达式D.整理数据、进行模型修改解析:选C根据数据拟合的基本过程知,选项C正确,选C.9.如图是某工厂加工笔记本电脑屏幕的流程图,根据此流程图回答下列问题:(1)一件屏幕成品可能经过几次加工和检验程序?(2)哪些环节可能导致屏幕废品的产生,二次加工产品的来源是什么? (3)该流程图的终点是什么?解:(1)一件屏幕成品可能经过一次加工、二次加工两道加工程序和检验、最后检验两道检验程序,也可能经过一次加工、返修加工、二次加工三道加工程序和检验、返修检验、最后检验三道检验程序.(2)返修加工和二次加工可能导致屏幕废品的产生,二次加工产品的来源是一次加工的合格品和返修加工的合格品.(3)流程图的终点是“屏幕成品”和“屏幕废品”.[能力提升综合练]1.淮南麻鸭资源的开发与利用的流程图如图所示,则羽绒加工的前一道工序是( ) 孵化鸭雏→商品鸭饲养→商品鸭收购、育肥、加工→羽绒加工→羽绒服加工生产体系A .孵化鸭雏B .商品鸭饲养C .商品鸭收购、育肥、加工D .羽绒服加工生产体系 答案:C2.如图所示,程序框图的输出结果为( )A.34B.16C.1112D.2524解析:选C 第一次运行得s =0+12,n =4;第二次运行得s =0+12+14,n =6;第三次运行得s =0+12+14+16,n =8;跳出循环,输出s =0+12+14+16=1112.3.执行如图所示的程序框图,则计算机输出的所有点(x ,y )所满足的函数为( )A .y =x +1B .y =2xC .y =2x -1 D .y =2x解析:选D 由题意,该程序共输出4个点(1,2),(2,4),(3,8),(4,16),易知这4个点都在函数y =2x 的图象上.4.某工程的工序流程图如图,则该工程的总工时为( )A .9天B .8天C .7天D .6天解析:选A 因为各个不同工序中用时最多的是①→②→④→⑥→⑦即9天,故选A. 5.某环形道路上顺时针排列着4所中学:A 1,A 2,A 3,A 4,它们依次有彩电15台、8台、5台、12台,相邻中学间可借调彩电,为使各校的彩电台数相同,调配出彩电的总台数最少为________.解析:调配后每所学校彩电台数为10,最好的方案为A 1――→5A 2――→3A 3――→2A 4,总数为5+3+2=10.答案:106.某篮球队6名主力队员在最近三场比赛中投进的三分球个数如表所示:则图中判断框应填________,输出的s =________.解析:初值s=0,i=1,当i≤6时,得到以下结果,s=a1,i=2,s=a1+a2,i=3,s=a1+a2+a3,i=4,s=a1+a2+a3+a4,i=5,s=a1+a2+a3+a4+a5,i=6,s=a1+a2+a3+a4+a5+a6,i=7.∵7>6,∴输出s=a1+a2+a3+a4+a5+a6.答案:i≤6?a1+a2+a3+a4+a5+a67.某药厂生产某产品的过程如下:(1)备料、前处理、提取、制粒、压片、包衣、颗粒分装、包装;(2)提取环节经检验,合格,进行下一工序,否则返回前处理;(3)包衣、颗粒分装两环节分别检验合格进入下一工序,否则为废品.画出生产该产品的工序流程图.解:生产该产品的工序流程图如图:8.高考成绩公布后,考生如果认为公布的高考成绩与本人估算的成绩有误,可以在规定的时间内申请查分:(1)本人填写《查分登记表》,交(区)招办申请查分,(区)招办呈交市招办,再报省招办;(2)省招办复查无误,则查分工作结束后通知,有误则再具体认定,并改正,也在查分工作结束后通知;(3)市招办接到通知,再由(区)招办通知考生.画出该事件的流程图.解:。

2019_2020学年高中数学第一讲相似三角形的判定及有关性质1.1平行线等分线段定理课件新人教A版选修4_1

2019_2020学年高中数学第一讲相似三角形的判定及有关性质1.1平行线等分线段定理课件新人教A版选修4_1

答疑解惑
AYIJIEHUO
D当堂检测 ANGTANGJIANCE
【例3】 如图所示,在平行四边形ABCD中,对角线AC,BD相交于 点O,OE∥AB交BC于点E,AD=6,求BE的长.
分析由于OE∥AB,OA=OC,根据平行线等分线段定理的推论1,得出 E是BC的中点,所以BE=EC =12BC=12AD.
A.AE=CE B.BE=DE
C.CE=DE D.CE>DE 解析由平行线等分线段定理可直接得到答案. 答案C
首页
X D 新知导学 INZHIDAOXUE
答疑解惑
AYIJIEHUO
D当堂检测 ANGTANGJIANCE
123
2.推论1 经过三角形一边的中点与另一边平行的直线必平分第三边.
首页
X D 新知导学 INZHIDAOXUE
() (4)梯形的中位线平行于两底,并且等于两底差的一半. ( ) 答案(1)× (2)√ (3)√ (4)×
首页
X D 新知导学 INZHIDAOXUE
答疑解惑
AYIJIEHUO
D当堂检测 ANGTANGJIANCE
探究一
探究二
探究三
探究一作已知线段的等分点
【例1】 已知线段AB,求作线段AB的六等分点,并予以证明. 分析根据平行线等分线段定理,只要作射线AM,在AM上以任意取
DG=
,H是
的中点,F是
的中点.
解析由平行线等分线段定理、推论1和2以及AE=EB可得答案,故 填BG,AC,CD.
答案BG AC CD
首页
X D 新知导学 INZHIDAOXUE
答疑解惑
AYIJIEHUO
D当堂检测 ANGTANGJIANCE
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年度最新高中数学人教A版选修4-1创新应用教学案:第一讲三相似三角形的判定-含答案相似三角形的判定及性质1.相似三角形的判定[对应学生用书P7]1.相似三角形(1)定义:对应角相等,对应边成比例的两个三角形叫做相似三角形,相似三角形对应边的比值叫做相似比或(相似系数).(2)预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.2.相似三角形的判定定理(1)判定定理1:对于任意两个三角形,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,简述为:两角对应相等,两三角形相似.(2)判定定理2:对于任意两个三角形,如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似,简述为:两边对应成比例且夹角相等,两三角形相似.引理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.(3)判定定理3:对于任意两个三角形,如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似,简述为:三边对应成比例,两三角形相似.[说明] 1.在这些判定方法中,应用最多的是判定定理1,即两角对应相等,两三角形相似.因为它的条件最容易寻求.在实际证明当中,要特别注意两个三角形的公共角.判定定理2则常见于连续两次证明相似时,在证明时第二次使用此定理的情况较多.2.引理是平行线分线段成比例定理的推论的逆定理,可以判定两直线平行.3.直角三角形相似的判定定理(1)定理:①如果两个直角三角形有一个锐角对应相等,那么它们相似;②如果两个直角三角形的两条直角边对应成比例那么它们相似.(2)定理:如果一个直角三角形的斜边和一条直角边与另一个三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.[说明]对于直角三角形相似的判定,除了以上方法外,还有其他特殊的方法,如直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.在证明直角三角形相似时,要特别注意直角这一隐含条件的利用.[对应学生用书P8][例1]如图,已知在△ABC中,AB=AC,∠A=36°,BD是角平分线,证明:△ABC∽△BCD.[思路点拨]已知AB=AC,∠A=36°,所以∠ABC=∠C=72°,而BD是角平分线,因此,可以考虑使用判定定理1.[证明]∵∠A=36°,AB=AC,∴∠ABC=∠C=72°.又∵BD平分∠ABC,∴∠ABD=∠CBD=36°,∴∠A=∠CBD.又∵∠C=∠C,∴△ABC∽△BCD.判定两三角形相似,可按下面顺序进行:(1)有平行截线,用预备定理;(2)有一对等角时,①找另一对等角,②找夹这个角的两边对应成比例;(3)有两对应边成比例时,①找夹角相等,②找第三边对应成比例,③找一对直角.1.如图,BC∥FG∥ED,若每两个三角形相似,构成一组相似三角形,那么图中相似的三角形的组数是()A .1B .2C .3D .4解析:△AED 与△AFG 相似,△AED 与△ABC 相似,△AFG 与△ABC 相似. 答案:C2.如图,O 是△ABC 内任一点,D ,E ,F 分别是OA ,OB ,OC 的中点,求证:△DEF ∽△ABC .证明:∵D ,E ,F 分别是OA ,OB ,OC 的中点, ∴DE =12AB ,EF =12BC ,FD =12CA .∴DE AB =EF BC =FD CA =12. ∴△DEF ∽△ABC .3.如图,D 在AB 上,且DE ∥BC 交AC 于E ,F 在AD 上,且AD 2=AF ·AB ,求证:△AEF ∽△ACD .证明:∵DE ∥BC ,∴AC AE =AB AD .①∵AD 2=AF ·AB ,∴AD AF =ABAD .②由①②两式得AC AE =ADAF ,又∠A 为公共角,∴△AEF ∽△ACD .[例2] ,Q 是CD 的中点,求证:△ADQ ∽△QCP .[思路点拨] 由于这两个三角形都是直角三角形,且已知条件是线段间的关系,故考虑证明对应边成比例,即只需证明AD QC =DQCP即可.[证明] 在正方形ABCD 中, ∵Q 是CD 的中点,∴ADQC=2. ∵BP PC =3,∴BC PC =4. 又BC =2DQ ,∴DQ CP =2.在△ADQ 和△QCP 中, AD QC =DQCP =2,∠C =∠D =90°, ∴△ADQ ∽△QCP .直角三角形相似的判定方法:(1)相似三角形的判定定理1,2,3都适用于直角三角形相似的判定.(2)两个直角三角形,已经具备直角对应相等,只要再证明有一对锐角相等,或夹直角的两边对应成比例,就可以证明这两个直角三角形相似.4.如图,∠C =90°,D 是AC 上的一点,DE ⊥AB 于E ,求证:△ADE ∽△ABC .证明:∵DE ⊥AB , ∴∠DEA =90°, ∵∠C =90°, ∴∠DEA =∠C . ∵∠A =∠A . ∴△ADE ∽△ABC5.如图,BD ,CE 是△ABC 的高,BD ,CE 交于F ,写出图中所有与△ACE 相似的三角形.解:∵∠ACE 为公共角,由直角三角形判定定理1,知Rt △FDC ∽Rt △ACE . 又∠A 为公共角,∴Rt △ABD ∽Rt △ACE . 又∵∠A +∠ACE =90°,∠A +∠ABD =90°, ∴∠ACE =∠ABD .∴Rt △FBE ∽Rt △ACE .故共有三个直角三角形,即Rt △ABD ,Rt △FBE , Rt △FCD 与Rt △ACE 相似.[例3] 如图,D 为△ABC 的边AB 上一点,过D 点作DE ∥BC ,DF ∥AC ,AF 交DE 于G ,BE 交DF 于H ,连接GH .求证:GH ∥AB .[思路点拨] 根据此图形的特点可先证比例式GE DE =EHEB 成立,再证△EGH ∽△EDB ,由相似三角形的定义得∠EHG =∠EBD 即可.[证明] ∵DE ∥BC , ∴GE FC =AG AF =DG FB ,即GE DG =CF FB . 又∵DF ∥AC ,∴EH HB =CF FB .∴GE DG =EH HB .∴GE ED =EH EB . 又∠GEH =∠DEB , ∴△EGH ∽△EDB . ∴∠EHG =∠EBD . ∴GH ∥AB .不仅可以由平行线得到比例式,也可以根据比例式的成立确定两直线的平行关系.有时用它来证明角与角之间的数量关系,线段之间的数量关系.6.如图,△ABC 的三边长是2、6、7,△DEF 的三边长是4、12、14,且△ABC 与△DEF 相似,则∠A =__________,∠B =__________,∠C =________.AB ( )=( )EF =AC ( )=________.解析:∠A =∠D ,∠B =∠E ,∠C =F . AB DE =BC EF =AC DF =12. 答案:∠D ∠E ∠F DE BC DF 127.如图,四边形ABCD 是平行四边形,点F 在BA 的延长线上,连接CF 交AD 于点E .(1)求证:△CDE ∽△F AE ;(2)当E 是AD 的中点,且BC =2CD 时, 求证:∠F =∠BCF .证明:(1)∵四边形ABCD 是平行四边形, ∴AB ∥CD .又∵点F 在BA 的延长线上, ∴∠DCF =∠F ,∠D =∠F AE . ∴△CDE ∽△F AE .(2)∵E 是AD 的中点,∴AE =DE . 由△CDE ∽△F AE ,得CD F A =DEAE .∴CD =F A .∴AB =CD =AF .∴BF =2CD .又∵BC =2CD ,∴BC =BF .∴∠F =∠BCF .8.如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于D ,点E 是AC 的中点,ED 的延长线交AB 的延长线于F .求证:AB AC =DFAF.证明:∵E 是Rt △ADC 斜边AC 上的中点, ∴AE =EC =ED . ∴∠EDC =∠C =∠BDF . 又∵AD ⊥BC 且∠BAC =90°, ∴∠BAD =∠C . ∴∠BAD =∠BDF .又∠F =∠F ,∴△DBF ∽△ADF , ∴DB AD =DF AF. 又在Rt △ABD 与Rt △CBA 中,AB AC =DBAD ,∴AB AC =DF AF.[对应学生用书P10]一、选择题1.如图所示,AD ∥EF ∥BC ,GH ∥AB ,则图中与△BOC 相似的三角形共有( )A .1个B .2个C .3个D .4个解析:根据相似三角形的判定定理可得: △OEF ∽△OBC (∵EF ∥BC ); △CHG ∽△CBO (∵HG ∥OB ); △OAD ∽△OBC (∵AD ∥BC ).故与△BOC 相似的三角形共有3个. 答案:C2.下列判断中,不.正确的是( )A .两直角边分别是3.5,2和2.8,1.6的两个直角三角形相似B .斜边和一直角边长分别是25,4和5,2的两个直角三角形相似C .两条边长分别是7,4和14,8的两个直角三角形相似D .两个等腰直角三角形相似解析:由直角三角形相似判定定理知A 、B 、D 正确. 答案:C3.如图,要使△ACD ∽△BCA ,下列各式中必须成立的是( )A.AC AB =AD BCB.AD CD =AC BC C .AC 2=CD ·CB D .CD 2=AC ·AB解析:∠C =∠C ,只有AC CD =CBAC ,即AC 2=CD ·CB 时,才能使△ACD ∽△BCA .答案:C4.如图,在等边三角形ABC 中,E 为AB 中点,点D 在AC 上,使得AD AC =13,则有( ) A .△AED ∽△BED B .△AED ∽△CBD C .△AED ∽△ABD D .△BAD ∽△BCD解析:因为∠A =∠C ,BC AE =CDAD =2,所以△AED ∽△CBD . 答案:B 二、填空题5.如图,△ABC 中,DE ∥BC ,GF ∥AB ,DE ,GF 交于点O ,则图中与△ABC 相似的三角形共有________个,它们分别是____________________.解析:与△ABC 相似的有△GFC ,△OGE ,△ADE . 答案:3 △GFC ,△OGE ,△ADE6.如图所示,∠ACB =90°,CD ⊥AB 于点D ,BC =3,AC =4,则AD =________,BD =________.解析:由题设可求得AB =5, ∵Rt △ABC ∽Rt △ACD , ∴AB AC =AC AD .∴AD =AC 2AB =165. 又∵Rt △ABC ∽Rt △CBD , ∴AB CB =BC BD .∴BD =BC 2AB =95. 答案:165 957.已知:在△ABC 中,AD 为∠BAC 的平分线,AD 的垂直平分线EF 与AD 交于点E ,与BC 的延长线交于点F ,若CF =4,BC =5,则DF =________.解析:连接AF . ∵EF ⊥AD ,AE =ED , ∴AF =DF , ∠F AD =∠FDA .又∵∠F AD =∠DAC +∠CAF , ∠FDA =∠BAD +∠B , 且∠DAC =∠BAD ,∴∠CAF =∠B .而∠CF A =∠AFB , ∴△AFC ∽△BF A . ∴AF CF =BFAF. ∴AF 2=CF ·BF =4×(4+5)=36. ∴AF =6,即DF =6. 答案:6 三、解答题8.如图,已知△ABC 中,AB =AC ,D 是AB 的中点,E 在AB 的延长线上,且BE =AB ,求证:△ADC ∽△ACE .证明:∵D 是AB 的中点,∴AD AB =12.∵AB =AC ,∴AD AC =12.∵ BE =AB ,∴AB AE =12.又AB =AC ,∴AC AE =12.∴AD AC =AC AE. 又∠A 为公共角,∴△ADC ∽△ACE .9.如图,直线EF 交AB 、AC 于点F 、E ,交BC 的延长线于点D ,AC ⊥BC ,且AB ·CD =DE ·AC .求证:AE ·CE =DE ·EF . 证明:∵AB ·CD =DE ·AC ∴AB DE =ACCD . ∵AC ⊥BC ,∴∠ACB =∠DCE =90°. ∴△ACB ∽△DCE . ∴∠A =∠D .又∵∠AEF =∠DEC ,∴△AEF ∽△DEC . ∴AE DE =EF CE . ∴AE ·CE =DE ·EF .10.如图所示,在△ABC 中,∠ACB =90°,CD ⊥AB 于D ,AE 是∠CAB 的角平分线,CD 与AE 相交于点F ,EG ⊥AB 于G .求证:EG 2=FD ·EB .证明:因为∠ACE =90°,CD ⊥AB ,所以∠CAE +∠AEC =90°,∠F AD +∠AFD =90°. 因为∠AFD =∠CFE , 所以∠F AD +∠CFE =90°. 又因为∠CAE =∠F AD , 所以∠AEC =∠CFE . 所以CF =CE .因为AE 是∠CAB 的平分线,EG ⊥AB ,EC ⊥AC , 所以EC =EG ,CF =EG .因为∠B +∠CAB =90°,∠ACF +∠CAB =90°, 所以∠ACF =∠B .因为∠CAF =∠BAE , 所以△AFC ∽△AEB ,AF AE =CF EB .因为CD ⊥AB ,EG ⊥AB , 所以Rt △ADF ∽Rt △AGE . 所以AF AE =FD EG ,CF EB =FD EG.所以CF ·EG =FD ·EB ,EG 2=FD ·EB .2.相似三角形的性质[对应学生用书P11]1.相似三角形的性质定理相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比. 相似三角形周长的比等于相似比. 相似三角形面积的比等于相似比的平方.2.两个相似三角形的外接圆的直径比、周长比、面积比与相似比的关系相似三角形外接圆的直径比、周长比等于相似比,外接圆的面积比等于相似比的平方. [说明] 相似三角形中的“对应线段”不仅仅指对应边、对应中线、角平分线和高,应包括一切“对应点”连接的线段;同时也可推演到对应的内切圆、外接圆的半径.[对应学生用书P11][例1] 已知如图,△ABC 中,CE ⊥AB 于E ,BF ⊥AC 于F ,若S△ABC =36 cm 2,S △AEF =4 cm 2,求sin A 的值.[思路点拨] 由题目条件证明△AEC ∽△AFB ,得AE ∶AF =AC ∶AB ,由此推知△AEF ∽△ACB ,进而求出线段EC 与AC 的比值.[解] ∵CE ⊥AB 于E ,BF ⊥AC 于F , ∴∠AEC =∠AFB =90°. 又∵∠A =∠A ,∴△AEC ∽△AFB . ∴AE AF =AC AB. 又∵∠A =∠A ,∴△AEF ∽△ACB . ∴(AE AC )2=S △AEF S △ACB =436. ∴AE AC =26=13. 设AE =k , 则AC =3k , ∴EC =22k . ∴sin A =EC AC =223.利用相似三角形的性质进行有关的计算往往与相似三角形对应边的比及对应角相等有关,解决此类问题,要善于联想,变换比例式,从而达到目的.1.如图,在△ABC 中,D ,E 分别是AB ,AC 边上的点.AB =8 cm ,AC =10 cm ,若△ADE 和△ABC 相似,且S △ABC ∶S △ADE =4∶1,则AE =________cm.解析:因为△ADE ∽△ABC ,且S △ABC ∶S △ADE =4∶1,所以其相似比为2∶1,即AE AC =12或AEAB =12,所以AE =5或4(cm). 答案:5或42.如图,在▱ABCD 中,AE ∶EB =2∶3. (1)求△AEF 与△CDF 周长的比; (2)若S △AEF =8,求S △CDF .解:(1)∵四边形ABCD 是平行四边形, ∴AB ∥CD 且AB =CD .∵AE EB =23,∴AE AE +EB =22+3,即AE AB =25.∴AE CD =25.又由AB ∥CD 知△AEF ∽△CDF , ∴△AEF 的周长∶△CDF 的周长=2∶5. (2)S △AEF ∶S △CDF =4∶25, 又S △AEF =8,∴S △CDF =50.[例2] 如图,一天早上,小张正向着教学楼AB 走去,他发现教学楼后面有一水塔DC ,可过了一会抬头一看:“怎么看不到水塔了?”心里很是纳闷.经过了解,教学楼、水塔的高分别是20米和30米,它们之间的距离为30米,小张身高为1.6米.小张要想看到水塔,他与教学楼之间的距离至少应有多少米?[思路点拨] 此题的解法很多,其关键是添加适当的辅助线,构造相似三角形,利用相似三角形的知识解题.[解] 如图,设小张与教学楼的距离至少应有x 米,才能看到水塔.连接FD ,由题意知,点A 在FD 上,过F 作FG ⊥CD 于G ,交AB 于H ,则四边形FEBH ,四边形BCGH 都是矩形.∵AB ∥CD ,∴△AFH ∽△DFG . ∴AH ∶DG =FH ∶FG .即(20-1.6)∶(30-1.6)=x ∶(x +30), 解得x =55.2(米).故小张与教学楼的距离至少应有55.2米,才能看到水塔.此类问题是利用数学模型解实际问题,关键在于认真分析题意,将实际问题转化成数学问题,构造相似三角形求解.3.如图,△ABC 是一块锐角三角形余料,边BC =200 mm ,高AD =300 mm ,要把它加工成长是宽的2倍的矩形零件,使矩形较短的边在BC 上,其余两个顶点分别在AB 、AC 上,求这个矩形零件的边长.解:设矩形EFGH 为加工成的矩形零件,边FG 在BC 上,则点E 、H 分别在AB 、AC 上,△ABC 的高AD 与边EH 相交于点P ,设矩形的边EH 的长为x mm.因为EH ∥BC ,所以△AEH ∽△ABC . 所以AP AD =EH BC .所以300-2x 300=x 200,解得x =6007(mm),2x =1 2007(mm).答:加工成的矩形零件的边长分别为6007 mm 和1 2007mm.4.已知一个三角形的三边长分别为3 cm,4 cm,5 cm ,和它相似的另一个三角形的最长边为12 cm ,求另一个三角形内切圆和外接圆的面积.解:设边长为3 cm,4 cm,5 cm 的三角形的内切圆半径为r ,外接圆半径为R ,因为该三角形为直角三角形,所以R =52,且12(3+4+5)r =12×3×4,即r =1.∴S 内切圆=π(cm 2),S 外接圆=π·(52)2=25π4(cm 2).又两三角形的相似比为512,∴S ′内切圆=(125)2S 内切圆=144π25(cm 2),S ′外接圆=(125)2S 外接圆=36π(cm 2).[对应学生用书P12]一、选择题1.如图,△ABC 中,DE ∥BC ,若AE ∶EC =1∶2,且AD =4 cm ,则DB 等于( )A .2 cmB .6 cmC .4 cmD .8 cm解析:由DE ∥BC , 得△ADE ∽△ABC , ∴AD AB =AE AC . ∴AD DB =AE EC =12. ∴DB =4×2=8(cm). 答案:D2.如果两个相似三角形对应边上的中线之比为3∶4,周长之和是35,那么这两个三角形的周长分别是( )A .13和22B .14和21C .15和20D .16和19 解析:由相似三角形周长之比,中线之比均等于相似比可得.∴周长之比l 1l 2=34.又l 1+l 2=35,∴l 1=15,l 2=20,即两个三角形的周长分别为15,20. 答案:C3.如图所示,在▱ABCD 中,AB =10,AD =6,E 是AD 的中点,在AB 上取一点F ,使△CBF ∽△CDE ,则BF 的长是( )A .5B .8.2C .6.4D .1.8解析:∵△CBF ∽△CDE ,∴BF DE =CBCD .∴BF =DE ·CB CD =3×610=1.8.答案:D4.如图,是一个简单的幻灯机,幻灯片与屏幕平行,光源到幻灯片的距离是30 cm ,幻灯片到屏幕的距离是1.5 m ,幻灯片上小树的高度是10 cm ,则屏幕上小树的高度是( )A .50 cmB .500 cmC .60 cmD .600 cm解析:图中的两个三角形相似.设屏幕上小树的高度为x cm ,根据相似三角形对应高的比等于相似比,得x 10=30+15030,解得x =60 cm.答案:C 二、填空题5.在比例尺为1∶500的地图上,测得一块三角形土地的周长为12 cm ,面积为6 cm 2,则这块土地的实际周长是________m ,实际面积是________m 2.解析:这块土地的实际形状与地图上的形状是两个相似三角形,由比例尺可知,它们的相似比为1500,则实际周长是12×500=6 000(cm)=60 m ;实际面积是6×5002=1 500 000(cm 2)=150 m 2.答案:60 1506.如图,在△ABC 中,D 为AC 边上的中点,AE ∥BC ,ED 交AB于G ,交BC 延长线于F ,若BG ∶GA =3∶1,BC =10,则AE 的长为________.解析:∵AE ∥BC ,∴△BGF ∽△AGE . ∴BF ∶AE =BG ∶GA =3∶1. ∵D 为AC 中点,∴AE CF =ADDC=1. ∴AE =CF .∴BC ∶AE =2∶1.∵BC =10,∴AE =5. 答案:57.如图所示,在矩形ABCD 中,AE ⊥BD 于E ,S矩形ABCD =40 cm 2.S△ABE∶S △DBA =1∶5,则AE 的长为________. 解析:因为∠BAD =90°,AE ⊥BD , 所以△ABE ∽△DBA .所以S △ABE ∶S △DBA =AB 2∶DB 2. 因为S △ABE ∶S △DBA =1∶5, 所以AB ∶DB =1∶ 5. 设AB =k cm ,DB =5k cm , 则AD =2k cm.因为S 矩形ABCD =40 cm 2,所以k ·2k =40,所以k =25(cm). 所以BD =5k =10 (cm).AD =45(cm). 又因为S △ABD =12BD ·AE =20,所以12·10·AE =20.所以AE =4(cm). 答案:4 cm 三、解答题8.如图,已知△ABC 中,∠A =90°,AB =AC ,D 为AB 中点,E 是AC 上的点,BE 、CD 交于M .若AC =3AE ,求∠EMC 的度数.解:如图,作EF ⊥BC 于F , 设AB =AC =3,则AD =32,BC =32,CE =2,EF =FC = 2. ∴BF =BC -FC =2 2.∴EF ∶BF =2∶22=1∶2=AD ∶AC . ∴△FEB ∽△ADC .∴∠2=∠1. ∵∠EMC =∠2+∠MCB ,∴∠EMC =∠1+∠MCB =∠ACB =45°.9.如图,▱ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,DE =12CD .(1)求证:△ABF ∽△CEB ;(2)若△DEF 的面积为2,求▱ABCD 的面积. 解:(1)证明:∵四边形ABCD 是平行四边形, ∴∠A =∠C ,AB ∥CD . ∴∠ABF =∠E . ∴△ABF ∽△CEB .(2)∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD .∴△DEF ∽△CEB ,△DEF ∽△ABF . ∵DE =12CD ,∴S △DEF S △CEB =(DE EC )2=19,S △DEF S △ABF =(DE AB)2=14.∵S △DEF =2,∴S △CEB =18,S △ABF =8,∴S 四边形BCDF =S △BCE -S △DEF =16. ∴S ▱ABCD =S 四边形BCDF +S △ABF =16+8=24.10.如图所示,在矩形ABCD 中,AB =12 cm ,BC =6 cm ,点P沿AB 边从点A 开始向点B 以2 cm /s 的速度移动,点Q 沿DA 边从点D 开始向点A 以1 cm/s 的速度移动,如果P 、Q 同时出发,用t 秒表示移动的时间(0≤t ≤6),那么:(1)当t 为何值时,△QAP 为等腰直角三角形?(2)对四边形QAPC 的面积,提出一个与计算结果无关的结论. (3)当t 为何值时,以点Q 、A 、P 为顶点的三角形与△ABC 相似? 解:(1)由题意可知:AQ =6-t (cm),AP =2t (cm). 若△QAP 为等腰直角三角形, 则AQ =AP ,即t =2(s).(2)S 四边形QAPC =S 矩形ABCD -S △DQC -S △PBC =12×6-12×12×t -12×6×(12-2t )=72-6t -36+6t =36(cm 2), 结论:无论P 、Q 运动到何处, S 四边形QAPC 都不变,为36 cm 2. (3)①△QAP ∽△ABC , ∴AQ AB =AP BC .∴6-t 12=2t6. ∴t =1.2 s. ②△QAP ∽△CBA ,∴AQ BC =AP AB .∴6-t 6=2t 12.∴t =3 s. 即t 为1.2 s 或3 s 时,以Q 、A 、P 为顶点的三角形与△ABC 相似.。

相关文档
最新文档